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Detecting and characterizing phase synchronization in nonstationary dynamical systems
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We propose a general framework for detecting and characterizing phase synchronization from noisy, non-
stationary time series. For detection, we propose to use the average phase-synchronization time and show that
it is extremely sensitive to parameter changes near the onset of phase synchronization. To characterize the
degree of temporal phase synchronization, we suggest to monitor the evolution of phase diffusion from a
moving time window and argue that this measure is practically useful as it can be enhanced by increasing the
size of the window. While desynchronization events can be caused by either a lack of sufficient deterministic
coupling or noise, we demonstrate that the time scales associated with the two mechanisms are quite different.
In particular, noise-induced desynchronization events tend to occur on much shorter time scales. This allows
for the effect of noise on phase synchronization to be corrected in a practically doable manner. We perform a
control study to substantiate these findings by constructing and investigating a prototype model of nonstation-

ary dynamical system that consists of coupled chaotic oscillators with time-varying coupling parameter.
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I. INTRODUCTION

In this paper, we present a general methodology to ana-
lyze time series from nonstationary dynamical systems. Here
by nonstationarity we mean that the rules governing the sys-
tem’s evolution are not fixed but they can vary with time. For
instance, for a system described by a set of differential equa-
tions, its being nonstationary means that the mathematical
form of the equations can vary with time. A common situa-
tion is where some key parameters of the system equations
vary slowly with time. This is so because in many realistic
applications parameter changes may be assumed to be much
slower than the change of the dynamical (state) variables.
Because of the various bifurcations that can potentially occur
as a system parameter changes, at certain times the system
can undergo characteristic changes, examples of which in-
clude sudden change in the attractors (crises), emergence of
collective behavior such as synchronization, occurrence of
intermittency, etc. In terms of the system performance, such
changes may generate undesirable or even catastrophic be-
havior that should be avoided. A central goal in nonstation-
ary time series analysis is to detect or possibly to predict
characteristic changes in the system as it evolves with time.

Our approach is based on detecting and characterizing
phase synchronization from multivariate nonstationary time
series. The basic assumption is that the underlying dynamical
system can be regarded as a system of weakly coupled os-
cillators, such as a network of coupled neurons. Our interest
in the weakly coupling regime stems from the observation
that if the coupling is strong, coherence among the dynamics
of the oscillators will also be strong, which may lead to an
unrealistic reduction in the degrees of freedom of the system
and consequently to relatively less complex dynamics. How-
ever, in real physical or biological situations, the dynamics
can be extraordinarily complex despite the coherence among
the coupled elements. In such a case, a description based on
the weak-coupling hypothesis seems more reasonable. In the
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past decade, phase synchronization has been recognized as a
general phenomenon in weakly coupled dynamical systems
[1-5], where the phase differences of the oscillators are
bounded but their amplitudes may remain uncorrelated.
Phase synchronization in this sense is nontrivial, versus the
situation where the dynamical variables of (slightly different)
oscillators are synchronized so that the phases are trivially
synchronized, as can usually occur in strongly coupled sys-
tems.

Our interest is in real-time detection and/or prediction of
characteristic changes in the system from time series, so
naturally we will use the moving time-window technique.
That is, at any given time, calculations and analyses are done
using the finite data set contained in a window immediately
preceding that time. The key is thus to derive useful quanti-
ties that are sensitive to changes in the underlying coupled
system and are, at the same time, robust against noise. A
natural way to overcome noise is to increase the size of the
moving window. Thus by robustness we mean that the quan-
tity can be enhanced significantly as we increase the window
size. In terms of phase synchronization, a previously pro-
posed measure that has been used widely in biomedical time-
series analysis [6] is the Shannon entropy, but we find that
this measure is sensitive to noise and therefore may not be
desirable in dealing with short and noisy moving-window
data.

For a deterministic, stationary system of coupled oscilla-
tors, phase synchronization refers to the situation where the
differences among the phase variables from the oscillators
stay within 27. Due to noise and nonstationarity, such an
ideal situation cannot be maintained forever and, in fact,
there can typically be 27 changes in the phase differences.
As a result, phase synchronization can be observed only in
finite time intervals. This defines an average phase-
synchronization time. We shall argue that this time typically
shows an extremely rapid increase as the underlying deter-
ministic system evolves into the phase-synchronized state
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and, hence, the time can be effective for detecting phase
synchronization. To characterize the degree of temporal
phase synchronization as the system evolves, we propose to
use the variance of phase fluctuations, or phase diffusion,
and show that it is particularly suitable for noisy, moving-
window data from multivariate nonstationary time series. We
will show that the phase diffusion is sensitive to characteris-
tic changes in the system and it is robust against noise in the
sense that it can be enhanced proportionally as we increase
the moving-window size.

