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Strange nonchaotic attractors �SNAs� were previously thought to arise exclusively in quasiperiodic dynami-
cal systems. A recent study has revealed, however, that such attractors can be induced by noise in nonquasi-
periodic discrete-time maps or in periodically driven flows. In particular, in a periodic window of such a
system where a periodic attractor coexists with a chaotic saddle �nonattracting chaotic invariant set�, none of
the Lyapunov exponents of the asymptotic attractor is positive. Small random noise is incapable of causing
characteristic changes in the Lyapunov spectrum, but it can make the attractor geometrically strange by
dynamically connecting the original periodic attractor with the chaotic saddle. Here we present a detailed study
of noise-induced SNAs and the characterization of their properties. Numerical calculations reveal that the
fractal dimensions of noise-induced SNAs typically assume fractional values, in contrast to SNAs in quasip-
eriodically driven systems whose dimensions are integers. An interesting finding is that the fluctuations of the
finite-time Lyapunov exponents away from their asymptotic values obey an exponential distribution, the
generality of which we are able to establish by a theoretical analysis using random matrices. We suggest a
possible experimental test. We expect noise-induced SNAs to be general.
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I. INTRODUCTION

Strange nonchaotic attractors �SNAs�, which are attractors
that possess a strange geometry but exhibit no sensitive de-
pendence on initial conditions, have attracted continuous in-
terest in the study of nonlinear dynamical systems
�1–5,7–13�. SNAs are typical in quasiperiodic systems
in that they can occur in parameter regimes of positive
Lebesgue measure �1�. Mathematically, if an SNA can persist
under small perturbations, it is said to be robust �11�. While
the issue of robustness is formally addressed in Ref. �11�,
examples of robust SNAs appeared earlier in the literature,
e.g., in Refs. �14–16�. So far, four different routes to SNAs
have been reported: �i� collision between a period-doubled
torus and its unstable parent �2�, �ii� fractalization of a torus
�4�, �iii� blowout bifurcation �5,6�, and �iv� intermittency �7�.
Experimental observations of SNAs have been reported in a
quasiperiodically driven magnetic-ribbon system �8�, in elec-
tronic circuits �17�, in a plasma system �18�, and in a system
near the torus-doubling terminal critical point �19�. It has
also been found that SNAs can play an intermediate role in
the transition from regular motion to chaos �10,12,20–22�.
Physically, SNAs are relevant to situations such as the local-
ization of quantum particles in spatially quasiperiodic poten-
tial systems �14�. These exotic attractors may also be impor-
tant for biological systems �9,23�, and they may be useful for
nonlinear dynamics based communication as well �24,25�.
Mathematical issues concerning the generations and proper-
ties of SNAs have been addressed �11,26–28�. Studies of the
fractal dimension spectrum of SNAs in quasiperiodically
driven systems have revealed an interesting result: both the
box-counting dimension and the information dimension are
integers �11,16�.

So far, SNAs have been identified and studied almost ex-
clusively in quasiperiodically driven dynamical systems.

Since many physical, biological, and engineering systems do
not fall in this category, it is natural to ask whether SNAs can
arise in more general situations �29�, for instance situations
in which the underlying system is autonomous or periodi-
cally driven. Identification of possible SNAs there would be
of great interest because such systems are common in many
applications. There have been debates in this regard �30–33�,
which makes the problem even more intriguing and appeal-
ing.

We have recently reported robust noise-induced SNAs in
both autonomous and periodically driven systems �13�. Our
idea is motivated by the well-documented fact that random
dynamical systems permit robust chaotic attractors with
well-defined fractal characteristics �34–37�. An intuition is
then that robust SNAs can also arise in random systems,
where a fundamental role of noise is to dynamically connect
distinct, coexisting invariant sets in the phase space �37,38�.
In particular, imagine the situation in which there is a peri-
odic attractor coexisting with a nonattracting chaotic set
�chaotic saddle�, as can occur in any periodic window of a
dynamical system. In the absence of noise, almost all initial
conditions lead to trajectories that approach the periodic at-
tractor. The chaotic saddle, however, provides a platform for
trajectories to exhibit transient chaotic behavior before ap-
proaching the periodic attractor. Once a trajectory falls in the
neighborhood of the periodic attractor, it can no longer visit
the chaotic saddle. It is in this sense that the two invariant
sets can be regarded as dynamically isolated. The presence of
noise changes this picture in that it enables trajectories near
the periodic attractor to revisit the chaotic saddle, generating
an intermittent behavior. The final attractor created this way
comprises two dynamically connected components and, un-
der fairly general conditions, the attractor can be geometri-
cally strange but it is possible that none of its Lyapunov
exponents become positive. These are the fundamental ingre-
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dients for noise-induced SNAs. More specifically, the
strangeness comes from the original chaotic invariant set that
has a fractal structure and, because the original periodic com-
ponent has a negative largest Lyapunov exponent, the largest
exponent of the final attractor can remain negative. The final
attractor will then be geometrically strange but not chaotic.
This reasoning suggests further that in any finite-time inter-
val, the Lyapunov exponent can be temporally positive due
to intermittent visits to the original chaotic set and the Fou-
rier spectrum of the trajectory will contain both a continuous
and a discrete component, where the former comes from the
chaotic set and the latter is a result of the periodic orbit. Thus
the spectrum of trajectories on the final attractor should ex-
hibit characteristics of being singular-continuous, typically
observed for SNAs in quasiperiodically driven systems �39�.

