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Coupled chaotic oscillators can exhibit intermittent synchronization in the weakly coupling regime, as
characterized by the entrainment of their dynamical variables in random time intervals of finite duration. We
find that the transition to intermittent synchronization can be characteristically distinct for geometrically dif-
ferent chaotic attractors. In particular, for coupled phase-coherent chaotic attractors such as those from the
Rössler system, the transition occurs immediately as the coupling is increased from zero. For phase-incoherent
chaotic attractors such as those in the Lorenz system, the transition occurs only when the coupling is suffi-
ciently strong. A theory based on the behavior of the Lyapunov exponents and unstable periodic orbits is
developed to understand these distinct transitions.
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I. INTRODUCTION

Synchronization in coupled chaotic oscillators has been
an area of tremendous interest in nonlinear science. The phe-
nomenon was described by Fujisaka and Yamada �1�, and
later independently reported �2,3�. Pecora and Carroll �3�
triggered much interest in this topic �4–6�. A common setting
in which chaotic synchronization is investigated consists of a
number of chaotic oscillators linearly coupled in a simple
manner. For instance, consider two identical oscillators de-
scribed by dx /dt= f�x� and dy /dt= f�y�, where x and y are
the dynamical variables of the two oscillators, respectively,
and f is the nonlinear vector field that generates a chaotic
attractor. Coupling can simply be modeled by a term added
to each vector field, which is proportional to a coupling pa-
rameter K and to the difference between the two variables
�K=0 thus indicates no coupling�. For sufficiently large val-
ues of K, say, K�Ks, synchronization between the chaotic
oscillators can occur in the sense that the distance �x�t�
−y�t�� decreases exponentially to zero with time, while both
variables remain chaotic by themselves. Mathematically, in
the simple setting described, the identity x�t�=y�t�, which
characterizes the synchronization state, is always a solution
of the system, but the solution is unstable with respect to
small deviations away from the synchronization state for K
�Ks, and it becomes stable for K�Ks. In principle, chaotic
synchronization is numerically or experimentally observable
for K�Ks.

It is also known that, for K near Ks, under noise, chaotic
synchronization can occur in an intermittent fashion �7�. That
is, the difference �x�t�−y�t�� can become small and remain
so, but only in finite time intervals. These intervals of tem-
poral synchronization are random and interspersed by desyn-
chronization events characterized by large differences be-

tween x�t� and y�t�. The question that motivates this work is
how intermittent synchronization occurs as the coupling pa-
rameter is increased from zero. As we will show in this pa-
per, our study leads to quite unexpected results that are fun-
damental to chaotic synchronization.

Our results can be stated in terms of the probability of
synchronization ��K�, which numerically can be approxi-
mated by the fraction of time during which �x�t�−y�t����
occurs, where � is a small but arbitrary threshold. This prob-
ability depends on the coupling parameter. Our finding is that
the probability exhibits characteristically distinct behavior
for chaotic attractors of different geometry. In particular, we
focus on commonly studied attractors that possess single-
scroll and multiple-scroll geometry in the phase space. For
the former, which are phase coherent and are typically rep-
resented by Rössler-type attractors �8�, ��K� increases from
zero immediately as coupling is turned on. For the latter,
which are phase-incoherent chaotic attractors such as the Lo-
renz attractors �9�, this probability increases only when K
exceeds a critical value Kc, �0�Kc�Ks�, which is the point
for which one of the originally null Lyapunov exponents
becomes negative. That is, for coupled phase-coherent attrac-
tors, the transition to intermittent chaotic synchronization is
immediate, but for systems of coupled phase-incoherent at-
tractors, the transition is delayed in the sense that it occurs
only when the coupling is sufficiently strong. The general
observation is that the transition route to intermittent chaotic
synchronization depends on whether the coupled chaotic at-
tractors are phase coherent or phase incoherent.

To develop a theoretical understanding of these phenom-
ena, we first study the behavior of the Lyapunov exponent,
which is zero in the absence of coupling, and examine how it
changes as the coupling is increased from zero. �For conve-
nience, in this paper, we call this exponent the null Lyapunov
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exponent, keeping in mind that it is actually zero only when
there is no coupling.� We argue that for phase-coherent cha-
otic attractors, the null exponent becomes negative as soon
as the coupling is turned on, giving rise to the observed
immediate transition to intermittent synchronization. How-
ever, for phase-incoherent chaotic attractors, as the coupling
is increased from zero, the null exponent first becomes posi-
tive, reaches a maximum, then decreases from the maximum,
and eventually becomes negative. That is, it requires a finite
amount of coupling for the exponent to become negative,
rendering delayed the transition to intermittent chaotic syn-
chronization.