While both the average phase-synchronization time and
phase diffusion can work well for monitoring phase synchro-
nization for relatively small-amplitude noise, large noise can
be quite detrimental. Quite interestingly, we have observed
that desynchronization events induced by noise tend to occur
on much shorter time scales than those of deterministic ori-
gin. Taking advantage of this observation, we propose a
simple and practical method to minimize the effect of noise
on phase synchronization. We will present examples to dem-
onstrate the power of this noise-reduction method.

In Sec. II, we introduce the average phase-synchron-
ization time and the phase-diffusion measure and argue that
they can be superior to the existing entropy measure in deal-
ing with noisy, moving-window data from nonstationary time
series. In Sec. III, we introduce our control model, describe
our strategy to overcome noise, and present evidence that the
measures are sensitive to system change but robust against
noise. Conclusions and discussions are presented in Sec. IV.

II. MEASURES FOR DETECTING AND
CHARACTERIZING PHASE SYNCHRONIZATION

A. Phase synchronization

Consider a system of coupled nonlinear oscillators. The
term “synchronization” in a conventional sense means that
all oscillators evolve identically in time. In reality, parameter
mismatch among the oscillators and the presence of noise
render perfect synchronization impossible. Yet, due to cou-
pling, a certain degree of coherence among the oscillators
can occur. Let x(7) and y(r) be signals from two oscillators. If
the overall temporal evolutions of x(¢) and y(¢) tend to follow
each other but not their details, there is a phase synchroniza-
tion between x(r) and y(r). For instance, in a given time
interval both x(7) and y(¢) may complete the same number of
oscillations, but these need not match exactly with each
other. Or more generally, in a time interval x(#) may com-
plete n oscillations and y(f) may go through m oscillations,
but insofar as the ratio n/m remains constant in time, there is
a phase coherence or synchronization between x(r) and y(z).
Let ¢,(7) and ¢,(r) be some properly defined phase variables
for the two oscillators, respectively. Phase synchronization is
defined by [1,7]

Ap(t) = [ny (1) = mepy(1)| < 27, (1)

where n and m are integers. A phase-desynchronization event
occurs when A¢(z) changes by 27, which can be caused by
either insufficient coupling in the deterministic system or
noise. In this case, phase synchronization occurs only tem-
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porally in the time interval between two successive desyn-
chronization events.

To calculate a phase variable, the standard Hilbert-
transform approach is often used. Given x(z), its Hilbert
transform is

H[x(1)] = p\{l f ’ Lﬂ),dt’], 2)

T) _nl—1

where “PV” stands for the Cauchy principal value of the
integral. From H[x(7)], the following complex analytic signal
can be constructed:

(1) = x(1) + iH[x(r)] = A()expli(1)], 3)

which defines the phase variable ¢(z). The Hilbert transform
and the analytic signal are meaningful only when x(¢) pos-
sesses a proper structure of rotation. This can be seen by
referring to the rotational motion of a mechanical particle on
a circle centered at the origin in the plane. The coordinates
x(t) and y(¢) are sinusoidal signals with the property that in a
time interval containing many periods, the number of maxi-
mum and minimum points is the same as the number of
zeros, which can be taken as the defining characteristic of a
proper rotation. In realistic applications this condition may
not be met. In such a case the procedure developed by Huang
et al. [8] or that in [9] can be used to decompose x(f) into a
small number of modes of proper rotation and an analytic
signal can be obtained for each of the modes to allow for
phase variables to be calculated. An alternative procedure
based on filtering is proposed in Ref. [5] and has been ap-
plied to data from laser experiments.