It is evident that noise-induced SNAs cannot arise in dy-
namical systems described by autonomous differential equa-
tions, because the largest Lyapunov exponent immediately
becomes positive from zero when noise begins to connect the
two invariant sets. Thus noise-induced SNAs can occur only
in discrete-time maps or in periodically driven systems for
which the largest nontrivial exponent can be nonpositive but
the final attractor is strange in open parameter regions. The
surprising consequence is that noise-induced SNAs can be
generated without requiring quasiperiodic driving. Such at-
tractors are expected to be general in physical systems where
noise is inevitable.

While we have published a brief account of the dynamical
mechanism for noise-induced SNAs in nonquasiperiodically
driven systems �13�, an important issue that needs to be ad-
dressed is the characterization of this class of attractors. Our
concern is that one might naively think that noise-induced
SNAs cannot exist in such systems because noise can smear
out any strange geometry of the underlying attractor. Indeed,
under noise, for a single trajectory any fractal structure of an
attractor, chaotic or strange nonchaotic, can be resolved only
for scales larger than one determined by the noise amplitude.
However, it was pointed out by Romeiras, Grebogi, and Ott
�40� that the fundamental fractal structure of a chaotic attrac-
tor can be resolved even under noise, if one examines the
snapshot attractors formed by a large number of trajectories.
In particular, one can use a large number of systems, started
with random initial conditions and subjected to identical
noise at any instant of time, evolve them under the dynamics,
and plot the locations of the resulting trajectories at “frozen”
times. The snapshot attractors so obtained are generally frac-
tals. At different times, since the realization of noise is dif-
ferent, the details of the snapshot attractors are different but
their fractal dimensions tend to a common value in the limit
of an infinite number of initial conditions. This approach to
studying the fractal structure of chaotic attractors in random
dynamical systems has been explored extensively �see, for
example, Refs. �36,41�� and has even been extended to qua-
siperiodically driven systems for investigating the transition
between strange nonchaotic and chaotic attractors �42�. It is
thus reasonable that noise-induced SNAs can be studied us-
ing snapshot attractors. Considering that the requirement of
quasiperiodicity for SNAs has been a controversial topic in
nonlinear dynamics �30–33�, a systematic study of the dy-
namical and geometric properties of noise-induced SNAs is
desirable.

Our main results in this paper �beyond those in Ref. �13��
are �i� noise-induced SNAs possess a stronger fractal prop-
erty in that the box-counting dimension and the information
dimension are generally fractional values �versus SNAs in
quasiperiodic systems where these dimensions are integers�;
�ii� the fractal structure of noise-induced SNAs can be re-
vealed by snapshot attractors and the evolution of their sizes
exhibits a highly intermittent behavior, particularly near the
transitions from a periodic attractor to a noise-induced SNA
and from it to a chaotic attractor; and �iii� the fluctuations of
the finite-time Lyapunov exponents away from their
asymptotic values are exponentially distributed, and the gen-
erality of this phenomenon can be established by an analytic
treatment based on random matrices .

The dynamical mechanism for generating noise-induced
SNAs is described in Sec. II. Numerical studies of a map
model, the random Hénon map �43�, are presented in Sec.
III. A random-matrix theory is developed in Sec. IV to ex-
plain the numerically observed exponential distribution of
the fluctuations of the finite-time Lyapunov exponents.
Snapshot-attractor characterization of noise-induced SNAs is
presented in Sec. V. A brief discussion is offered in Sec. VI.