To understand the two distinct transition scenarios at a
more fundamental level, we focus on unstable periodic or-
bits, which are the building blocks of any chaotic set �10�,
and examine how they can be synchronized under coupling.
For K=0, all unstable periodic orbits are transversely un-
stable, i.e., they are unstable with respect to perturbations
away from the synchronization state. Intermittent synchroni-
zation sets in when an orbit becomes transversely stable. Our
analysis of the transverse stabilities of unstable periodic or-
bits yields the surprising finding that for phase-coherent cha-
otic attractors, there exist unstable periodic orbits that can be
made transversely stable by arbitrarily small coupling. For
phase-incoherent chaotic attractors, no periodic orbit has this
property, i.e., finite coupling is required for any periodic or-
bit to become transversely stable. Note that here, the bifur-
cation leading to intermittent chaotic synchronization is op-
posite to the previously studied riddling �11� and bubbling
bifurcations �12,13� that are triggered when an unstable pe-
riodic orbit first becomes transversely unstable. Although a
periodic-orbit theory can be conveniently formulated for
coupled identical oscillators, we find that similar types of
transition occur for coupled systems of slightly nonidentical
chaotic oscillators.

The rest of the paper is organized as follows: In Sec. II,
we present numerical evidence for the two distinct transition
scenarios in coupled phase-coherent and phase-incoherent
chaotic attractors. In Sec. III, we analyze the behavior of the
null Lyapunov exponent to explain the transitions. In Sec. IV,
we develop an unstable periodic-orbit theory to further un-
derstand the transitions. A discussion is presented in Sec. V.

II. NUMERICAL EVIDENCE FOR DISTINCT ROUTES
TO INTERMITTENT CHAOTIC SYNCHRONIZATION

A typical setting for studying synchronization in coupled
phase-coherent chaotic attractors �6,14� is the following
coupled Rössler system:

ẋ1,2 = − y1,2 − z1,2 + K�x2,1 − x1,2� ,

ẏ1,2 = x1,2 + 0.15y1,2,

ż1,2 = 0.2 + z1,2�x1,2 − 10� , �1�

where K is the coupling parameter. For this system, transition
to complete synchronization occurs for Ks�0.105. On the
other hand, the following coupled Lorenz system can be used

as a prototype model for studying synchronization in coupled
phase-incoherent chaotic attractors:

ẋ1,2 = 10�y1,2 − x1,2� + K�x2,1 − x1,2� ,

ẏ1,2 = 28x1,2 − y1,2 − x1,2z1,2,

ż1,2 = − �8/3�z1,2 + x1,2y1,2, �2�

for which the transition to complete synchronization occurs
for Ks�3.9. For both systems, transition to intermittent syn-
chronization occurs for values of K much smaller than the
values of Ks in the respective systems.

Figures 1�a�–1�c� show, for the coupled Rössler system,
the time series x1�t�−x2�t� for K=0, K=0.01, and K=0.05,
representing zero, small, and moderate coupling, respec-
tively. There is no synchronization for K=0, but as K is
increased from zero, intermittent synchronization appears, as
characterized by the intermittent time intervals during which
x1�t�−x2�t� is close to zero �Figs. 1�b� and 1�c��. In fact, as
the coupling becomes stronger, the fraction of the synchro-
nized time intervals, or the probability of synchronization
��K�, increases and reaches one for K�Ks �complete syn-
chronization�. For a given value of K, this probability can be
approximated by the fraction of time for which �x1�t�
−x2�t����, where � is a small threshold �we choose it to be
1% of the range of x1�t�−x2�t��. Figure 1�d� shows ��K� for
the coupled Rössler system. We see that ��K� increases from
zero as soon as K is increased from zero �15�, suggesting an
immediate transition to intermittent chaotic synchronization.

