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Percolation and blind spots in complex networks
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Recent works on network security have focused on whether a complex network can maintain its integrability

under attack or random node failures. In applications of increasing importance such as sensor networks, a
somewhat different problem, namely, the occurrence of isolated nodes (or blind spots), is of great interest. We
show that, for networks with a stronger ability to form global spanning clusters, it is relatively more difficult
to eliminate blind spots, and vice versa. We use the framework of percolation to investigate this phenomenon.
Our analysis also yields a formula for the average number of blind spots, which provide an explanation for

several numerical findings.
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The ability for a complex network to maintain its integra-
bility in response to attacks or random failures has been an
issue of tremendous interest [1-12] since the discoveries of
the small-world [13] and the scale-free [14] topologies.
Loosely, a network can be considered as integrable and func-
tional if a substantial fraction of nodes are connected. Theo-
retically, the problem can be treated in the framework of
percolation where one can ask, for instance, under what con-
ditions a global spanning cluster of nodes—which contains a
considerable fraction of the active nodes—can be formed
[2,3,15]. In particular, consider a network embedded in a
lattice with a prescribed degree distribution. The extent of an
attack or random failures can be conveniently measured by
the occupying probability of active nodes where, for in-
stance, a severe attack that disables a large number of nodes
corresponds to a small occupying probability of active nodes
on the lattice. One can then ask whether a threshold value of
the probability exists, above which a spanning cluster is
formed. The pioneering works by Cohen et al. [2] and by
Callaway et al. [3] indicated that for networks with random
linkage, if the second moment of the degree distribution di-
verges, the percolation threshold tends to zero. It has been
found subsequently that other network properties such as the
degree correlation [16,17], degree of clustering [ 18], and the
geometry of lattice embedding [19,20] etc., can also affect
the percolation threshold. For instance, they can lead to a
nonzero threshold even when the second moment in the
degree distribution diverges.

There are applications of increasing importance and wide
interest, such as sensor networks or multihop ad hoc net-
works, in which a central issue of concern is the occurrence
of isolated nodes, or blind spots. For instance, for a cellular
network, total disintegration of the network is rare, i.e.,
whether there is a spanning cluster is not an issue. What one
concerns most is perhaps whether individual customers can
get access to the network. In a sensor network for homeland
defense applications, the occurrence of blind spots indicates
the loss of information that may be critical for certain tasks.
Intuitively, one may expect that networks with a stronger
ability to form spanning clusters should be more capable
of “absorbing” isolated nodes and, hence, such networks
should be more robust against the occurrence of blind
spots. In the language of percolation, this is to say that
networks with smaller percolation thresholds should be more
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fully connected as the occupying probability is increased
beyond the threshold. What we find in this paper is the op-
posite: blind spots are more probable in networks that are
more susceptible to percolation. This striking phenomenon
may present a significant challenge to the design of secure
and reliable networks; to make the network robust against
attacks or random failures, it is necessary to reduce the per-
colation threshold, but the network may be unreliable from
the standpoint of users because of the relatively higher like-
lihood of blind spots. In the following we shall present a
systematic numerical study of the behavior of the blind spots
and provide a theoretical analysis.

We begin by reviewing the continuous process of perco-
lation where N nodes of a network fill in sites on a “lattice,”
where each node is occupied (or active) with probability g.
Thus p=1-¢q is the probability that a site is empty or the
probability of node failure. On average there are Ng nodes
on the network. Assume that the final network is scale-free,
i.e., the degrees of the nodes follow the power-law distribu-
tion k™. As q is increased, more and more sites are occupied
so that nodes begin to connect with each other to form local
clusters of various sizes. When ¢ is increased beyond the
percolation threshold ¢,, a global spanning cluster emerges
which connects nodes across the entire lattice [15]. For net-
works with random linkage in the connection topology, the
threshold is given by (k)/({(k?)—(k)), where (k) and (k*) are
the average degree and the second moment of the degree
distribution, respectively [2,3]. Assume that the degree-
distribution exponent satisfies A >3 so that (k) and (k?) exist.
In this case, the more heterogeneous the network, the larger
the second moment (k%), and the smaller the threshold. For
2 <A =<3, (k?) diverges while (k) exists, thus the threshold is
0 in the large network limit. However, if the linkage is not
random but has structures, the percolation threshold can still
be nonzero [16-20]. In these cases, as Warren et al. have
shown [19], it is also true that the more heterogeneous the
network, the smaller the threshold. The general result is that
percolation occurs more easily for networks with smaller
values of \.