II. DYNAMICAL MECHANISM FOR NOISE-INDUCED
SNAs

We shall argue that for a system with a bifurcation param-
eter p �its variation can lead to the occurrences of various
periodic windows� in the presence of noise of amplitude D,
there exist open sets of finite areas in the two-dimensional
parameter space �p ,D� for which the asymptotic attractor is
strange but nonchaotic. In particular, we consider general
discrete-time maps

xn+1 = F�xn,p� �1�

and periodically driven systems described by differential
equations of the following form:

dx/dt = F�x,z,p� and dz/dt = � , �2�

where x�Rd. For the continuous-time system, z is a time
variable and the velocity field F depends periodically on
z. We choose p such that the system is in a periodic window
of period m and the asymptotic attractor of the system
is a periodic attractor of period 2km, where k=0,1 , . . .,
due to period-doubling bifurcations. Let pm be the param-
eter value for the beginning of the window, which is
triggered by a saddle-node bifurcation that creates a period-
m stable orbit, and let pm* be the parameter value for the
end of the period-doubling cascade of the original stable
period-m orbit. We focus on the parameter interval pm� p
� pm* in which the attractor is periodic. Note that the inter-
vals ��pm��pm*− pm��0�m are open on the parameter axis
�44�. In such a setting, for maps the largest Lyapunov expo-
nent is negative, except for a set of parameter values of Le-
besgue measure zero where the period-doubling bifurcations
occur. For periodically driven systems, there is a null
Lyapunov exponent generated by dz /dt=�, but in a periodic
window the largest nontrivial exponent is negative. Now
consider additive noise of amplitude D �for simplicity�. Our

WANG, LAI, AND LAI PHYSICAL REVIEW E 74, 016203 �2006�

016203-2



goal is to show that for pm� p� pm*, there exists a range of
the noise amplitude �Dm�0 for which the asymptotic at-
tractor is nonchaotic but strange, and robust with respect to
small perturbations.

In a periodic window, a periodic attractor and a chaotic
saddle coexist. A trajectory from a random initial condition
typically moves toward the chaotic saddle along its stable
manifold, stays near the saddle for a finite time, and leaves
along its unstable manifold before finally approaching the
periodic attractor. There is thus transient chaos for pm� p
� pm*. In the absence of noise, the asymptotic attractor is
periodic, despite transient chaos. If noise is not strong
enough to kick a trajectory on the attractor to a nearby region
where the stable manifold of the chaotic saddle lies, the final
attractor is still approximately periodic with a negative larg-
est Lyapunov exponent. Only when the noise amplitude D
exceeds a critical value Dm is the probability physically ap-
preciable for a trajectory on the original periodic attractor to
be perturbed to the vicinity of the stable manifold of the
chaotic saddle and to move toward the chaotic saddle. Be-
cause the saddle is nonattracting, the trajectory can spend
only a finite amount of time near it before approaching the
original periodic attractor again, and so on. For D�Dm, a
trajectory switches intermittently between the original peri-
odic attractor and the chaotic saddle. There is then a sudden
change in the structure of the asymptotic attractor at Dm: for
D�Dm, the attractor contains both periodic and chaotic
components.

For discrete maps, the largest Lyapunov exponent of the
periodic attractor is �1

P�0. As a trajectory begins to visit the
chaotic saddle for D�Dm, the largest exponent �1 of the new
attractor starts to increase from �1

P. It has been shown �37�
that the increase in �1 obeys the following universal alge-
braic scaling law:

�1 − �1
P 	 �D − Dm��, �3�

where the scaling exponent ��0 depends on the phase-
space dimension of the system and the dynamical invariants
of the chaotic saddle such as its average lifetime and the
Lyapunov spectrum �37�. We see that �1 can remain negative
for a range of the noise amplitude above Dm: Dm�D
�D*m, where D*m is the noise amplitude for which �1=0.
We thus have

�Dm � D*m − Dm 	 ��1
P�1/� � 0.

In this noise range, the attractor of the system is geometri-
cally complicated but its largest Lyapunov exponent remains
negative. The same consideration �45� applies to periodically
driven systems for which a null Lyapunov exponent always
exists but the largest nontrivial Lyapunov exponent of the
attractor remains negative for D�D*m. Thus, for Dm�D
�D*m, the asymptotic attractor of the system can have a
strange geometry because it contains a chaotic component,
yet the largest Lyapunov exponent is nonpositive.

We now argue that the attractors created for Dm�D
�D*m are strange but not chaotic. We first consider the
finite-time behavior of the largest Lyapunov exponent. It is
known �5,10,46,47� that an SNA, while having a nonpositive
largest Lyapunov exponent, possesses regions in the phase

space in which infinitesimal vectors in fact grow in length.
That is, in any finite-time interval, there is a finite probability
that the largest exponent is temporally positive. The
asymptotic exponent can be regarded as the weighted sum of
the temporally positive exponent when the trajectory visits
the expanding regions, and the temporally negative exponent
when the trajectory is in regions in which the tangent vectors
contract �5,10,47�. The asymptotic exponent is negative
when the negative component weighs more than the positive
one �48�. Here, the existence of the two sets with distinct
behaviors for the evolution of infinitesimal vectors is appar-
ent: for D�Dm, a trajectory visits both the original periodic
attractor for which the tangent vectors contract and the cha-
otic saddle for which the vectors expand. The largest
Lyapunov exponent can then be approximately written as

�1 
 fP�D��1
P + fS�D��1

S, �4�

where �1
S�0 is the largest Lyapunov exponent of the chaotic

saddle, and fP�D� and fS�D� are the frequencies of visit to the
original periodic attractor and to the saddle, respectively. For
Dm�D�D*m, the first term weighs more than the second
term in Eq. �4�, potentially giving rise to a noise-induced
SNA. For D�D*m, the second term dominates, leading to a
chaotic attractor. It is useful to note that, since both the pe-
riodic attractor and the chaotic saddle are dynamically in-
variant in the noiseless situation, the exponents �1

P and �1
S are

well defined with respect to their respective invariant mea-
sures �49�.

