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Effect of noise on generalized chaotic synchronization
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When two characteristically different chaotic oscillators are coupled, generalized synchronization can occur.
Motivated by the phenomena that common noise can induce and enhance complete synchronization or phase
synchronization in chaotic systems, we investigate the effect of noise on generalized chaotic synchronization.
We develop a phase-space analysis, which suggests that the effect can be system dependent in that common
noise can either induce/enhance or destroy generalized synchronization. A prototype model consisting of a
Lorenz oscillator coupled with a dynamo system is used to illustrate these phenomena.
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One of the remarkable discoveries in nonlinear science is
that random noise can induce order. For instance, in stochas-
tic resonance [1], noise can enhance system’s response to
input signals in terms of measures such as the signal-to-noise
ratio. In coherence resonance [2], noise can induce ordered
oscillations or enhance the temporal regularity of system re-
sponse. It has also been found that noise, when applied iden-
tically to a set of nonlinear oscillators, can induce or enhance
synchronization among them, even in the absence of cou-
pling [3,4]. This phenomenon has recently been extended to
chaotic phase synchronization [5].

In this paper, we investigate the effect of common noise
on generalized synchronization [6—10], which occurs in sys-
tems of characteristically different chaotic oscillators. In par-
ticular, say we consider two chaotic systems: A described by
x,,1=F(x,), where x € RY, and system B by y,,;=G(y,).
where y € RY. When there is a coupling between the two
systems, even when the map functions F and G are different,
there can be a functional relation between the dynamical
variables x and y when generalized synchronization occurs.
Our question is under what conditions common noise can
enhance or induce generalized synchronization. As this type
of synchronization can be expected in quite general settings
of dynamical systems, a clarification of whether noise can be
constructive or destructive is an interesting issue with prac-
tical implications. For instance, in a biological network, in-
dividual oscillators are responsible for different functions, so
dynamically they can be quite different. Nonetheless, some
global function of the network may rely on some degree of
coherence among the dynamics of the oscillators. Whether
noise can be beneficial for the coherence can be an issue of
interest. The main point of this paper is that noise can either
enhance and induce or weaken and destroy generalized syn-
chronization, depending on systems details, such as the
driving-driven configuration. That is, common noise may not
always be beneficial for chaotic synchronization. We shall
develop a theoretical criterion, based on a phase-space analy-
sis of the conditional Lyapunov exponents (to be defined
below), for pinning down the role of noise in generalized
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synchronization. To numerically illustrate both the construc-
tive and the destructive role of noise, we will use the chaotic
Lorenz oscillator [11] and a dynamo system [12] with differ-
ent driving-driven configurations.

A convenient method to detect generalized synchroniza-
tion is the auxiliary-system approach [7]. In particular, sup-
pose there is a unidirectional coupling from system A to B.
That is, A is the driving and B is the driven system, so we
write y,,;=G(y,,X,), where now the map function depends
also on the driving variable x. One can imagine a replica
B’ of system B, which is also driven by A. Synchronization
between B and B’ under the identical driving from A implies
generalized synchronization between A and B. This approach
is similar to the subsystem approach suggested by Pecora
and Carroll in their original work on chaos synchronization
[13], where A and B are two constituting subsystems
in a single dynamical system, and B’ is a replica of B.
In both cases, whether B and B’ are synchronized is deter-
mined by the sign of the largest conditional Lyapunov expo-
nent of B under the driving from A. Given a trajectory
{y, flvz_ol on B, the following matrix product determines this
exponent:

N-1
Q= [IDG(y,.x,), (1)

n=0

where DG(y,,.x,,)= G/ ‘?Y|yn’xn is the Jacobian matrix of the
driven system evaluated at the trajectory point (y,,x,). The
largest conditional exponent is given by

o1
A = lim ¥ In|Qu

N—®©

; 2)

where u is a randomly chosen unit vector at the initial point
Yo in the driven system. When a trajectory of the driven
system moves in its phase space, due to driving, there can be
regions where an infinitesimal tangent vector expands or
contracts. Let 2 and 3, denote the unions of the expanding
and the contracting regions, respectively. We can classify the
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Jacobian matrices into two types: One for trajectory points in
2.5 and another for points in 2. Due to chaos, Q in Eq. (1)
can be regarded as a product of random matrices, one type
drawn from the collection of all possible matrices in X and
another from the collection in 3. The time average in Eq.
(2) can then be replaced by a microcanonical ensemblelike
average (for fixed N) [14]