For the coupled Lorenz system, we find a quite different
transition scenario. Figures 2�a�–2�c� show the time series
x1�t�−x2�t� for K=0, K=0.8�Kc�1.1, and K=1.5�Kc, re-
spectively. There is no indication of intermittent synchroni-
zation when K�Kc �Fig. 2�b��, in contrast to the coupled
Rössler system. Intermittent synchronization occurs when
K�Kc, as shown in Fig. 2�c�. Figure 2�d� shows the prob-

FIG. 1. For the coupled Rössler system, �a�–�c� show the time
series x1�t�−x2�t� for K=0, K=0.01, and K=0.05, respectively. �d�
Probability of synchronization ��K�. The transition to intermittent
chaotic synchronization is immediate, as predicted by Fig. 7�a�.
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ability of synchronization ��K� vs K, where the numerical
threshold � for synchronization is still set to be 1% of the
range of x1�t�−x2�t�. We observe that ��K� remains close to
zero for K�1.1, indicating that the transition to intermittent
synchronization is delayed because it requires a relatively
large coupling. This behavior is strikingly different from that
in the coupled Rössler system.

In the following two sections, we will present a system-
atic theoretical description of these distinct routes to inter-
mittent chaotic synchronization.

III. LYAPUNOV-EXPONENT THEORY FOR THE
TRANSITION TO INTERMITTENT CHAOTIC

SYNCHRONIZATION

First, we consider coupled phase-coherent chaotic attrac-
tors. Qualitatively, the phase dynamics of such an attractor
can be described by �14,16�

�̇ = � + g�r�t�� , �3�

where � is the average frequency of the chaotic oscillations,
r�t� is the chaotic amplitude, and the function g describes the
influence of the r�t� on the phase dynamics. For a pair of
coupled oscillators, we have

�̇1,2 = � + g1,2�r1,2�t�� + Kh��2,1,�1,2� , �4�

where K is the coupling parameter, and h is a 2	-periodic
function in each of its arguments. To be able to analytically
calculate the Lyapunov exponent, we assume the simplest
case for the function h��2,1 ,�1,2�

h��2,1,�1,2� = sin��2 − �1� . �5�

In fact, for the system of coupled phase-coherent Rössler
attractors, the leading term in h��2,1 ,�1,2� takes the form
�17� in Eq. �5�. The equation for the phase difference 
�
=�2−�1 can thus be written as


̇� = − 2K sin 
� + g2�r2�t�� − g1�r1�t�� . �6�

For a phase-coherent chaotic attractor, the dependence of the
frequency on the amplitude is typically weak �14�, so the
term g2�r2�t��−g1�r1�t�� in Eq. �6� can be neglected. We thus
obtain


̇� � − 2K sin 
� , �7�

and the solution


��t� � 2 tan−1�tan�
��0�/2�e−2Kt� . �8�

For infinitesimal initial phase difference 
��0� and large
time, we have 
��t��
��0�e−2Kt, which gives

�0 = − 2K . �9�

We see that a null Lyapunov exponent becomes negative
immediately as K is increased from zero, resulting in phase
coherence between the two coupled chaotic oscillators. In
terms of the dynamical variables in the phase space, this
gives rise to intermittent chaotic synchronization.

Now consider a phase-incoherent chaotic attractor, as
shown schematically by a double-scroll geometry in Fig. 3.
The classical Lorenz chaotic attractor �9�, for example, be-
longs to this type. The left- and right-hand scrolls are de-
noted by L and R, respectively. A typical trajectory visits
both scrolls in time, and it tends to stay in one scroll, execut-
ing chaotic motion for a time, then switch to the other scroll
and wander chaotically for some time there, then switch
back, and so on. Switchings occur in the region denoted by
S, in which there is typically an unstable steady state �18�. In
the deterministic case, the way that switchings occur must be
consistent with the natural dynamics. For instance, a trajec-
tory moving to point a near the switching region must go to
point b after the switching. It cannot go to point d. Similarly,
under the dynamics, point c can only move to point d. An-
other aspect of the dynamical consistency is that the relative
frequencies with which a trajectory visits L and R appear to
be constant, as can be easily verified numerically.