B. Shannon entropy

A method to characterize the degree of phase synchroni-
zation, which has been applied to detecting synchronization
among biomedical signals, was proposed by Tass et al. [6].
Given two phase variables ¢, () and ¢,(z), the phase differ-
ence A¢@(r) can be normalized to the 27 interval—say,
[~ 7). For chaotic and/or stochastic signals, A¢(r) can be
regarded as a stochastic process. The probability distribution
P(A ¢) can then be calculated. In the lack of synchronization,
all phase differences in the 27 interval are possible, leading
to nearly uniform distribution of A¢(r). When synchroniza-
tion occurs, the distribution P(A ¢) becomes nonuniform and
typically tends to concentrate on a narrow range in A¢(z). A
standard approach to quantify the degree of uniformity of a
probability distribution is the following Shannon entropy
[10]:

S=- J ! P(A¢)In P(Ad)dA . 4)

Let S,,,,=In(277) be the Shannon entropy for a uniform dis-
tribution. The ratio
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FIG. 1. For the system of a pair of coupled
chaotic oscillators, (a) two distinct parameter re-

gimes of interest, (b) for K=K, (phase-
synchronized regime), phase space with a “lifted”
0 ¢ phase variable, and (c) phase-space structure for
© K3K, K=k
o (e Sy
2w 4r o
5) 7K =0) = 27/(Aw) = const. (7)

can be used to characterize the degree of phase synchroniza-
tion, where p=0 indicates perfect synchronization and p=1
signals complete lack of synchronization.

The Shannon entropy is a statistical measure, and it ig-
nores temporal features such as 27 phase jumps associated
with desynchronization events. It can be useful for distin-
guishing phase-coherent from phase-incoherent states for
signals of long duration so that sufficient statistics can be
accumulated. In the type of real-time applications that we are
interested in here, the goal is to be able to tell, as soon as
possible, when a characteristic change in the system occurs.
This stipulates the use of short signals, typically from a mov-
ing time window. In this case, the entropy can exhibit large
statistical fluctuations from window to window, which is
worsened by the presence of noise. This presents a difficulty
to detect or predict system changes.

C. Average phase-synchronization time

To present our idea, we consider a prototype model of two
weakly coupled chaotic oscillators. The chaotic attractor is
assumed to be phase coherent so that a proper phase variable
can be defined. The average frequencies of the oscillators,
denoted by w; and w,, are assumed to be slightly different:
Aw=|w;-w,)|<w,,. Let K be the coupling parameter and
assume that phase synchronization occurs for K>K,.>0. In
the absence of coupling (K=0), the two oscillators evolve
independently so that the ensemble-averaged phase differ-
ence increases linearly with time,

(A1) = (Aw)t. (6)

The average time for a 27 change in A¢(z) is thus

As the coupling parameter K is increased from zero, (A (1))
still increases approximately linearly with time but at a
smaller rate than Aw, leading to an increase in the average
2ar-phase-change time. For K<K,, A¢(r) exhibits persistent
27 phase changes so that 7 is finite. As K is increased
through K, the phase difference A¢(7) becomes confined
within 27 so that 7=c. These two parameter regimes are
shown schematically in Fig. 1(a).

The above discussion is for the case of deterministic, sta-
tionary dynamical systems. Since our goal is to use 7 to
detect and characterize phase synchronization in noisy, non-
stationary dynamical systems, it is important to understand
how 7 changes with K. The generic behavior as K is in-
creased from well below K. is that 7 increases slowly until,
as K approaches K, 7 starts to increase extremely rapidly.
This can be understood heuristically by referring to the gen-
eral dynamical mechanism for a transition to phase synchro-
nization, unstable-unstable pair bifurcation [11]. In particu-

lar, let ¢ be a “lifted” phase variable corresponding to A¢(7),
where the 2r-periodic behavior in A¢(z) is unwrapped and
successive 27 intervals are considered as distinct phase-
space regions, as shown schematically in Figs. 1(b) and 1(c),
where 7 is an arbitrary amplitude variable. In the phase-
synchronized regime, A¢(¢) is confined within 27, so there
is an attractor in the phase space (7,A¢), where |Ag| <2
In the lifted phase space, there are then an infinite number of
identical attractors, each being confined within a 27 interval
corresponding to its basin of attraction, as in Fig. 1(b). Be-
cause of the synchronization, the basins of attraction are not
dynamically connected. Desynchronization in phase can be
regarded as being caused by the dynamical connection
among the basins. Rosa et al. [11] argued and presented nu-
merical evidence that the connection is typically a result of
unstable-unstable pair bifurcations. In particular, for K=K,
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FIG. 2. (Color online) For the model system, Eq. (9), (a) the
average 2m-phase-change time (or the average phase-synchron-
ization time) 7 versus the coupling parameter K. We observe an
extremely fast increasing behavior in 7 as K approaches the critical
value K., suggesting that 7 can be effective to distinguish between
phase-synchronized and phase-desynchronized regimes. (b) Ap-
proximately linear variation with K of the phase diffusion for two
time intervals of computation (two window sizes), indicating that
the measure can be used to characterize the degree of temporal
phase synchronization.

