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Tolerance of scale-free networks against attack-induced cascades
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Scale-free networks can be disintegrated by attack on a single or a very few nodes through the process of
cascading failures. By utilizing a prototype cascading model, we previously determined the critical value of the
capacity parameter below which the network can become disintegrated due to attack on a single node. A
fundamental question in network security, which has not been addressed previously but may be more important
and of wider interest, is how to design networks of finite capacity that are safe against cascading breakdown.
Here we derive an upper bound for the capacity parameter, above which the network is immune to cascading
breakdown. Our theory also yields estimates for the maximally achievable network integrity via controlled
removal of a small set of low-degree nodes. The theoretical results are confirmed numerically.
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Security of complex networks in response to random fail-
ures or attacks has become a topic of recent interest [1-7].
Complex networks arising in many natural and manmade
systems are scale free [8] in that their connectivity (or de-
gree) distributions follow an algebraic law. In contrast to an
exponential degree distribution seen in random networks [9],
an algebraic degree distribution means that a small set of
nodes can have significantly more links than other nodes and
they therefore can be regarded as more important. From the
standpoint of security, the presence of such a small set of
important nodes means that the network can be fragile be-
cause attack on one or a few nodes in this group can have a
devastating effect. In particular, considering that those nodes
typically handle a substantial fraction of loads necessary for
the normal operation of the network, an attack to disable one
or few of these nodes means that their loads will be redis-
tributed to other nodes. Because the amount of the redistrib-
uted loads can typically be large, this can cause other nodes
in the network to fail, if their loads exceed their capacities,
which in turn causes more loads to be redistributed, and so
on. This cascading process can continue until the network
becomes disintegrated. Indeed, simulations show, for in-
stance, that for a realistic power-grid network, attack on a
single node can disable more than half of the nodes, essen-
tially shutting down the network [6].

In a recent work [7], it was proposed that cascade-induced
breakdown of a scale-free network exhibits a phase-
transition phenomenon with respect to a parameter A charac-
terizing the network capacity. For small capacity, intentional
attack on a single node with relatively large degree can trig-
ger a global cascade to disintegrate the network. For suffi-
ciently large capacity, however, additional loads from the
disabled nodes due to attack can be effectively absorbed by
the network so that it will remain connected. For a finite,
unprotected scale-free network under attack on the most in-
fluential node, two critical points of the network capacity
parameter are of general interest: N, and \,>\_., where A\ is
the parameter value below which the network becomes to-
tally disintegrated and A, denotes the upper bound in the

1539-3755/2005/72(2)/025104(4)/$23.00

025104-1

PACS number(s): 89.75.Hc, 05.10.—a, 89.20.Hh

capacity above which the network is immune to global cas-
cades. For 1 <\ <A, cascading breakdown of the network is
likely but, as we will show later, using a proper protection
mechanism can effectively prevent such breakdown. Our re-
cent work [7] presented a method to determine A,.. However,
from the standpoint of designing safe networks against cas-
cading breakdown, A, is a more important parameter. The
first question we ask here is how to theoretically determine
A, for scale-free networks.

A closely related issue that may be of significant interest
concerns practical strategies to prevent catastrophic cascades
caused by attacks. A simple and intuitive method is to lower
the average loads present in the network. This can be
achieved by removing a small set of nodes that contribute to
the loads in the network but they themselves otherwise pro-
cess little load [10]. Removal of these nodes and all links
connected to them will not affect the functioning of the net-
work but will help enhance the load tolerance for each re-
maining node. When an intentional attack occurs to disable
one or a few influential nodes in the network, the load to
some remaining node will increase but, because of the extra
capacity gained through control, failure is less likely, thereby
helping prevent the spread of the failure or cascading. It was
demonstrated for scale-free networks that cascades can be
prevented or their sizes can be reduced significantly by in-
tentionally removing a carefully selected small fraction of
nodes [10]. The criteria to select these nodes are that they
should have small loads but their links should carry a large
excess of loads. To be more specific, let p be the fraction of
intentionally removed nodes. As p is increased from zero, the
network becomes more robust against global cascades (to be
quantified below). However, this trend cannot continue in-
definitely, for the network will become disintegrated (even
without any attack) if p is too large. There exists then a
critical value p,. for which the network’s ability to sustain
attack-induced cascading breakdown reaches maximum. This
interesting phenomenon was recently discovered by Motter
[10]. With the potential utility of this phenomenon in net-
work design, it is useful to be able to determine the critical
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value p, theoretically. This is the second question to be ad-
dressed in this paper.