Coupling can, however, disturb the dynamical consistency
and, consequently, causes a null Lyapunov exponent to be-
come positive. To see how this can happen, we focus on the
dynamics of an infinitesimal vector along the neutral eigen-
direction that corresponds to the null Lyapunov exponent.
The coupling from one chaotic attractor to another can effec-
tively be regarded as random perturbation. Depending on the
location of a trajectory, the effect of the random perturbation

FIG. 2. For the coupled Lorenz system, �a�–�e� show the time
series x1�t�−x2�t� for K=0, K=0.8�Kc, and K=1.5�Kc, respec-
tively. �d� Probability of synchronization ��K�. The transition to
intermittent chaotic synchronization is delayed, as predicted by Fig.
7�b�.

FIG. 3. Schematic illustration of a phase-incoherent chaotic at-
tractor and the associated dynamical consistency, e.g., point a�c�
can only go to b�d�.
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can be quite different. When the trajectory is not in the
switching region, the perturbation can perturb its position,
say from point e�f� to point e��f��, or vice versa. As shown
in Fig. 3, perturbations at such locations will have little effect
on the local eigenspace. Taking a pair of original and per-
turbed points �e ,e�� as an example, we see that the original
eigenvector in the neutral direction �direction of the flow� at
e remains to be a neutral direction at the perturbed point e�.
There can, of course, be small deviations from the neutral
direction, but they will be averaged out as the trajectory
moves in region R. When a trajectory is in the switching
region S, random perturbation of arbitrarily small amplitude
can alter the local eigenspace significantly. For instance,
when the trajectory is at point a, random perturbation can
kick it to point c. Such a perturbation has two effects. First,
since the local eigenspaces at the two points are distinct, the
neutral eigenvector at a, when carried over by the trajectory
perturbed to c, will not be in the neutral direction at c. The
vector typically will have a component in the unstable direc-
tion at c, and its length will consequently be stretched expo-
nentially. Thus the length of the neutral vector on the attrac-
tor, when it is perturbed in the switching region as described,
will generally increase exponentially, causing the null
Lyapunov exponent to become positive. Second, the random
perturbation that moves the trajectory from a to c, is in fact
inconsistent with the deterministic dynamics because, in the
absence of the perturbation, the trajectory would move past
point b.

Let fL�D� and fR�D� be the frequencies of visits of a typi-
cal trajectory to the L and R scrolls, respectively, under ran-
dom perturbation of amplitude K, and let fS�K� be the prob-
ability that the trajectory experiences inconsistent
perturbations in the switching region S, where fL�K�+ fR�K�
+ fS�K�=1. �If the trajectory simply passes through the
switching region in a way consistent with the deterministic
flow, we regard it as either in L or in R.� In the absence of
coupling, we have fS�0�=0, so the null Lyapunov exponent
of the chaotic attractor can be written as �0= fL�0��0

L

+ fR�0��0
R, where �0

L and �0
R are the average rates of change of

infinitesimal vectors along the corresponding eigendirections
when the trajectory is in the left scroll and in the right scroll,
respectively. The null exponent can then be trivially written
as �0�0�= fL�0��0

L+ fR�0��0
R=0. Under coupling, when the

trajectory is perturbed inconsistently in the switching region,
the neutral vector is stretched exponentially there. In the
typical case where there is a dominant unstable steady state
in the switching region, the rate is mainly determined by the

largest eigenvalue of the steady state. Let �̄�0 be the
Lyapunov exponent associated with this eigenvalue. We have

�0�K� � fL�K��0
L + fR�K��0

R + fS�K��̄ = fS�K��̄ . �10�

For K�0, fS�K� is proportional to the probability that a tra-
jectory falls in the switching region, which is proportional to
the probability that a trajectory crosses the stable manifold of
the dominant unstable steady state. In the three-dimensional
phase space, a perturbed trajectory near the unstable steady
state can be found in a sphere centered at the steady state.
For small coupling, the radius of the sphere is proportional to

the amplitude of the “chaotic disturbance” from the coupled
oscillator, and hence, as an approximation, the radius is pro-
portional to the coupling parameter K. Since the dimension
of the unstable steady state is 2, we have, for three-
dimensional flows �19�, fS�K�	K2 for K�0. The relevant
observation is that as soon as the coupling is increased from
zero, a null Lyapunov exponent becomes positive, destroying
any phase coherence between the two coupled oscillators.
Insofar as this exponent remains positive, intermittent cha-
otic synchronization cannot occur.