there are unstable periodic orbits on the attractors and on the
basin boundaries [denoted by closed circles and pluses in
Fig. 1(b), respectively]. The two classes of orbits typically
have distinct unstable dimensions. As K is decreased toward
K., the two classes of unstable periodic orbits approach each
other and coalesce at K., leading to the opening of an infinite
set of narrow “channels” that dynamically connect adjacent
basins of attraction for K below K. Tunneling between ad-
jacent basins of attraction gives rise to 27-phase jumps ob-
served for A¢(r), as shown schematically in Fig. 1(c). For
K=K, a trajectory typically spends an extremely long time
in a basin before tunneling occurs. It is known that chaotic
transients triggered by unstable-unstable pair bifurcations are
superpersistent [ 12—14] which, in the context of phase syn-
chronization, means the following scaling relation [15] in the
average 2r-phase-change time for K <K_:

7~ exp[C(K.— K)™], (®)

where C>0 and y>0 are constants. We see that as K ap-
proaches K, from below, 7 increases in the manner roughly
described by e¢” (herein the term “superpersistent”). For K
below this superpersistent regime, different scaling laws
were reported [16], but they all indicate much smaller values
for 7.

An example of the extremely fast increasing behavior in 7
as K approaches K, is shown in Fig. 2(a), where the model is
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the following system of two coupled chaotic Rossler oscilla-
tors:

dx pldt =~ w) 2y1 2= 212+ K(xp 1 = X1 ),
dyl’z/dt = w1’2x1!2 + 0.165_)71,2,

le’z/dl‘ =02+ (X1’2 - 10.0)21,2, (9)

and ©;=0.98 and w,=1.02 are the frequencies of the oscil-
lators when decoupled. Here we assume all parameters are
constant so the system is stationary. (In Sec. III we shall
study the nonstationary version of this system by assuming
that the coupling parameter K depends on time.) Each
Rossler oscillator, when uncoupled, exhibits a chaotic attrac-
tor with well-defined rotation. The phase, or the angle of
rotation, can be conveniently calculated from

yi2(1)
xl,z(f)'

Phase synchronization occurs [1] for K>K,~w,—w,
~(.04. To generate Fig. 2(a), a large number of K values are
chosen and, for each K, 100 trajectories of length T
=10000 are used to obtain the average 2-phase-change
time. The maximum computable value of 7 is thus 7. (The
average period of oscillation for the Rossler attractor is about
5.9, so the time interval 7=10 000 contains approximately
1700 cycles of oscillations.) We observe that, in its range of
variation, 7 increases relatively slowly for K<<K,_. but shows
a sharp increase as K approaches K.

In applied situations where both noise and nonstationarity
may be present, the phase-synchronization time is finite even
for K> K,. The rapid increasing behavior shown in Fig. 2(a)
suggests that this time can be used to reveal whether the
underlying deterministic system is in a phase-synchronized
or in a phase-desynchronized regime. However, in the desyn-
chronized regime where phase synchronization is typically of
short duration, the time may not be effective for differentiat-
ing the degree of the temporal phase synchronization.

tan ¢ (1) = (10)

D. Phase diffusion

We desire a measure that (1) characterizes the degree of
temporal phase synchronization and (2) can be improved by
increasing the time interval of computation (or the window
size). The latter point is particularly important because, in
the presence of strong noise, a viable approach is to increase
the size of the moving window. Here we propose a measure
based on the phase diffusion and argue that it satisfies the
two criteria. Still consider the prototype system of two
coupled chaotic oscillators. For 0<K<K_., the average
phase difference increases with time but with a slope smaller
than Aw. In general, we can write

Ag(r) = Ap(0) + a(K)t + 6(1), (11)

where a(K) is a small constant that depends on the coupling
strength K and 6(r) denotes the random process of phase
fluctuations. In an infinitesimal time interval Az, the change
in 6(r) satisfies —m<A#(r) <. Thus the average value of
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A0(r) is zero: {(A6(1))=0. However, much like a random-
walk process, the root-mean-square value of 6(r) typically
increases with time as V7. This can be justified by consider-
ing the differential equation governing the evolution of