In this paper, we present a theoretical analysis and nu-
merical support to address the above two questions. By fo-
cusing on the load distribution and its scaling, we are able to
show that the intentional removal of a small set of low-
degree nodes is equivalent to increasing the value of capacity
parameter A, which makes the network more robust against
global cascades. Interestingly, we find that, after proper res-
caling using factors that involve both parameters \ and p, the
degree of the network integrity as a function of N\ follows a
universal relation, regardless of the value of p, insofar as it is
small. Our theory yields simple formulas that can be used to
numerically determine A, and p,.. Considering the great im-
portance of attack-induced global cascades in complex net-
works, our work can be of wide interest as it represents a
step toward a systematic understanding of the security issue
in complex networks.

We consider a prototype model based on load dynamics
for cascading in complex networks as proposed in Ref. [6].
The load (or betweenness) at a node i is defined as the total
number of shortest paths passing through this node [11,12].
The capacity of a node is the maximum load that the node
can handle, which is assumed to be proportional to its initial
load [6]: C;=N\L(i), where the constant A= 1 is the capacity
parameter. Removal of nodes in general changes the loads on
other nodes. For a particular node, if the load on it increases
and becomes larger than its capacity, the node fails. Any
failure leads to a redistribution of loads over the network
and, as a result, subsequent failures can occur. The failures
can stop without largely affecting the network connectivity
but can also propagate and shut down a considerable fraction
of the whole network. Cascading failures can be conve-
niently quantified by the relative size of the largest connected
component G=N'/N, where N and N’ are the numbers of
nodes in the largest connected component before and after
the cascade, respectively. The integrity of the network is
maintained if G= 1, while breakdown at a global scale oc-
curs if G=0.

To clearly distinguish various network states, we use the
following notation. The original scale-free network is de-
noted by WP. The corresponding network with intentional
removal in the absence of attack is WR, and the unprotected
network after an attack on the most connected node is WA.
Finally, the network state under the attack and with protec-
tion is denoted by WF. For a scale-free network, its load
distribution obeys algebraic scaling with the degree variable
k [7,12,13]: L(k)=bk", where 7 and b are positive constants.
After removing a small fraction of low-degree nodes, the
average connectivity of the network changes little. Moreover,
the degree distribution remains algebraic with approximately
the same scaling exponent, which can be seen, as follows.
On average, the load reduction due to the removal of a low-
degree node is proportional to its original load. Let L(k;) and
L(k,) be the average loads of the original network W’ on
nodes of degree k; and k,, respectively. After the removal,
the average loads of the network WX are L'(kj)=L(k;)
—cL(k,) and L'(ky)=L(k,)—c,L(k,), respectively, where k|
and k; are the new degrees. Since c¢;=~c,, we have
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L'(kj)/L' (ky) =~ L(k;)/L(k,). Thus, the algebraic scaling ex-
ponent of WR assumes approximately the same value as in
the original network WY: 7’ = 7. The network remains scale-
free, and the load distribution of WX can be written as
L'(k)=b'k" = b'k™. This property has been confirmed by our
numerical simulations (to be shown below).

We can now determine the relation between the load dis-
tributions before and after the protection by removing a frac-
tion of p low-degree nodes, in the absence of any attack. For
convenience, all nodes in the network are labeled by integers
from 1 to N, while the removed nodes are labeled by
(1-p)N+1 to N. The total load in WP can be written as
S= E(l PNL 43N ien(1-p)+1Li=So+S1, where Sj is the sum of

loads of the remaining nodes before the removal and S| is the
total load of the nodes to be removed. Because the nodes to
be removed have relatlvely low degrees, we have S,>S,
and, hence, S=3S, EN(I 7 L;. After the removal, the total
load of the network WR is 8’ ZN(l P )L EN(I P )crL,, where
0<o<1 is a shifting constant. Slnce S N(N 1)D=N?D,
S'=N(1-p)[N(1-p)-1]D"=(1-p)’N’D’ and D=D',
where D and D' are the diameters of W” and WX, respec-
tively, we have o=~ (1-p)>~1-2p. Thus, on average, the
load of node i after the removal becomes L;,—2pL;. The load
tolerance (total number of extra shortest paths passing
through node i without causing failure of node i) before and
after intentional removal, is (\—1)L; and (A\—1+2p)L;, re-
spectively. It means that, after the removal, the node will not
fail unless the load increment due to an attack exceeds (A
—1+42p)L,. Controlled removal of a fraction of p low-degree
nodes is thus equivalent to increasing the parameter A to A\
+2p in the original network. We have