The increase of the null Lyapunov exponent cannot con-
tinue indefinitely. In fact, as the coupling parameter K is
increased further, the exponent reaches a maximum and then
decreases. We can imagine that, eventually, for K�Kc�0,
the exponent will become negative. This marks the onset of
phase coherence and intermittent chaotic synchronization.
Our analysis suggests that Kc is finite, which means that the
transition to intermittent synchronization is delayed.

Figures 4�a� and 4�b� show the numerically calculated be-
havior of the Lyapunov exponents for the coupled Rössler
and coupled Lorenz system, respectively. We see that in Fig.
4�a�, a null Lyapunov exponent becomes negative immedi-
ately as K is increased from zero, while in Fig. 4�b�, for K
�Kc�1.1, a null exponent is actually positive. This expo-
nent becomes negative for K�Kc. The numerically esti-
mated value of Kc is consistent with the transition point to
intermittent chaotic synchronization, as in Fig. 2.

IV. UNSTABLE PERIODIC-ORBIT THEORY

To make feasible the formulation of a periodic-orbit
theory for intermittent chaotic synchronization, we consider
the following system of two coupled, identical chaotic oscil-
lators:

ẋ1,2 = f�x1,2� + K · �x2,1 − x1,2� , �11�

where K is the linear coupling matrix. The synchronization
manifold M of the system is given by x1�t�=x2�t�
x�t�,
which is a solution of Eq. �11�. Using the change of variables

FIG. 4. �Color online� For the coupled Rössler system �Eq. �1��
and coupled Lorenz system �Eq. �2�� ��a� and �b�, respectively�, the
four largest Lyapunov exponents are shown vs the coupling param-
eter K.
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u 
 �x1 + x2�/2 and v 
 �x1 − x2�/2, �12�

we obtain the following equations for the motions in M and
in the neighborhood of M in the transverse direction, respec-
tively:

u̇ = f�u� , �13�

v̇ = �Df�x� − 2K� · v , �14�

where the dynamics in M is determined by the velocity field
f�u� that generates a chaotic attractor, and the matrix Df�x� is
evaluated with respect to the chaotic synchronization solu-
tion x�t�. Because of the existence of the well-defined syn-
chronization manifold, it is possible to examine the infinite
set of unstable periodic orbits embedded in the chaotic at-
tractor in terms of their abilities to synchronize with each
other. In particular, given an unstable periodic orbit xp�t�,
whether it can be synchronized with its replica is determined
by its transverse Lyapunov spectrum, which can be com-
puted by diagonalizing the matrix Df�xp�t��−2K. If the larg-
est transverse Lyapunov exponent ��

p is negative, this orbit
embedded in the chaotic attractor of one oscillator can be
synchronized with its replica in the attractor of the other
coupled oscillator.

A chaotic trajectory can be regarded as consisting of se-
quential, intermittent visits to the infinite set of unstable pe-
riodic orbits embedded in the attractor. Thus, if some peri-
odic orbits synchronize with their respective replicas, it is
possible for chaotic trajectories from different oscillators to
synchronize during the time intervals when they are in the
vicinities of these periodic orbits. Because of the intermittent
nature of visits to any subset of periodic orbits, synchroniza-
tion between the trajectories will appear intermittent as well.
In the absence of coupling, this is not possible, because the
transverse stability of a periodic orbit is determined by the
matrix Df�xp�t��, which gives unstable dynamics, as all pe-
riodic orbits embedded in a chaotic attractor are unstable. As
the coupling is increased from zero, because of the −2K
adjustment to Df�xp�t��, it is possible that the largest trans-
verse Lyapunov exponents of some periodic orbits become
negative, so as to make them synchronized. For a given cou-
pling strength, let min���� be the minimum value of the
largest transverse Lyapunov exponents of all unstable peri-
odic orbits. Intermittent chaotic synchronization is possible if
min�����0.

Depending on the value of min���� for K�0, there can
be two distinct types of transition to intermittent chaotic syn-
chronization.

�i� min�����0 for K�0. In this case, a small increase in
K can cause min���� to become negative, so it is likely for
intermittent synchronization to set in as soon as K is in-
creased from zero. This is an immediate transition to inter-
mittent chaotic synchronization which, practically, means
that the synchronization is observable even in the weakly
coupling regime.