Another key characteristic of noise-induced SNAs lies in
the Fourier spectrum. It has been recognized that SNAs usu-
ally possess a singular-continuous spectrum that contains
both discrete and continuous components �39�. For the at-
tractors for Dm�D�D*m, their spectra naturally contain
these distinct components for an apparent reason: such an
attractor consists of a periodic component for which the
spectrum is discrete and a chaotic component for which the
spectrum is broad. Thus we expect the attractors for Dm
�D�D*m to have singular-continuous Fourier spectra.

Our analysis thus suggests that, in the parameter plane
�p ,D�, there are open areas of the various sizes ��pm ,�Dm�,
where m denotes the period of every possible periodic win-
dow, in which there are noise-induced SNAs. They are typi-
cal in the parameter space. In addition, since the nonpositiv-
ity of the Lyapunov exponent for Dm�D�D*m and the
strangeness of the noise-induced attractors, as characterized
by fluctuations of the finite-time Lyapunov exponent into the
positive side and a singular-continuous spectrum, are statis-
tical properties of the attractors under random perturbation,
they are robust. Noise-induced SNAs are thus physically ob-
servable.

An issue of practical interest concerns the meaning and
definition of the critical noise threshold �e.g., Dm and D*m in
the preceding discussion�. Note that the basic dynamical
mechanism responsible for noise-induced SNAs is the noise-
activated connection between the periodic attractor and the
chaotic saddle, which is possible only for noise level above
the threshold. For Gaussian noise, if one is allowed an infi-
nite amount of computational or experimental time, the two
sets will connect for arbitrarily weak noise. �This is similar
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to the situation in which, under Gaussian noise in the
infinite-time limit, no attractor in the finite phase-space re-
gion and its basin of attraction can be defined.� However, for
finite time, such a threshold can be defined in an ad hoc but
physically meaningful manner. See Refs. �50–54� for details.

III. EXAMPLES OF NOISE-INDUCED SNAS

In Ref. �13�, examples of noise-induced SNAs are pre-
sented for the logistic map and for the periodically driven
Duffing oscillator. Here we shall present a different example:
the noisy Hénon map given by �55�

xn+1 = a − xn
2 + byn + D��n� , yn+1 = xn, �5�

where a and b are parameters, ��n� is a discrete random
variable of uniform probability distribution in �−1,1�, and D
is the noise amplitude. For b=0.4, the map exhibits a
period-8 window for a� �1.1435,1.145�. For periodic attrac-
tors in the window, the largest Lyapunov exponent is �p

−0.02. To demonstrate noise-induced SNAs, we arbitrarily
fix the parameters in the window at a=1.14358.

A. Noise-induced SNAs

For small noise �D�D8�, the period-8 attractor and the
chaotic saddle are not dynamically connected. In this case,
the attractor remains approximately periodic, despite noise.
As D passes through the critical value D8, the two sets are
dynamically connected in the sense that a trajectory will visit
both sets in time. For D�D8, the trajectory spends most time
near the original periodic attractor but with intermittent visits
to the chaotic saddle. The largest Lyapunov exponent of this
“dynamic” attractor, which contains both the original peri-
odic attractor and the chaotic saddle, increases with D. Since
the chaotic saddle has become part of the attractor, its geom-
etry is necessarily strange and, in fact, is fractal. As D is
increased further, �1 keeps increasing from �1

P but it still
remains to be negative until D exceeds D8*, after which the
exponent becomes positive so that the attractor is chaotic.
We thus expect to observe noise-induced SNAs for D8�D
�D8*. Since �1 changes continuously with D and since �1

P is
finitely negative, the parameter range �D=D8* −D8 is finite.
In terms of the bifurcation parameter a, noise-induced SNAs
can occur for any value of a in the periodic window for
which the deterministic attractor is periodic. The range of
such values of a is also finite. Thus in the two-dimensional
parameter space �a ,D�, we expect to have an open area in
which there are noise-induced SNAs, indicating the typical-
ity of such attractors. Because the attractors are noise-
induced, they are naturally robust. Numerically we find D8

10−4.6 and D8* 
10−4.4. All these features are illustrated in
Fig. 1.