)\1 =<111|Qll|>m. (3)

Since the matrices in the product are drawn from two types
of collection in the ensemble, the ensemble average is effec-
tively the weighted average with respect to them. In particu-
lar, let 7,>0 and —r.<0 be the values of the ensemble av-
erages as in Eq. (3) but with matrices in the products all
drawn from the collection in 3 and in 2, and let p, and p,
be the respective probabilities of selecting a matrix from the
collection in Xz and in 3, respectively. We can write

A1=pere_pcrc7 (4)

where p, and p, can be interpreted as the weights of 3 and
3. for a continuous trajectory, and r, and r,. are the average
expanding and contracting rates of %, and X, respectively.
In the computation, one can take a sufficiently long trajec-
tory in the phase space, and calculate the local expansion or
contraction rates by using the set of individual Jacobian ma-
trices along the trajectory. The probabilities in Eq. (4) can be
approximated by the frequencies of visits to distinct phase-
space regions. The largest conditional Lyapunov exponent A\
can then be obtained. Under common noise, all four quanti-
ties depend on the noise amplitude. Suppose, in the absence
of noise, the combination of the four quantities is such that
N1 =0. Then, common noise of appropriate amplitude can
cause changes in them so that \| becomes negative. In this
case, noise induces generalized synchronization. Noise can
also enhance the synchronization if it makes an originally
negative exponent more negative, through changes in these
average quantities. There is also the possibility that the
noise-induced changes in the quantities are such that an
originally negative exponent becomes positive. In this case,
common noise can destroy generalized synchronization.

A few remarks are in order. (1) While the random-matrix-
based arguments leading to Eq. (4) and their interpretations
are for the setting of maps (for notational convenience), they
apply equally to flows. (2) A result similar to Eq. (4) has
been used in other contexts, such as the bifurcation from
strange nonchaotic to chaotic attractors [15] and the transi-
tion to chaotic attractors in random dynamical systems [16],
but the arguments here are more formal. (3) The idea of
identifying expanding and contracting regions in the phase
space has been used to understand the effect of common
noise on (phase) synchronization [5], but here we emphasize
the division of the full phase space into these regions. As we
will demonstrate numerically, division in terms of subspaces,
such as phase-space projections, may not capture the varia-
tions of the quantities in Eq. (4) with the noise amplitude.

To provide numerical support, we use the classical chaotic
Lorenz oscillator under noise, given by
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dx
—=10(y-x),
P (y=x)

dy
— =35x—y—xz+ D&y,
I x—y—xz+DE&1)

dz
—=xy—(8/3)z, 5
Pk (8/3)z (5)

and the chaotic dynamo oscillator in Ref. [12],

d_u_ 1.7
dt—vw Tu,
d
& (Ww=0.5)u—-1.70 + D),
dt
d
d—v::I—uv, (6)

where D is the noise amplitude and &(¢) is a Gaussian ran-
dom process of zero mean and unit variance, identical for
both oscillators. For illustrative purposes, we shall consider
two cases where: (i) the Loretz oscillator drives the dynamo
system, which can be modeled by adding the coupling term
—€e(u—x) in the u-equation in Eq. (6), and (ii) the opposite
situation where the coupling term —e(x—u) is added to the x
equation in Eq. (5). Here, € is a parameter characterizing the
“strength” of the coupling. We will demonstrate that com-
mon noise can induce or enhance generalized synchroniza-
tion for case (i), but it does the opposite for case (ii).

e Case (i) Noise induced/enhanced generalized synchro-
nization. Figure 1(a) shows the largest conditional Lyapunov
exponent \; of the dynamo oscillator versus the coupling
parameter for four values of common-noise amplitude D. We
see that for D=0, \; becomes negative for e>¢€.~0.16, in-
dicating generalized synchronization. As D is increased from
zero, the transition point €. decreases toward zero. For a
fixed value of e, the value of \; decreases as D is increased,
suggesting that noise can enhance the synchronization. A
verification of the noise-enhanced generalized synchroniza-
tion for €=0.05 is shown in Fig. 1(b), where we see that for
D=0, the variable w from the driven dynamo oscillator and
the same variable w, from an auxiliary system are not syn-
chronized but they do for D=1.5. For relatively large noise
amplitude (e.g., D=1.5 and D=2.0), \, is negative for all
values of € considered, even for e=0. That is, even without
coupling, generalized synchronization can occur if the com-
mon noise is suitably strong—the phenomenon of noise-
induced generalized synchronization. In this case, although
there is no direct coupling between the driving and the
driven systems, a degree of indirect interaction between them
can still be established by the common noisy forcing.