N =\+2p. (1)

We now examine the effect on G (G in W) by removing
the most connected node and a p fraction of low-degree
nodes. In general, GF depends on both \ and p, so we write
GF(\,p). Without the controlled removal (in W*), G* de-
pends on N\ only and we write GF(\,0)=G*(\). As p is
increased from zero (in W), the equivalent enhancement of
the network capacity can result in an increase in G. This
effect is important for small p values. However, for larger
values of p, because of the protection offered by the con-
trolled removal, cascading failures tend to affect only a small
set of nodes so that the probability for an intentional attack to
trigger a global cascading process is small. The effect on G*
is then simply a linear decrease with p. This line of thinking
suggests

G'(\,p) = G"(\ +2p)(1 = p). 2)

The interesting observation is that the rescaled quantity

GF(N,p)/(1-p) vs A=\+2p should be independent of p.
Equation (2) can be used to estimate X\, of network state
WH. To accomplish this it is helpful to examine the physical
meaning of \,;. By definition, A is the critical capacity pa-
rameter value above which the network is resilient to global
cascades even for p=0, i.e., without any protection. For
A=\, in the event of attack, it is necessary to intentionally
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FIG. 1. (Color online) (a) Algebraic scaling of the load distribu-
tion L(k) for a scale-free network of N=10000 nodes, y=3, and
(ky=4. (b)—(e) Load distributions after removing 1%, 5%, 10%, and
20% of the lowest-degree nodes. (f) Rescaled plots of all curves in
(a)—(e). The algebraic scaling exponent is 7= 1.5.

remove a small fraction of nodes to protect the network. That
is, in this case for fixed \ the relative size G"(\,p) should
increase with p, insofar as it is small. We then have

dG"13pl\<n_p-0=0. However, for A=\, the network is
secure against cascading breakdown and, hence, removing
a small fraction of nodes would simply reduce GF(\,p) by
a proportional amount. We have dJG/ ﬁp|>\2>\w!’=050' We
see that A, is the critical value of the capacity parameter
for which an infinitesimal increment of p does not change
G: 9G"1dplson p=0=0. Utilizing this fact and performing
Taylor expansion of both sides of Eq. (2) to first order in p,
we obtain

| oy 5
d\ | yon 2

Equation (3) means that \, is the point when the slope of GA

decreases to be equal to half of G*. Thus, A, can be estimated

implicitly.
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FIG. 2. (Color online) For a scale-free network with N=3000,
(a) GF(\,p) vs \ for five different values of p and (b) properly
rescaled plots that exhibit a universal relation.
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FIG. 3. (Color online) For the scale-free network in Fig. 2(a),
(a) GA(\) vs \, to which Eq. (3) can be applied for estimating \,.
(b) GF(N,p) vs p for A=1.1, which gives p,~0.23. In both panels,
the data points were the result of averaging over 30 network
realizations.

Having determined \, of W from Eq. (3), we can obtain
the value of p. of W' for which G(\,p) reaches maximum
for fixed value of N\. Let \( denote the initial value of the
network capacity. Controlled removal of a p,. fraction of low-
degree nodes is equivalent to increasing A\ to A, with p=0.
This gives Ny=N\y+2p,. or

Pe= ()\s - )\0)/2' (4)

We now present numerical support for our theoretical re-
sults Egs. (3) and (4). We generate scale-free networks with
degree exponent y=3 and average connectivity (k)=4 by
using the standard Barabdsi-Albert model [8]. The shortest
paths and the load distribution L(k) are computed by using
the algorithm due to Newman [11]. Figure 1(a) shows the
algebraic scaling of the load distribution of the network with-
out any removal of nodes. Approximately the same scaling
behavior is observed when some small fractions of nodes
with the lowest degrees are removed (without attack), as
shown in Figs. 1(b)-1(e) for p=1%, 5%, 10%, and 20%,
respectively. That the intentional removal of a small set of
nodes does not change the algebraic load distribution can be
seen more clearly in Fig. 1(f), where all plots in Figs.
1(a)-1(e), rescaled by some proper constants, apparently col-
lapse into a single curve. In particular, the algebraic scaling
exponent 7 remains approximately the same, regardless of
the value of p.