A1),

BID_ otk + 800, (12)

where &(r) is a stationary random process. We thus have

0(1) =f E(eN)dr' . (13)
0

In time scales larger than the correlation time of the under-
lying chaotic or stochastic process x(z), &(r) can be regarded
as being independent of A¢(z). Under the assumption that
the average of &(r) vanishes, the ensemble-averaged value of
the phase difference A¢(r) at time ¢ is Ap(0)+ a(K)t. For
large times, the variance of A¢(f) obeys the Green-Kubo
relation for diffusion processes [17]:

([Ap(1) — Ap(0) - aK)1]) =(¢(1) = Dr,  (14)

where D is the diffusion coefficient defined by

D=f ()& +1)dt. (15)

Now consider a moving window of length AT and assume
that it is large so that the diffusion approximation, Eq. (14),
holds. Within the window, we have

(AP(2))y = a(K)AT/2. (16)
The variance of A¢(r), or the phase diffusion, is
a*(AT)?
vl ] = ([A6(0) - (3 ~ 2 4 pAT.
(17)

For K<K_, there is no phase synchronization and, hence, we
have a# 0. Thus for AT large we have var(A¢)~ (AT)%. In
the phase-synchronization regime (K> K,), we have =0 so
that var(A¢) ~AT. Thus, by increasing the window length,
the phase diffusion can exhibit relatively more significant
changes as K approaches K., as shown in Fig. 2(b). This can
be particularly useful for real-time detection of system
changes, and the effect of noise can be overcome by increas-
ing the moving-window length.

To verify these behaviors numerically, we plot in Fig. 3
the phase evolution A¢(z) for K=0, K=0.02<K,, K=0.03
<K, and K=0.04=K,. The linear growth is seen for the
first three cases but the growth rate decreases as the coupling
parameter K is increased. These validate the linear-growth
assumption in Eq. (11). To see the randomly fluctuating be-
havior in the phase difference associated with phase synchro-
nization, we show in Fig. 4, for K=0.04, A¢(t) on the scale
of 27r. We see that in large time, A¢(r) can be regarded
effectively as a random process in the phase-synchronization

PHYSICAL REVIEW E 73, 026214 (2006)

500

4001

3001

200¢

Ad(H)

100}

-1 : . -
000 4000 6000 8000

t

2000 10000

FIG. 3. (Color online) For the prototype model, Eq. (9), ap-
proximately linear behavior in A¢(r) for K=0, K=0.02<K,, K
=0.03<K,, and K=0.04=K,. These results validate the linear-
growth assumption in Eq. (11).

regime. This provides justification for treating 6(f) in Eq.
(11), the phase variation on top of the linear growth, as a
random process.

III. NUMERICAL TEST AND NOISE REDUCTION

Here we present a prototype model of nonstationary dy-
namical systems for which the degree of phase synchroniza-
tion can be varied with time in a controlled manner and test
the power of the average synchronization time and the phase
diffusion for detecting and characterizing phase synchroniza-
tion from measured time series.

A. Model description

The model consists of a pair of bidirectionally coupled
chaotic Rossler oscillators under noise as follows:

dxy pldt == w) 5y1 2= 212+ K()(x2 1 = X1 2),

dy, pldt = w) 5x1 5+ 0.165y, 5 + €& 5(1),

ol K = 0.04

Ad(t)

0.5}
0 2000

4000 6000 8000

t

10000

FIG. 4. (Color online) For the prototype model, Eq. (9), random
behavior in A¢g(r) for K=0.04= K. This provides the justification
for regarding 6(7) in Eq. (11) as a random process.
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FIG. 5. (Color online) For the prototype model, Eq. (18), (a)
variation of the coupling parameter, (b)—(d) for €=0, time series
x1(8), x5(2), and Ax(r)=x,(¢)—x,(t), respectively.

le’z/dt=O.2+(X1,2— 10.0)Z1’2, (18)

where the coupling parameter K(z) is time dependent so that
the system is nonstationary and €& ,(f) are independent ad-
ditive noise [£ () are Gaussian random processes of zero
mean and unit variance]. The noise terms are added to the y
equation because it is similar to the “force” equation in a
physical situation. The stochastic differential equation (18) is
integrated using a standard second-order routine [18].

Given a long experimental time interval 7, we allow the
coupling parameter K(z) to vary in the range [0,K,,], where
K,,>K,, according to the following simple rule:

2K, HT, 0<t1<T/2,
K(t) = (19)
2K, (1-1/T), TI2<t<T.