To demonstrate the necessity of using full phase-space
division into expanding and contracting regions to under-
stand the interplay between noise and generalized synchro-
nization, we map out these regions in two different planes of
phase-space projection, as shown in Figs. 2(a)-2(f). In par-
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FIG. 1. (Color online) For case (i), (a) the largest conditional
Lyapunov exponent of the driven dynamo oscillator versus the cou-
pling parameter for four values of the common-noise amplitude,
demonstrating both noise-enhanced and noise-induced generalized
synchronization. (b) Verification of noise-enhanced generalized syn-
chronization for €=0.05: for D=0 there is no synchronization be-
tween the dynamical variable w and its counterpart from an auxil-
iary system but the two are synchronized for D=1.5.

ticular, Fig. 2(a) shows, for D=0 and €=0.5, projection of
the chaotic trajectory of the dynamo oscillator in the (u,w)
plane and the contracting region (shadowed). A similar plot
for D=3 is shown in Fig. 2(b), where we see that the trajec-
tory appears to locate relatively more in the contracting re-
gion. Indeed, the probability of a visit to the contracting
region, when calculated from the (u,w) subspace, increases
with the noise amplitude, as shown in Fig. 2(c). However,
when a different subspace is examined, the behavior can be
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FIG. 2. (Color online) For case (i) for e=0.5, a chaotic trajec-
tory of the driven dynamo oscillator and the contracting region
(shadowed) in the (u,w) subspace for D=0 (a) and D=3.0 (b). In
the (u,w) subspace, the probability of visit to the contracting region
increases with the noise amplitude (c). (d,e) Similar plots to (a,b),
respectively, but for the (u,v) subspace. D=0 for (d) and D=3 for
(). In this case, the probability decreases with D (f).
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FIG. 3. (Color online) For case (i), an example of phase-space
analysis for understanding noise-induced generalized synchroniza-
tion: The frequencies of visit to the expanding and the contracting
region (a), the average expanding and contracting rates (b), and the
largest conditional Lyapunov exponent (c), versus the noise ampli-
tude for €=0.05. The exponent is calculated by using Eq. (4).

completely the opposite, as shown in the corresponding plots
in Figs. 2(d)-2(f). These results indicate that information for
generalized synchronization obtained from some subspaces
in the phase space can be incomplete and may lead to con-
tradictory conclusions. To understand generalized synchroni-
zation based on the expanding and contracting dynamics, it
is necessary to examine trajectories in the full phase space.

To exemplify the use of the phase-space analysis for un-
derstanding the effect of common noise on generalized syn-
chronization, we calculate the frequencies of visit to the ex-
panding and contracting regions, and the expanding and the
contracting rates, as a function of the noise amplitude, as
shown in Figs. 3(a) and 3(b), respectively, for e=0.5. We see
that both p, and r, decrease with D, but both p,. and r,
increase with D. These lead to a decreasing behavior of the
largest conditional exponent as D is increased, as shown in
Fig. 3(c). We see that noise-induced generalized synchroni-
zation occurs for D=1.1 in this case.

Case (ii) Destruction of generalized synchronization by
common noise. Comparing with case (i), here the roles of the
driving and the driven system are exchanged in that now the
Lorenz oscillator is driven by the dynamo system. To see
how common noise can destroy generalized synchronization,
in Figs. 4(a) and 4(b) we plot the probabilities for a trajec-
tory in the expanding and contracting regions, and the aver-
age rates, respectively, as a function of the noise amplitude
for e=4.5. Comparing Figs. 4(a) and 4(b) with Figs. 3(a) and
3(b), respectively, we see that, while the probabilities of vis-
its show a similar behavior, the average expanding rate ver-
sus D exhibits a completely opposite behavior: It increases
with D relatively more rapidly as compared with the increase
of the average contracting rate. This large increase in r,
weighs over the tendency to decrease the largest conditional
exponent by the other three quantities (p,, p., and r,). As a
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FIG. 4. (Color online) For case (ii), an example of destruction of
generalized synchronization by common noise: The frequencies of
visit to the expanding and the contracting region (a), the average
expanding and contracting rates (b), and the largest conditional
Lyapunov exponent (c), versus the noise amplitude for e=4.5. The
main factor that causes the exponent to become positive is the rela-
tively large increase of the average expanding rate with the noise
amplitude. The exponent is calculated by using Eq. (4).