B. Intermittency

For D�D8, a trajectory exhibits an intermittent behavior:
it spends most time near the original periodic attractor with
occasional visits to the chaotic saddle, as can be seen from
the time series xn in Fig. 2�a�. The intermittency can be re-

garded as “on-off,” where the “on” and the “off” states cor-
respond to dwelling in the neighborhood of the original pe-
riodic attractor and away from it, respectively. To better
observe the on-off behavior, we calculate the distance be-
tween the trajectory and its nearest component of the peri-
odic attractor. In particular, let �x�m� ,y�m�� �m=1, . . . ,8� de-
note the locations of all components of the period-8 attractor.
For a given trajectory point �xn ,yn�, the distance is

	n = min
m

��xn − x�m��2 + �yn − y�m��2. �6�

Figure 2�b� shows the evolution of 	n for the attractor in Fig.
1�b�, which apparently exhibits an on-off intermittent behav-
ior. Figure 2�c� shows the laminar-phase �i.e., the time 

between two successive bursts from the “off” state� distribu-
tion, which can be fit by an exponential-decay law. Exponen-
tial laminar-phase distribution is a typical feature of noise-
induced on-off intermittency �36,56�.

C. Finite-time Lyapunov exponent

A characteristic indicator of SNA in quasiperiodic sys-
tems is that, in any finite-time interval, the largest Lyapunov

FIG. 1. �Color online� For the Henon map of parameters b
=0.4 and a=1.14358, �a� increase of the largest Lyapunov exponent
�1 with the noise amplitude D. Noise-induced SNAs occur for
10−4.6
D8�D�D8* 
10−4.4, where �1 is negative but the geom-
etry of the attractor is strange. �b� A noise-induced SNA for D
=10−4.43 with the largest exponent �1
−7.5�10−3�0. The loca-
tions of the original period-8 attractor are indicated by the open
circles.
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exponent can be positive while having nonpositive values
asymptotically �1,3,2,4,5,7–13�. This is in fact a robust fea-
ture for noise-induced SNAs, which, by mechanism, contain
a chaotic component. The intermittent visit to the chaotic
component from a typical trajectory stipulates that it be tem-
porally chaotic, giving rise to a temporally positive
Lyapunov exponent. This feature is demonstrated in Fig.
3�a�, where the temporal evolution of the exponent evaluated
from a trajectory segment of length N=1000 is plotted. We
observe that the exponent is mostly negative but there are

intermittent bursts into the positive side. Figure 3�b� shows
the histogram of the exponent evaluated using two time in-
tervals: N=1000 and 10 000. In both cases we observe that
the distributions have a peak about the asymptotic �negative�
value of the exponent, but they extend into the positive side
and are apparently exponential. The distribution correspond-
ing to the longer time interval is narrower.

D. Fractal dimensions

For SNAs in quasiperiodic systems, both the capacity and
the information dimensions are integers �11,16�. For in-
stance, SNAs in the quasiperiodically driven circle map have
capacity dimension 2 and information dimension 1 �16�. The
intuition for the integer information dimension is that, due to
the quasiperiodicity, the largest Lyapunov exponent is zero
and the second largest exponent is negative. Application of
the Kaplan-Yorke formula �57� then gives an integer. For
noise-induced SNAs, the largest Lyapunov exponent is nega-
tive, rendering inapplicable the Kaplan-Yorke formula. We
shall demonstrate that, due to the chaotic component, noise-
induced SNAs are typically fractal sets with fractional di-
mension values. �Note that, under small noise, the fine struc-
ture of an attractor is smeared out. Thus the fractal
dimensions are meaningful only for scales larger than that
determined by the noise amplitude. However, we shall show
later that the fine fractal structure of noise-induced SNAs can
be revealed by using snapshot attractors.�

We calculate the capacity dimension and the information
dimension of noise-induced SNAs by using the standard
box-counting procedure: d0=lim�→0 ln N��� / �ln �� and

FIG. 2. �Color online� For the parameter setting in Fig. 1�b�, �a�
an intermittent time series xn, �b� on-off intermittency in the evolu-
tion of the distance as defined in Eq. �6�, and �c� the exponential
laminar-phase distribution.

FIG. 3. �Color online� For the same parameter setting as in Fig.
2, �a� temporal evolution of the finite-time Lyapunov exponent cal-
culated using N=1000 trajectory points, and �b� two distributions of
the exponent for N=1000 and 10 000.
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d1=lim�→0 H��� / ln �, where N��� is the number of �-size
boxes required to cover the whole attractor, H���
=�i=1

N���i���ln i���, and i��� is the frequency of visit of a
typical trajectory to the ith box. Since the original periodic
attractor consists of a finite number of points, the main con-
tribution to N��� comes from the number of boxes needed to
cover the original chaotic saddle. We thus expect the capac-
ity dimension of a noise-induced SNA to have approximately
the same value as that of the chaotic saddle, which is ap-
proximately equal to the capacity dimension of the chaotic
attractor near the periodic window in the underlying deter-
ministic system. The information dimension of the noise-
induced SNA, however, will be smaller than that of the cha-
otic saddle, as the probability of a visit to the original saddle
is smaller compared with that to the original periodic attrac-
tor. Figures 4�a� and 4�b� illustrate these results, where
ln N��� and H��� are plotted versus ln �, respectively. We
obtain d0
1.22 and d1
0.08�d0.