�ii� min���� is not close to zero and relatively large. In
this case, a large value of K is necessary to make min����
negative. This is a delayed transition to intermittent chaotic

synchronization, which means that the synchronization can
be observed only when the coupling is sufficiently strong.

A practical issue is that only a limited number of unstable
periodic orbits can be numerically computed. It is thus nec-
essary to be able to infer whether the value of min���� for
K�0 is close to zero, or not, from a finite data set. We
developed the following empirical procedure to address this
problem. For a given chaotic oscillator, we first compute as
many unstable periodic orbits, of as high periods as possible,
to within the limit of our computational resource. Let pmax be
the maximum period. For any p� pmax, we compute ��

min�p�,
the mimimum value of the largest transverse Lyapunov ex-
ponents for all the available periodic orbits of period p, and
compare all values of ��

min�p�. If min���
min�p��, the minimum

value of all ��
min�p�, occurs for p� pmax, it is conceivable that

��
min�p� can further decrease, should one be able to compute

periodic orbits of higher periods. We can thus infer that

min���� = lim
p→


min���
min�p�� � 0,

which implies an immediate transition to intermittent chaotic
synchronization. However, if min���

min�p�� occurs for p
� pmax, it is possible that ��

min�p� will not decrease signifi-
cantly even if periodic orbits of higher periods can be com-
puted. This implies that the value of min���� for K�0 is not
close to zero, giving rise to a delayed transition to intermit-
tent chaotic synchronization.

A convenient numerical criterion is to examine the mini-
mum value of the largest transverse Lyapunov exponent for
all periodic orbits of period up to p. Let min����p̄�� denote
this value. Clearly min����p̄�� is a nonincreasing function of
p. For immediate transition to intermittent chaotic synchro-
nization, we expect min����p̄�� to show a continuous ten-
dency to decrease as p is increased. However, for delayed
transition to intermittent synchronization, min����p̄�� will
decrease initially, but it tends to plateau for some p= pc,
where pc� pmax.

To compute unstable periodic orbits for the Rössler and
Lorenz systems, we use the algorithm in Ref. �20� and adopt

FIG. 5. Some representative unstable periodic orbits for the cha-
otic Rössler attractor in Eq. �1�—�a� period 2, �b� period 3, �c�
period 6, and �d� period 12.
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it to continuous-time systems, paying particular attention to
distinguishing different orbits of the same period. For the
Rössler and Lorenz attractors, we obtained about 1400 and
1100 distinct periodic orbits, respectively, of periods up to
20. Some representative orbits in the phase space are shown
in Figs. 5 and 6. To see the transition to intermittent chaotic
synchronization, we compute min����p̄�� for both systems
for the coupling value of about 10% of Ks, i.e., K=0.01 for
the coupled Rössler system and K=0.4 for the coupled Lo-
renz system, as shown in Figs. 7�a� and 7�b�. We see that for
the coupled Rössler system, the minimum value of the trans-
verse exponent occurs for p=20= pmax, and there is a clear
tendency for min����p̄�� to approach zero as p is increased.
However, for the coupled Lorenz system, the minimum value
of the largest transverse exponent occurs for p=15�20
= pmax, and min����p̄�� plateaus as p is increased from 15.
The periodic-orbit analysis thus suggests that the transition
to intermittent chaotic synchronization is immediate for the
coupled Rössler system while it is delayed for the coupled
Lorenz system.

V. DISCUSSION

In summary, we have addressed the phenomenon of inter-
mittent synchronization in coupled chaotic oscillators and
uncovered two types of transition, one immediate and an-
other delayed. For the immediate transition, intermittent cha-
otic synchronization sets in as soon as the coupling is in-
creased from zero, whereas the delayed transition requires a

relatively large amount of coupling for the synchronization.
We have presented evidence that coupled phase-coherent
chaotic attractors exhibit immediate transition, while coupled
phase-incoherent chaotic attractors exhibit the delayed tran-
sition. These can be understood by the behavior of a null
Lyapunov exponent as a function of the coupling parameter
and, at a more fundamental level, by the synchronization
dynamics of unstable periodic orbits embedded in the chaotic
attractor. We emphasize that these results hold for phase-
coherent and phase-incoherent chaotic attractors in general,
regardless of their dynamical details. The phenomenon of
intermittent chaotic synchronization can be expected to occur
commonly in coupled oscillator systems, which are impor-
tant for many physical, chemical, and biological systems.