result, the exponent increases with D, as shown in Fig. 4(c).
We see that for D=0, the exponent is negative but it becomes
positive for D>D_ = 1.5, signifying the loss of generalized
synchronization.

The destruction of the generalized synchronization by
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FIG. 5. (Color online) For case (ii), on-off intermittency associ-
ated with the destruction of generalized synchronization by com-
mon noise. Shown are the evolutions of the difference z—z, in the
dynamical variable for five values of the noise amplitude.
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FIG. 6. (Color online) For the Lorenz oscillator under noise,
(a,b) two isolated attractors for D=0 and D=1.2, respectively. A
noise-induced interior crisis occurs for D=D_=1.5, after which
there is a single attractor in the phase space. Shown in (c) is a
segment of a trajectory on part of the chaotic saddle that is respon-
sible for the crisis, for D=1.5. In (d), an attractor after the crisis is
shown for D=2.0, which contains the original small attractors and
the chaotic saddle.

common noise manifests itself as an on-off intermittent be-
havior when a dynamical variable of the driven system is
compared with its counterpart in the auxiliary system. To
demonstrate this behavior, we plot in Fig. 5 the evolutions of
the difference z—z, in the dynamical variable z of the Lorenz
oscillator between the driven and the auxiliary system for
five values of the noise amplitude. For D slightly above D,
generalized synchronization can still be achieved in rela-
tively long time intervals, but as D is increased further,
bursts from zero in z—z, becomes increasingly frequent. De-
synchronization through on-off intermittency is typical in
chaotic systems [17], and Fig. 5 indicates that the mechanism
applies to generalized synchronization as well.

What is the dynamical mechanism for the large increase
of the average expanding rate in the driven Lorenz oscilla-
tor? To answer this question, we examine the phase-space
structure of the Lorenz oscillator more closely. Our recent
work on generalized synchronization in the Lorenz oscillator
[18] has indicated a bistable behavior: Depending on the
initial conditions, the Lorenz oscillator can have two attrac-
tors that both can be synchronized with some characteristi-
cally different chaotic driving in the generalized sense. An
example is shown in Fig. 6(a), the three-dimensional phase
space of the Lorenz oscillator. Under noise, the ranges that
the attractors extend expand, as shown in Fig. 6(b). As the
noise becomes stronger, the attractors collide with a chaotic
saddle, triggering an interior crisis [19] that generates a
single and larger attractor, as shown in Figs. 6(c) and 6(d).
The key point is that the chaotic saddle contains the unstable
steady state of the Lorenz oscillator, which is near the origin
of the phase space and has a strongly expanding local un-
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stable manifold. After the interior crisis, the attractor con-
tains this steady-state point. When a typical trajectory falls in
its neighborhood, a large contribution to the average expand-
ing rate is picked up. We thus expect a large increase in the
rate after the crisis occurs. Numerically, we find that the
critical noise amplitude for crisis is D.~ 1.5, which coin-
cides with the value of D required for the destruction of the
generalized synchronization.

In summary, we have addressed the role of common noise
in chaotic generalized synchronization by using a phase-
space analysis. Depending on the driving-driven configura-
tion of the chaotic oscillators, under noise the dynamical
properties of trajectories in the driven system can show char-
acteristically different behaviors in terms of their frequencies
to experience expansion and contraction and the correspond-
ing rates. As a result, common noise can either induce/
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enhance or destroy generalized synchronization. For the spe-
cific example of the Lorenz-dynamo system, we are able to
understand the observed noise-induced destruction of gener-
alized synchronization in terms of the phenomenon of noise-
induced interior crisis. As generalized synchronization can
be expected in complex dynamical systems, our results are
useful for assessing whether the role of inevitable environ-
mental noise can be constructive or destructive for the
synchronization.
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