IV. DISTRIBUTION OF FINITE-TIME
LYAPUNOV EXPONENTS

A feature associated with noise-induced SNAs, which
seems to be independent of the system details, is the expo-
nential distribution of the finite-time Lyapunov exponents
observed for both the Hénon and the IHJM map. To establish
the generality of this phenomenon, here we provide a heuris-

tic theory. Consider a d-dimensional map system, as in Eq.
�1�. The starting point of analysis of Lyapunov exponents is
the following matrix product:

QN = 
i=0

N−1

DF�xi� , �7�

where �xi�i=0
N−1 is a trajectory of length N on the attractor and

DF�xi� is the Jacobian matrix associated with trajectory point
xi. To obtain the spectrum of d Lyapunov exponents �58�, it
is necessary to calculate the largest Lyapunov exponent �1,
which is defined as

�1 = lim
N→�

1

N
ln�QN · u0

�1�� , �8�

where �u0
�1�� is a random unit vector in the tangent space of

the initial trajectory point. Let �ui
�1��i=0

N−1 be the set of tangent
vectors along the trajectory �xi�i=0

N−1, where ui
�1��Qi ·u0

�1�. The
second exponent can be expressed as

�2 = lim
N→�

1

N
ln�uN−1

�2� � , �9�

where �ui
�2��i=0

N−1 is a set of unit tangent vectors that are or-
thogonal to �ui

�1��i=0
N−1. Continuing this way, the lth Lyapunov

exponent is

�l = lim
N→�

1

N
ln�uN−1

�l� � , �10�

where the unit tangent vectors �ui
�l��i=0

N−1 are orthogonal to
�ui

�j��i=0
N−1 for j=1, . . . , l−1.

For notational convenience, here we focus on the statisti-
cal fluctuations of the largest Lyapunov exponent, simply
denoted by �, noting that the same derivation applies to all
other exponents as defined above. The finite-time exponent is

��N� =
1

N
ln�QN · u0� . �11�

The statistical behavior of the finite-time exponent is deter-
mined completely by the matrix product QN. While it is gen-
erally difficult to analyze the product, for noise-induced
SNAs, if we focus on the fluctuations of the finite-time ex-
ponent far away from their asymptotic values, it is possible
to draw conclusions concerning the statistics of the fluctua-
tions. The basic fact is the intermittent visits of a trajectory to
sets that are dynamically invariant in the underlying deter-
ministic system. In particular, as we have explained, in a
periodic window, a noise-induced SNA contains the original
periodic attractor and the chaotic saddle. There are thus two
characteristically different types of matrices in the product:
one associated with the periodic attractor and another with
the chaotic saddle, denoted by A and B, respectively. The
matrix product QN can be effectively regarded as a product
of random matrices, where each entry in the product can
randomly select A or B with certain probabilities. This is
basically a Bernoulli process. For fixed time N, the time
average in Eq. �11� can thus be represented by an ensemble
average in terms of the contributions from matrices of type A

FIG. 4. �Color online� For the noise-induced SNA in Fig. 1�b�,
�a� ln N��� and �b� H��� vs ln �, respectively. The absolute value of
the slope from the linear fit in �a� gives d0
1.22, which is essen-
tially the same as the capacity dimension of the chaotic attractor
immediately preceding the periodic window in the corresponding
deterministic system �a=1.1435�. The slope from a linear fit in �b�
gives d1
0.08.
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and of type B. Since the total number of matrices is fixed
�i.e., N�, the ensemble is microcanonical-like �59�. We can
thus write, symbolically,

��N� = �ln�QN · u0��m, �12�

where �·�m denotes a microcanonical-like ensemble average.
Let �P�0 and �S�0 be the largest exponent of the peri-

odic attractor and of the chaotic saddle, respectively, in the
deterministic system. Alternatively, we can interpret �P and
�S as the Lyapunov exponents determined by matrices of
type A and of type B, respectively. In the presence of noise,
let p and q be the probabilities of a visit to the original
periodic attractor and to the chaotic saddle, respectively. Use
of the ensemble average in Eq. �12� allows us to write the
largest exponent of the noise-induced SNA as