Generally, as g is increased, the number of blind spots
decreases. To obtain an understanding of the behavior of
blind spots, it is convenient to use statistical quantities. Let
(n,) be the ensemble-averaged value of the number of
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FIG. 1. (Color online) The average number of blind spots (n,)
versus the occupying probability ¢ for three scale-free networks of
N=10* nodes with the same degree distribution k> but generated
using the lattice-embedding model (squares), the random linkage
model (circles), and the classical preferential-attachment model
(diamonds). The minimal value of the degree is m=10. Each data
point is the result of averaging over 103 network realizations. While
these models can generate different higher order, fine statistical
properties for the network, the behavior of the blind spots is appar-
ently independent of the fine details.

isolated finite clusters (or blind spots), which can assume
noninteger values. Whether the network is fully connected,
i.e., no blind spots, can then be determined by the criterion
that (n,) falls below one. This defines another threshold value
q., the critical value of the occupying probability required
for the network to be fully connected. Figure 1 shows (n,)
versus ¢ for three scale-free networks obtained by different
models: the lattice-embedding model [21], random scale-free
model [22], and the classical preferential-attachment model
[14]. An observation is that the behavior of (n,) appears to
depend on the degree distribution only, regardless of the
model details that can give rise to distinct fine, higher-order
statistical properties for the network. This should be con-
trasted with the percolating process to form a spanning clus-
ter, which is sensitive to fine network properties such as the
degree correlation [16,17], clustering [18], lattice embedding
methods [19,20], etc.

The particular physical networks for which the problem of
blind spots may be of concern are sensor networks, multihop
wireless networks, and possibly the internet. To build up
numerical models for these networks, taking into account
the effect of physical distances, the lattice-embedding
method [21] is appropriate. By this method, for each node on
an L X L lattice with periodic boundaries, we assign a degree
k, drawn from the scale-free distribution of exponent A and
minimal degree m. We then randomly choose a node and
connect Lt to its neighbors from near to far, within the dis-
tance Avk (e.g., this distance can be adjusted by power con-
trol in wireless networks), where A is a prescribed constant
and the distance between two nearest-neighbor nodes in the
lattice is defined to be one. The process is repeated for all
nodes. If A is suitably large (e.g., A=7 for N=10%), the de-
gree distribution can be realized. In the following we shall
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FIG. 2. (Color online) Normalized average number of blind
spots {n,)/N versus the occupying probability ¢ for four scale-free
networks of N=10* with approximately the same average degree:
N=2.6, m=8 (squares), A=3, m=10 (circles), \=3.5, m=12
(diamonds), N=5, m=15 (up triangles), and A=30, m=19 (down
triangles). Each data point is the result of averaging over 10° net-
work realizations. Solid curves are from theoretical prediction Eq.
(1) (not fits). Inset: the same quantities and statistics for optimal
two-peak networks with (ky=20 for k;=10, k,,=30 (squares), and
k=15, k,,=25 (circles).

use different scale-free networks generated by this model to
explore the behavior of the blind spots and to contrast it with
percolation.

Figure 2 shows the dependence of the normalized number
of blind spots {(n,)/N on the occupying probability g for
scale-free networks with different parameters, which are cho-
sen so that all the networks have approximately the same
value of the average degree: (k)= 20, for a meaningful com-
parison (e.g., the cost to build up all the network is the same,
if it is proportional to the total number of links). We see
that for networks with larger values of N (or relatively
more homogeneous networks), the number of blind spots de-
creases more rapidly with ¢, indicating that, under the same
cost, scale-free networks with larger values of the degree
exponent are structurally more robust in the sense of mini-
mizing the number of blind spots. The solid curves are not
fits but are predictions of our theoretical formula Eq. (1)
(to be described below).