Figure 5(a) shows, for T=200, €=0, and K,,=0.2, the varia-
tion of K(¢) over time. The resulting time series x;(¢), x,(¢),
and Ax(¢)=x,(¢)—x,(¢) are shown in Figs. 5(b)-5(d), respec-
tively. The average periods of oscillation for both oscillators
are T=15.9. This defines a basic time unit in that time can be
conveniently referred to in terms of the number of cycles of
oscillation. From Fig. 5(d), we observe that in the time in-
terval where K(7) is large, there is a tendency for x,(r) and
X,(t) to stay close, indicating synchronization in a general
sense.
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FIG. 6. (a)—(c) For €=0.2, evolution of the Shannon-entropy
measure p(7) from a moving window of size AT=8.5 cycles, AT
=~ 17 cycles, and AT=170 cycles, respectively. Time is counted at
the end of the window.

B. Shannon entropy

To emulate an experimental situation we set a long time
interval T=10° (corresponding to about 17 000 cycles of os-
cillation) and collect time series x; ,(r) and y, ,(r) from non-
overlapping, moving time windows of duration AT<<T. The
coupling parameter varies in [0,7] according to Eq. (19).
Figures 6(a)-6(c) show, for €=0.2, the time-varying Shannon
entropy p(7) for AT=50 (corresponding to approximately
8.5 cycles of oscillation), AT=100 (=17 cycles), and AT
=1000 (=170 cycles), respectively, where time 7 is counted
at the end of window. It can be seen that phase synchroniza-
tion can be detected and the detectability can be improved by
increasing the length of the moving window. We have ob-
served that, however, larger noise tends to deteriorate the
detectability.

A drawback of the Shannon entropy p(r) for detecting
phase synchronization appears to be its weak ability to dis-
tinguish between a phase-incoherent and a phase-synch-
ronized state in the presence of noise. In particular, from Fig.
6, we see that the maximum value of p(7) is about unity,
which indicates complete lack of phase synchronization. Its
minimum value is about 0.5, which signifies a certain degree
of phase synchronization. To quantify the effectiveness of the
entropy measure, we define the following contrast measure
[19]:

Cp = Pmax — Pmin ) (20)
Pmax t Pmin

We desire the contrast to be as close to unity as possible in
order to detect system changes [19]. For the Shannon en-
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FIG. 7. For the model of Eq. (18), (a), (b), and (¢) €=0.2, 0.5,
and 1.0, respectively, evolution of the average phase-synchron-
ization time from moving window of size AT= 85 cycles.

tropy we have C,~1/3. In practical applications where
strong noise may be present, the contrast value can be even
smaller. It may then be difficult to use the Shannon-entropy
measure p(¢) for detecting phase synchronization.

C. Phase-synchronization time

To calculate the average phase-synchronization time, we
use a moving window of size AT=500 (corresponding to
about 85 cycles of oscillation) and determine the various
time intervals within AT during which a 27-phase change in
A¢ occurs. The maximum synchronization time is thus AT,
which occurs for K> K,. Figures 7(a)-7(c) show, for €=0.2,
0.5, and 1.0, respectively, the evolution of 7 with time. We
observe that for a low-noise level (e=0.2), 7 remains at rela-
tively low values for K<K, but increases rapidly as K ap-
proaches K, and remains at the maximum allowable time for
K>K,, suggesting that 7 can be used to detect phase syn-
chronization. Even better, the fast-rising behavior may be
useful for short-term prediction of the onset of phase syn-
chronization. The performance of 7 apparently deteriorates
as the noise level is increased. For instance, there are irregu-
lar dips in 7 even in the phase-synchronized regime [Fig.
7(b)]. For relatively large noise (€=1.0), the detective or
short-term predictive power of 7 for phase synchronization is
lost almost completely [Fig. 7(c)]. Using alternative statisti-
cal quantities such as the median in the distribution of 7
yields essentially the same result for this system.