� 
 p�P + q�S. �13�

In the microcanonical ensemble, the finite-time fluctuations
of the exponent are due entirely to the fluctuations in the
numbers of times that A and B appear in the product QN
�59�. That is, the probabilities of choosing A and B are fixed
constants and we write them as p̃ and q̃, respectively. The
distribution of the finite-time exponent is given by the bino-
mial distribution

�N��� = �N

k
�p̃kq̃N−k, �14�

where k and N−k are the numbers of times that A and B
appear in QN, respectively. Focusing on the extreme fluctua-
tions of the exponent away from its asymptotic �negative�
value, say, on the positive side, we have 0����S. Equation
�13� then implies

p → 0 and q � 1. �15�

The binomial distribution �N��� can be simplified, as fol-
lows:

�N��� =
N�N − 1� ¯ �N − k + 1�

Nk

�Np̃�k

k!
�1 −

Np̃

N
�N−k

= �
m=0

k−1
N − m

N − �
��k

k!
�1 −

�

N
�N

,

where ��Np̃=const for N large and p̃ small. We thus have
�1−� /N�N
e−� and

�
m=0

k−1
N − m

N − �
� = 

m=0

k−1 �1 +
� − m

N − �
� 
 1.

Under these approximations, the distribution becomes

�N��� 

�k

k!
e−�. �16�

Since the fluctuation of the finite-time exponent is deter-
mined by the quantity k in the microcanonical ensemble,
equivalently we can regard k as being dependent upon � and
write k���. Using Eq. �13�, we have

k��� = Np = N
�S − �

�S − �P . �17�

To determine the main dependence of �N��� on �, we con-
sider two values of �: ��1����2�
�S, which gives

k���1�� � k���2�� 
 0.

Consequently, both k���1��! and k���2��! are small, and we
have

�N���1��
�N���2��

=
�k���1��

�k���2��

k���2��
k���1��


 �k���1��−k���2�� =
e−�N��1�

e−�N��2� ,

�18�

where �N�N ln � / ��S−�P�. We thus see that the main de-
pendence of �N��� on � is exponential and conclude that the
fluctuations of the finite-time Lyapunov exponent obey the
following exponential decay law:

�N��� 	 e−�N�, �19�

where the exponential rate constant �N is proportional to N.
That is, for larger time, the decay rate in the exponential
distribution is larger, making smaller its spread. These fea-
tures have indeed been observed in numerical experiments
�e.g., Fig. 3�b��.

V. CHARACTERIZATION OF NOISE-INDUCED
SNAs BY SNAPSHOT ATTRACTORS

Due to noise, a single trajectory �even from a chaotic
attractor� will not exhibit fractal structure in the phase space
because noise smears out fine phase-space details. However,
the technique of snapshot attractors, which are attractors ob-
tained from an ensemble of trajectories under identical noise
at fixed instants of time, can be used to visualize and analyze
the fractal structure of attractors in random systems �36,40�.
An interesting result in Ref. �36� is that in the nonchaotic
regime, snapshot attractors approach a finite set of points, but
for chaotic attractors with a slightly positive largest
Lyapunov exponent, the size of the snapshot attractors exhib-
its on-off intermittency.

For noise-induced SNAs, because there is no positive
Lyapunov exponent, there can be time intervals during which
trajectories on the snapshot attractors come to the small
neighborhoods of a finite set of points. If the sizes of the
neighborhoods become of the order of magnitude of the
computer roundoff, numerically obtained snapshot attractors
will consist of a finite set of points, which is artificial. To
resolve the strange geometry of noise-induced SNAs by
snapshot attractors, we can introduce a small amount of in-
homogeneity in the noisy perturbations to different trajecto-
ries in the ensemble. That is, at a fixed time, we use an
additional noise source of infinitesimal amplitude �numeri-
cally on the order of the computer roundoff� and apply dif-
ferent realizations of the noise to different trajectories. This
idea is similar to that used to obtain chaotic numerical tra-
jectories from, say, the tent map, where a small noise is
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necessary to avoid artificial convergence of computer trajec-
tories to zero.

For the noisy Hénon map Eq. �5�, an example of the snap-
shot attractor is shown in Fig. 5�a� �for the same parameter
setting as in Fig. 1�b��. The attractor is obtained by using a
grid of 100�100 initial conditions uniformly distributed in
the region −1.0� �x0 ,y0��1.0, and the amplitude of the in-
homogeneous noise is 10−10. Figure 5�b� shows a blowup of
the small box in Fig. 5�a�, which apparently exhibits a fractal
structure. In contrast, Fig. 5�c� shows the points from a
single trajectory in the small box, which appears to be ran-
domly distributed.