To compare the behavior of the blind spots with the per-
colation process, we focus on the two probabilities as a func-
tion of the occupying probability: ®,,(¢), the probability to
form a spanning cluster through percolation, defined as
N'/Ng, where N' is the size of the largest cluster; and
®/.(g), the probability for the network to be fully connected.
Some representative results are shown in Figs. 3(a) and 3(b)
where the open symbols are for ®,(¢) and the filled symbols
are for ®.(¢), and all networks have the same number of
nodes. In Fig. 3(a), the average degree is approximately 20
for all five networks. It can be seen that, although the forma-
tion of a spanning cluster requires slightly smaller value of g
for relatively more heterogeneous networks (e.g., the curve
with A=2.6 represented by open squares), the values of ¢
required for the network to be fully connected are much
larger. That is, it is more difficult to eliminate blind spots for
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FIG. 3. (Color online) Probability ®,(¢) (open symbols) for a
spanning cluster to be formed and the probability ®.(¢) (filled
symbols) for the network to be fully connected, for two sets of
scale-free networks, each of N=10* nodes, (a) (k)=20: \=2.6,
m=8 (squares), A=3, m=10 (circles), A=3.5, m=12 (diamonds),
N=5, m=15 (up triangles), and A=30, m=19 (down triangles); (b)
(ky=10: N=2.6, m=4 (squares), N\=3, m=5 (circles), A\=4, m=6
(diamonds), and A=9, m=7 (triangles). The values of ®,(¢g) and
®.(q) are calculated using 10° and 10* network realizations,
respectively.

networks that are more susceptible to percolation! This con-
trast is more striking for networks with smaller average de-
grees, as shown in Fig. 3(b), where (k)= 10. Qualitatively,
this can be understood by noting that, although the percola-
tion threshold is generally smaller for relatively more hetero-
geneous networks, when the average degree is fixed, there is
also a higher probability for these networks to possess more
small-degree nodes, making a full connection more difficult.

For an infinite network, the critical occupying probability
for the disappearance of blind spots is g.=1 (or p.=0). Of
physical importance are finite-size effects. We are thus led to
ask the following question: How does ¢, (or p,) scale with
the system size N? To address this question, it is convenient
to focus on the dependence ®.(p). For p—0 (or g— 1) we
have ®.(p)=1 and it becomes zero for p— 1. Thus a tran-
sition in ®;(p) from one to zero occurs around p.. This
transition point naturally depends on the system size (e.g.,
for N— o, p.—0), so we write p.(N). For networks with the
same degree distribution but with different sizes, it is reason-
able to assume that the curves ®,.(p) are translated versions
of one another, where the curves for larger systems are
shifted more toward the left (i.e., p=0). These arguments
suggest that, if we use the rescaled variable p/p, .(N), then all
probabilities ®,.[p/p.(N)] should collapse into a single, uni-
versal curve, irrespective of the system size. This has indeed
been observed numerically, as shown in Fig. 4(a). From the
various system sizes used in Fig. 4(a), we obtain the depen-
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FIG. 4. (Color online) For a scale-free network of N=3 and
m=10, (a) universal behavior in the fully-connected probability ® .
versus the normalized occupying probability p/p.(N) for seven dif-
ferent network sizes: 2 500, 5 625, 10 000, 16 900, 28 900, 40 000,
and 250 000, where each data point is the result of an ensemble
average of 1000 networks, and (b) log p.(N) versus log N. The solid
line in (b) is calculated from the theoretical formula Eq. (1) (not a
fit).

dence p.(N), as shown by the open circles in Fig. 4(b). We
observe that p.(N)~N~“ The solid line in Fig. 4 is not a fit
but is directly calculated by setting the number of blind spots
n,=1 in our theoretical formula Eq. (1).

We now provide a heuristic approach to explain the nu-
merical results. To analyze the occurrence of the blind spots,
we note that, a node of degree k is isolated if it is occupied
but all & sites connecting to it are unoccupied. The probabil-
ity of this event is gp*. Let P(k) be the degree distribution.
Then, on average, the total number of single-node blind spots
is ny=NZ,gp*P(k). Similarly, the average number of 2-node
blind spots is 1n,==¢*p*1**272N,P(k, ,k,), where the summa-
tion is over all sorted pairs of k; and k,, N,=N(k)/2 is the
number of edges, and P(k,,k,) is the joint degree distribu-
tion. The number of m-node blind spots can be obtained
similarly by summing over different configurations, which is
proportional to pfi*k2++km_Since we are only interested in
the case where ¢ is far beyond ¢, (the percolation threshold),
the numbers of higher-order blind spots are negligible (Fig.
2) as compared to the number of single-node blind spots. For
a scale-free network of minimal degree m, the degree distri-
bution can be written as P(K)=Ck™, for k=m, where C is a
normalization constant given by C=1/2_ k™=1/{(\,m),
and /(\,m) is the Hurwitz Zeta function [23]. We thus have,
for the number of blind spots,

oo

“ k
ny= > Ngp*Ck™ = Ngp" €S, ——
k=m k=0 (k+m)