Figure 2(a) shows G7(\,p) vs \ for different values of p,
where an attack on the node with the largest degree is as-
sumed. We see that the curves shift toward the left as p is
increased from zero, indicating that the network is more ro-
bust against cascading breakdown. This clearly illustrates the
protective role played by selectively removing a small set of
low-degree nodes. Figure 2(b) shows that the relation be-
tween the rescaled quantities GF(\,p)/(1-p) and N+2p is
independent of the value of p, as predicted. In the original
network WY, the capacity of each node is defined as
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FIG. 4. (Color online) For the scale-free network in Fig. 2, (a)
GF as a function of p for different values of N and (b)—(d) the same
curve for A=1.1, 1.2, and 1.3 obtained through two approaches: Eq.
(2) and direct numerical simulation.

C;=\L,(0). If A<1, the network will break down immedi-
ately because the capacities of all nodes are less than their
respective loads. Thus, A <1 is not a physically meaningful
setting. However, with controlled removal, the new load of
each remaining node decreases such that it would be still
smaller than its capacity even if the capacity parameter A\ is
less than 1, i.e., cascading breakdown may not happen for
N <1. It s in this sense that we can study the behavior of the
network state W' even for A <1, as shown in Fig. 2.
Figure 3(a) illustrates the estimation of A\, from the rela-
tion G*(\) by using Eq. (3) for the scale-free network in Fig.
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2. We obtain A =~ 1.56. Assuming (arbitrarily) that the initial
capacity of the network is Ay=1.1, we obtain from Eq. (4)
p.~0.23, the fraction of removed nodes that can give the
maximum degree of protection against cascading breakdown.
Figure 3(b) shows, for A=1.1, GF(\,p) vs p, which gives
p.~0.23, in good agreement with the predicted value.

To provide further support for our theoretical analysis, we
plot in Fig. 4(a) the ratio G versus p for a set of different
values of N. We see that if A=1.5=\,, the network is al-
ready safe against cascading breakdown. In such cases the
protective scheme by selective node removal simply causes
an approximately linear decrease in G*. Figure 4(b) shows,
for A=1.1, the curves G'(\, p) obtained from our theory Eq.
(2) and from direct numerical simulation, which agree with
each other reasonably well.

In summary, we have addressed quantitatively what it
takes for a scale-free network to be robust against global
cascading breakdown as caused by an attack on a single
node. By analyzing the dynamics of load redistribution re-
sulted from selectively removing a small set of low-degree
nodes, we obtained a criterion which allows the minimum
value of the capacity parameter for cascade-free scale-free
networks and the optimal fraction of intentionally removed
nodes to be determined. Cascading breakdown of complex
networks can be catastrophic in a modern society. Our work
represents a step toward understanding the dynamical
mechanism of cascades and devising protective schemes in
this important area of network security.

This work was supported by NSF under Grant No.
ITR-0312131 and by AFOSR under Grant No. F49620-01-1-
0317.

[1] R. Albert, H. Jeong, and A.-L. Barabdsi, Nature (London) 406,
378 (2002).

[2] R. Cohen, K. Erez, D. b-Avraham, and S. Havlin, Phys. Rev.
Lett. 85, 4626 (2000); 86, 3682 (2001).

[3] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.
Watts, Phys. Rev. Lett. 85, 5468 (2000).

[4] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. Lett. 87,
219801 (2001).

[5] P. Holme and B. J. Kim, Phys. Rev. E 65, 066109 (2002); P.
Holme, ibid. 66, 036119 (2002).

[6] A. E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102(R)
(2002).

[7] L. Zhao, K. Park, and Y.-C. Lai, Phys. Rev. E 70, 035101(R)
(2004); E. J. Lee, K.-I. Goh, B. Kahng, and D. Kim, e-print
cond-mat/0410684.

[8] A.-L. Barabdsi and R. Albert, Science 286, 509 (1999); A.-L.
Barabési, R. Albert, and H. Jeong, Physica A 272, 173 (1999).

[9] P. Erdos and A. Rényi, Publ. Math., Inst. Hautes Etud. Sci. 5,
17 (1960).

[10] A. E. Motter, Phys. Rev. Lett. 93, 098701 (2004).

[11] M. E. J. Newman, Phys. Rev. E 64, 016132 (2001); Proc. Natl.
Acad. Sci. U.S.A. 98, 404 (2001).

[12] K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701
(2001); M. Barthélemy, ibid. 91, 189803 (2003); K.-I. Goh,
C.-M. Ghim, B. Kahng, and D. Kim, ibid. 91, 189804
(2003).

[13] K. Park, Y.-C. Lai, and N. Ye, Phys. Rev. E 70, 026109
(2004).

025104-4