We have observed that the characteristic difference in the
transition persists even if the coupled oscillators are slightly
nonidentical or under small noise. This can be understood by
noting that noise or small parameter mismatch typically
makes complete synchronization intermittent. It is thus intu-
itively apparent that intermittent synchronization is robust
under noise or small parameter mismatch. At a fundamental
level, since the transition to intermittent synchronization is
determined by the unstable periodic orbits, and since small
noise or mismatch cannot destroy these orbits, the distinct
transitions reported in this paper are robust.

ACKNOWLEDGMENT

This work was supported by AFOSR under Grant No.
F49620-03-1-0219.

�1� H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 �1983�;
75, 1087 �1986�; T. Yamada and H. Fujisaka, ibid. 70, 1240
�1983�; 72, 885 �1984�.

�2� V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Izv.
Vyssh. Uchebn. Zaved., Radiofiz. 29, 1050 �1986�; A. R.
Volkovskii and N. F. Rul’kov, Sov. Tech. Phys. Lett. 15, 249

�1989�.
�3� L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821

�1990�.
�4� W. L. Ditto and K. Showalter, Chaos 7, 509 �1997�.
�5� J. Kurths, S. Boccaletti, C. Grebogi, and Y.-C. Lai, Chaos 13,

126 �2003�.

FIG. 6. Some representative unstable periodic orbits for the cha-
otic Lorenz attractor in Eq. �2�—�a� period 2, �b� period 3, �c�
period 6, and �d� period 12.

FIG. 7. The minimum value of the largest transverse Lyapunov
exponents for all computed periodic orbits of periods up to 20 vs
the periods for �a� the coupled Rössler system and �b� the coupled
Lorenz system. For both systems, the coupling parameter is set to
be about 10% of the value required for complete synchronization.

ZHAO, LAI, AND SHIH PHYSICAL REVIEW E 72, 036212 �2005�

036212-6



�6� A. Pikovsky, M. Rosenblum, and J. Kurths,
Synchronization—A Universal Concept in Nonlinear Sciences
�Cambridge University Press, Cambridge, England, 2001�.

�7� J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E 50,
1874 �1994�; 52, R1253 �1995�.

�8� J. Rössler, Phys. Lett. 57A, 397 �1976�.
�9� E. N. Lorenz, J. Atmos. Sci. 20, 130 �1963�.

�10� D. Auerbach, P. Cvitanović, J.-P. Eckmann, G. Gunaratne, and
I. Procaccia, Phys. Rev. Lett. 58, 2387 �1987�; G. H.
Gunaratne and I. Procaccia, ibid. 59, 1377 �1987�; D. Auer-
bach, B. O’Shaughnessy, and I. Procaccia, Phys. Rev. A 37,
2234 �1988�.

�11� Y.-C. Lai, C. Grebogi, J. A. Yorke, and S. C. Venkataramani,
Phys. Rev. Lett. 77, 55 �1996�.

�12� P. Ashwin, J. Biescu, and I. Stewart, Phys. Lett. A 193, 126
�1994�.

�13� S. C. Venkataramani, B. R. Hunt, E. Ott, D. J. Gauthier, and J.

C. Bienfang,Phys. Rev. Lett. 77, 5361 �1996�; A. V. Zimin, B.
R. Hunt, and E. Ott, Phys. Rev. E 67, 016204 �2003�.

�14� M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Lett. 76, 1804 �1996�.

�15� The dips in the plot of ��K� are due to periodic windows
where time-lagged synchronization between periodic attractors
occurs.

�16� J. D. Farmer, Phys. Rev. Lett. 47, 179 �1981�.
�17� M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.

Lett. 78, 4193 �1997�.
�18� C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and

Strange Attractors �Springer-Verlag, New York, 1982�.
�19� Z. Liu, Y.-C. Lai, and M. A. Matias, Phys. Rev. E 67,

045203�R� �2003�; Y.-C. Lai and Z. Liu, Chaos 14, 189
�2004�.

�20� R. L. Davidchack and Y.-C. Lai, Phys. Rev. E 60, 6172
�1999�.

TRANSITION TO INTERMITTENT CHAOTIC… PHYSICAL REVIEW E 72, 036212 �2005�

036212-7