= Ngp"Liy(p,m)I{(\,m), (1)

where Liy(p,m) is the generalized polylogarithm function,
and Li\(1,m)={(\,m) [23]. Equation (1) is valid for N> 1.
As g—1 (or p—0), we have n,/N—0. Thus for a fixed
network size N, there exists a critical value g, of the prob-
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ability ¢ such that for ¢ > g, (or p<p,), the number of blind
spots falls below one so that the network is fully connected.
The smaller the ¢, value, the more easily the network can be
fully connected. The critical value can be obtained by setting
n,=1 [e.g., Fig. 4(b)].

To explain the algebraic relation between p.(N) and N,
we consider the large N cases where Li\(p,m)/{(\,m)
tends to one, thus the number of blind spots becomes
ny,~Ngp™ = Np"™. We then have

p.~ N, (2)

where a=1/m is the algebraic scaling exponent. In general,
there is no closed form of Li\(p,m), so a precise scaling law
cannot be obtained explicitly. However, since Lik(p,m)zﬁ

+(T+mL)x+---2m_>‘(1+(ﬁ))‘p), for small p, we can expect

that the scaling of p, is similar to Eq. (2), but has a small
correction, due to the term of (1+(ﬁ))‘p). This correction
diminishes for large \. A linear fit of the data in Fig. 4(b)
gives the numerical value of the algebraic scaling exponent
as a=0.1, which agrees with the theoretical value of
1/m=0.1 quite well.

For random bond failures, let p;, be the failure probability
of a bond and g, =1-p,, be the occupying probability. A node
of degree k will be isolated if all the k bonds connecting to it
are failed, and the probability of this event is p’;. Again, since
the critical point of the occurrence of blind spots g, is far
beyond the percolation threshold ¢g,, we can neglect the
higher order blind spots. The number of blind spots is then
ny=Npjy'Li\(p,,m)/ {(\,m). Letting n,=1, we can obtain the
critical point p,, and the scaling relation p,.~N~"". This
analysis has been verified numerically.

To further validate the generality of our result, we have
studied the class of two-peak networks defined by the fol-
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lowing degree distribution: P(k)=0 if k#k; or k#k,, for
k;<k,, where k; and k,, are the minimal and maximal degree
of the network, respectively. The values of k; and k,, are
chosen to optimize the network’s robustness to random
node failures for a given average degree (k) [11,12]. A simi-
lar calculation yields n,=Ng{p*(k,,—{k))/(k,,—k;)+p*n({k)
—k;)/(k,,—k;)}. The inset of Fig. 2 shows the simulation re-
sult (symbols) and the theory (curves) of two cases with
(ky=20: k;=10, k,,=30 (squares) and k;=15, k,,=25 (circles).
Since the range [k;,k,,] for the second case is contained en-
tirely in that of the first case, the analysis of Refs. [11,12]
implies a higher percolation threshold for the second case. At
the same time, the second case has fewer blind spots, as our
computation reveals. The conclusion is that our finding holds
for the optimal two-peak networks as well.

In summary, we have investigated the behavior of the
blind spots in relation to the percolation process in scale-free
networks. Numerical findings and analysis indicate that a
heterogeneous degree distribution, while important for mak-
ing the network function by facilitating the emergence of a
spanning cluster through a small subset of high-degree
nodes, may at the same time cause difficulty for small-degree
nodes to be connected. This “full connectivity” may be par-
ticularly important for a variety of situations [24-26] such as
sensor networks, multihop ad hoc networks, small-scale in-
tercomputer networks in business or defense applications, or
even the internet [27]. There has not been much attention to
this problem, and we hope our work will stimulate more
efforts in this direction.
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