We thus seek for practical ways to reduce the effect of
noise. An interesting observation is that 27-phase jumps in-
duced by noise tend to occur much more rapidly than those
of deterministic origin (e.g., due to insufficient coupling).
Figure 8(a) shows a typical 27-phase jump in A¢ for the
deterministic case (e=0) for K=0.037=<K,. The instanta-
neous time derivative of A¢ is shown in Fig. 8(b), where its
magnitude is of the order of unity. The temporal evolution of
A¢ under noise of amplitude €=1.0 is shown in Fig. 8(c),
where we observe random, sharp phase jumps. The sharpness
of the phase jumps can also be seen in dA¢/dt, as shown in
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FIG. 8. (Color online) (a) A 27-phase jump in the noiseless case
for K=0.037<K_, (b) the corresponding instantaneous time deriva-
tive dA¢/dt, (c) phase changes under the influence of noise of
amplitude €=1.0, and (d) the corresponding noisy time derivative.
Phase changes induced by noise apparently occur much more
quickly than those of deterministic origin.

Fig. 8(d), where its values can reach the order of 10?. These
behaviors also occur in phase-synchronized regimes, as
shown in Figs. 9(a)-9(d) for K=0.05>K..

The results in Figs. 8 and 9 suggest a practical strategy to
reduce or even to eliminate noise-induced 27r-phase jumps.

(a) K=0.05,e=0 20(c) K=0.05,e=1.0
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FIG. 9. (Color online) (a) Evolution of phase difference in the
noiseless case for K=0.05>K_, (b) the corresponding instantaneous
time derivative dA¢/dt, (c) phase changes under the influence of
noise of amplitude €=1.0, and (d) the corresponding noisy time
derivative.
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In particular, since such 2m-phase jumps tend to occur rather
suddenly, we can set up a threshold [denoted by
(dA¢/dr),;,>0] for the instantaneous derivative. Phase
changes with |dA¢/dt|>(dA¢p/dt),, are regarded as being
induced by noise. Given a time series A¢(z,) uniformly
sampled at time interval A¢, we approximate the instanta-
neous derivative by

dA¢ ~ A¢(til+l) - A¢(til)
dt At ’

Suppose at time ¢; the derivative exceeds the threshold so
that the phase change at ¢; is regarded as being noise induced.
We can remove this sudden change by substracting
Ad(t;11)-A(t;) from the time series A¢(t,) for all n>j.
The process is repeated for all time instants at which noise-
induced phase jumps are considered to have occurred.

An important issue is the choice of the derivative thresh-
old (dA/drt),, If it is too small, phase jumps intrinsic to the
system dynamics may be eliminated incorrectly. If it is too
large, some noise-induced phase jumps will remain. For a
model system such as Eq. (18), we can simply examine some
noiseless time series and determine the maximum value for
the magnitude of the derivative dA¢/dt. The threshold can
be set at a value slightly above the maximum. For applied
situations where inevitable noise makes the deterministic be-
havior of the system inaccessible, one can calculate the in-
stantaneous phase derivatives from time series and construct
a histogram of these derivatives. Phase jumps of determinis-
tic origin are likely to be associated with peaks in the histo-
gram at relatively small derivatives, making identification of
the threshold feasible. In cases where the histogram does not
exhibit such apparent peaks, estimates of the largest possible
derivatives by using physical mechanisms specific to the un-
derlying system may be performed to help determine the
threshold. For example, the procedure can utilize any useful
underlying structure in the histogram that may be represen-
tative of a portion of the underlying system dynamics. While
there is no general guarantee that a threshold value chosen
this way would be accurate, it is hoped that utilizing a sen-
sible estimate can help reduce the effect of noise on phase
dynamics.

Figures 10(a) and 10(c) show, for K=0.037<K, and K
=0.05> K, respectively, the corrected time series A¢(z) for
€=1.0, where we set (dA¢/dt),,=3.0. The corresponding in-
stantaneous derivatives are shown in Figs. 10(b) and 10(d),
respectively. Relatively sudden phase jumps have apparently
been removed. Figure 11 shows the corrected behaviors of
the phase-synchronization time as compared with the origi-
nal behaviors in Fig. 7. Improvement is apparent.

D. Phase diffusion

Figures 12(a)-12(c) show the evolution of the phase dif-
fusion calculated from moving window of size 7=~8.5
cycles, 7= 17 cycles, and 7=170 cycles, respectively, for €
=0.2. We see that in the phase-incoherent regime [K(r)
< K_], large fluctuations in the phase diffusion exist for small
window size. The fluctuations, however, are significantly re-
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FIG. 10. (Color online) (a) Phase evolution A¢(z) after the
noise-reduction procedure for K=0.037<K_, (b) the corresponding
instantaneous time derivative, (c) Ad(¢) after the noise-reduction
procedure for K=0.05>K_, and (d) the time derivative.