A snapshot attractor can be characterized by its size in the
phase space. For the class of noise-induced SNAs here, be-
cause the underlying deterministic system is in a periodic
window, it is convenient to use the original periodic attractor

to define the size. In particular, for a period-m window, we
examine the m-times iterated map, for which the periodic
attractor is simply a fixed point. For D�Dm, the size of the
snapshot attractor remains small, as the trajectory stays in the
vicinity of the periodic attractor. For D�Dm when noise-
induced SNAs occur, a typical trajectory deviates from the
original periodic attractor intermittently, giving rise to snap-
shot attractors with larger size. Thus, as D is increased
through Dm, we expect to see a sudden increase in the size of
the snapshot attractor. As we have pointed out, due to the
negativeness of the largest Lyapunov exponent for a noise-
induced SNA, under identical noise the size of the corre-
sponding snapshot attractor approaches asymptotically zero,
as exemplified in Fig. 6�a� for the noisy Hénon map. The
finite size of the snapshot attractor can be restored by using
small inhomogeneous noise, as shown in Figs. 6�b� and 6�c�
�a blowup of part of Fig. 6�b��, a variation of the size of the
snapshot attractor with time.

FIG. 5. �Color online� For the noisy Hénon map Eq. �5�, �a� a
snapshot attractor, �b� blowup of the small box in �a�, which reveals
the fractal structure of the noise-induced SNA, and �c� points from
a single trajectory in the small box.

FIG. 6. For the noisy Hénon map Eq. �5�, �a� temporal evolution
of the size of the snapshot attractor under identical noise, which
artificially approaches zero, �b� intermittency in the size of the
snapshot attractor under small, inhomogeneous noise, and �c�
blowup of part of �b�.
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Figures 6�b� and 6�c� reveal an interesting behavior: the
size of the snapshot attractor exhibits on-off intermittency
with time. The explanation again lies in the coexistence of
two sets in the noiseless system: a periodic attractor and a
chaotic saddle. Under noise, there can be time intervals
where the ensemble of trajectories concentrates in the vicin-
ity of the original periodic attractor, leading to extremely
small size in the snapshot attractor. Because of noise, after a
time the trajectories will be kicked out of the small neigh-
borhoods to spread over the chaotic saddle, giving rise to a
large size. The process of shrinking to periodic points and
spreading over a chaotic set continues in an intermittent fash-
ion. Analyses similar to those in Ref. �36� can be carried out
to characterize the intermittency and to explore universal
properties.

Noise-induced SNAs and fractal snapshot attractors can
also occur in periodically driven systems. To give an ex-
ample, we consider the following kicked Duffing’s oscillator:

d2x/dt2 + 0.1dx/dt + �1.0 + 0.45 cos t�x − x3 + D��t� = 0,

�20�

where ��t� is a Gaussian process of zero mean and unit vari-
ance. For the chosen set of parameter values, for D=0 the
system is in a period-4 window with the largest nontrivial
Lyapunov exponent �1

P
−0.047. The range of noise ampli-
tude for which noise-induced SNAs can possibly occur is
D4�
0.03��D�D*4�
0.08�. A demonstration that single
trajectories do not reveal the fractal structure of noise-
induced SNA, while snapshot attractors do, is given in
Fig. 7.

VI. DISCUSSION

We have presented a detailed study of noise-induced
SNAs in maps or in periodically driven systems. The results
here and those from our previous short paper �13� represent
evidence that noise-induced SNAs can occur in physical sys-
tems other than quasiperiodically driven. The findings of this
paper �beyond those in Ref. �13�� are �i� the fractal dimen-
sions of noise-induced SNAs typically assume fractional val-
ues, in contrast to SNAs in quasiperiodically driven systems,
�ii� the fractal structures can be observed through the snap-
shot attractors, and �iii� while the asymptotic values of the
largest Lyapunov exponent of noise-induced SNAs are nega-
tive, their finite-time fluctuations on the positive side are
exponentially distributed. We have worked out a random-
matrix theory to explain and to establish the generality of the
exponential behavior.

Some findings reported here are accessible to experimen-
tal test. For instance, one can use electronic circuits to build
up a periodically driven system, such as the kicked Duffing
oscillator. The parameters of the system can be chosen so
that it is in a periodic window. Application of noise can then
induce SNAs. A possible technical issue is the determination
of the asymptotic value of the largest Lyapunov exponent
from measured time series. We suggest to generate the his-
togram of the finite-time exponent, which should exhibit the
following features: �i� there is a peak at a negative value, and

FIG. 7. On the stroboscopic section of the periodically driven
Duffing oscillator under Gaussian noise of amplitude D=0.06, �a� a
single trajectory, �b� blowup of part of �a�, �c� a snapshot attractor
from 40 000 trajectories, �d� blowup of part of �c�. The snapshot
attractor is apparently fractal.
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�ii� the positive values are exponentially distributed. Another
issue concerns the fractal dimension. A good candidate is the
correlation dimension, which is experimentally accessible by
calculating the correlation integral from measured time series
�60�. As we have demonstrated, for noise-induced SNAs, the
correlation dimensions typically assume fractional values.
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