duced for large window size. In all cases, in the phase-
synchronized regime the amount of phase diffusion is close
to zero as compared with that in the unsynchronized regime,
giving rise to a close-to-unity contrast value. This suggests
that the phase-diffusion measure can be quite sensitive to
characteristic changes in the system. As noise becomes
larger, the phase diffusion can exhibit larger fluctuations in
both the phase-incoherent and phase-synchronized regimes
for small window size. In this case, it is necessary to use a
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FIG. 11. For the model of Eq. (18), (a), (b), and (c) €=0.2, 0.5,
and 1.0, respectively, evolution of the average phase-synchron-
ization time from moving window of size AT= 85 cycles after per-
forming the noise-reduction procedure.
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FIG. 12. (a), (b), and (c) For €=0.2, evolution of the phase
diffusion calculated from moving window of size 7=8.5 cycles, 7
~17 cycles, and 7=170 cycles, respectively.

large window size for the detection of phase synchronization.
Improvement can also be achieved by applying our proce-
dure for identifying and eliminating noise-induced phase
jumps (Sec. III C), as we have verified numerically.

The above results are obtained by taking advantage of the
proper rotational structure of the chaotic Rossler oscillator so
that Eq. (10) can be used for calculating the phase. Provided
with only time series, it is necessary to use the Hilbert trans-
form and analytic-signal method to calculate the phase.
Qualitatively, this yields no difference in the detection of
phase synchronization.

IV. DISCUSSIONS

The problem that we address in this paper concerns non-
stationary dynamical systems under temporal changes such
as parameter drifts or perturbations from the surroundings.
Such changes can lead to characteristic changes in the sys-
tem dynamics or even to catastrophic events such as seizures
in an epileptic brain. Because of the strong nonstationarity,
detection and quantification of the system changes need to be
done using moving time windows of relatively small size.
The goal here is to detect and characterize phase synchroni-
zation based on time-series signals measured from multiple
sensors. We have demonstrated that the average phase-
synchronization time and the phase diffusion can be power-
ful tools for the task in the sense that they are generally
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highly sensitive to changes in the degree of phase synchro-
nization. We have presented heuristic arguments and con-
structed a prototype model of weakly coupled chaotic oscil-
lators to test the effectiveness of these tools.

A previously proposed measure for quantifying the degree
of phase synchronization in chaotic or stochastic systems is
the Shannon entropy [6]. For systems where long, relatively
stationary time series are available, the entropy can be effec-
tive for detecting changes in the degree of phase synchroni-
zation and thus be quite useful in some applications [6]. We
have demonstrated, however, that there can be difficulties
associated with the Shannon entropy, particularly in highly
nonstationary systems under the influence of strong noise.
For our prototype nonstationary model, we defined the quan-
tity contrast that somewhat characterizes the sensitivity of
the entropy to changes in the degree of phase synchroniza-
tion and demonstrated that the maximally achievable value
of the contrast for the Shannon entropy is usually far less
than the ideal value of unity. Our phase-diffusion measure,
however, can easily yield values of contrast close to unity.

An area in which our method may be applied is epilepsy.
Epileptic seizures affect about 1% of the population. Sei-
zures are usually characterized by abnormal electrical activ-
ity in one or multiple brain regions and can be monitored by
an electroencephalogram (EEG) recorded via electrodes at-
tached to the scalp or by an electrocorticogram (ECoG) from
electrodes in direct contact with the cortex. The underlying
dynamical system responsible for seizures is most likely
nonstationary, extremely high dimensional, and nonlinear,
and one can intuitively associate the occurrence of seizures
with, for example, some catastrophic bifurcations triggered
by slow drifts in the system parameters. In epilepsy, since the
dynamical system details are unknown, the most convenient
means by which seizure dynamics can be studied is through
the analysis of nonstationary time series produced by the
system—i.e., EEG or ECoG. Since the subsystem respon-
sible for generating seizures (in the case of localization-
related epilepsies) interacts with (i.e., is coupled to) many
other nonepileptogenic subsystems in a complicated way that
is mostly unknown at the present, measures of synchroniza-
tion (both in phase and in general) are worthwhile for im-
proved understanding of the system dynamics. Another im-
portant aspect of the seizure problem, which is shared by
many realistic applications of nonstationary time series
analysis, is the presence of noise. Overcoming noise is thus a
fundamental requirement that must be met by any algorithm
if meaningful results quantifying phase synchronization are
to be obtained for such systems.
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