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Can noise make nonbursting chaotic systems more regular?
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It has been known that noise can enhance the temporal regularity of dynamical systems that exhibit a
bursting behavior—the phenomenon of coherence resonance. But can the phenomenon be expected for non-
bursting chaotic systems? We present a theoretical argument based on the idea of time-scale matching and
provide experimental evidence with a chaotic electronic circuit for coherence resonance in nonbursting chaotic
systems.
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The interplay between noise and nonlinearity in dynami-do not. A question of interest is then whether coherence reso-
cal systems can lead to a variety of interesting phenomen&ance can occur inonburstingdynamical systems. Our in-
such as stochastic resonance where the detectability of a sitprest here is in chaotic systeffi&. Suppose there is a cha-
nal can be enhanced by nofsd. The phenomenon of noise- otic system that generates irregular but nonbursting signals,
induced enhancement of the temporal regularity in nonlineand SUppose in a specific application the temporal regularity
dynamical systems has been known since the work by Sige f a signal is of interest. Would external noise help improve
and Horsthemké2]. They discovered that for a system near e temporal regularity of this signal? The purpose of this

a saddle-node bifurcation. noise can induce a pronounCEElaper is to provide an affirmative answer to this question by
' r

eak in the power spectrum of dvnamical variables. Siget esenting both theoretical and experimental evidence. In
P P P y R - 219 articular, we argue theoretically that for a typical nonburst-
and Horsthemke named the phenomenoise-induced fre-

A closel lated oh . ise-ind jng chaotic system with many possible intrinsic time scales,
quency A closely related phenomenon, 1.e., noise-Induced,sise can introduce a new time scale, or the external time

collective oscillation, or st_ochas_tic resonance in the_ absencg gle. When the noise amplitude reaches a proper value, a
of an external periodic signal in excitable dynamical SyS-resonant state can be reached in the sense that the external
tems, was discovered and analyzed byetial.[3], who also  time scale matches one of the dominant internal time scales,
introduced a quantitative measyBgto be described lateto  |eading possibly to coherence resonance. To verify our
characterize the degree of enhancement of the temporal regtheory, we present experimental evidence with a chaotic
larity by noise. Recently, the phenomenon was analyzed utielectronic circuit, the Chua’s circuii.2]. The implication of
lizing the FitzHugh-Nagumo equatiofiS] by Pikovsky and  our work is that noise can generally be beneficial, not only
Kurths who renamed it asoherence resonandd]. for bursting chaotic systems but also for nonbursting ones, so
Most existing theoreticdl6] and experimentdl7,8] works ~ coherence resonance is expected to be ubiquitous in chaotic
on coherence resonance address excitable dynamical systesystems in general.
that typically generate bursting time series. In such a system, Our argument for coherence resonance in nonbursting
there is usually a reference or a “silent” state, e.g., a fixedchaotic systems goes as follows. Note that in order for a
point, near which a trajectory can spend long stretches ofesonance to occur, it is necessary to have two independent
time. The trajectory can also leave the reference state armhd competing time scales. At least one time scale should
return to its neighborhood in a relatively short time, giving depend on noise. To gain insight we consider a chaotic sys-
rise to a “burst.” The bursts can be due to the inherent dy-tem with a simple rotational structure so that there is a well-
namics of the system itself, or they can be excited by exterdefined internal time scale,;. This time scale is thus de-
nal perturbations or noise through a threshold mechanism, derministic and it does not change with noise. Noise,
the firing behavior of many types of neurons in biological however, can induce another time scale. This can be seen by
systems. The bursts can occur at either relatively regular arealizing that for a chaotic attractor, which is bounded in the
random time intervals, for which the corresponding Fourierphase space, in general there existsfarencestate, such as
spectrum either contains a pronounced peak or has a broathat due to the harmonic oscillator embedded in the differen-
band feature. Coherence resonance thus means that noise ¢ah equations in the Rssler systenfi13]. Noise can cause a
actually be utilized either to improve the sharpness of thdrajectory initiated in the reference state to wander away
existing spectral peak, as in the former case, or to induce flom it. Since the system is bounded, at a later time the
pronounced spectral peak and enhance it, as in the latter casmjectory will come back to the reference state. On average,
More recently, the phenomenon was extended to couplethis process defines a time scale, which is the stochastic first-
chaotic oscillators exhibiting on-off intermitten¢®,11]. In passage time with respect to the reference state. This is an
an applied sense, coherence resonance may be a usefxternal time scale induced by noise, so it depends on the
mechanism for signal processiftQ]. noise amplitudeD. We write it as7.,(D). As the noise is
While many nonlinear dynamical systems, nonchaotic ostrengthened, we expect to see a resonance at the optimal
chaotic, can indeed exhibit bursting behaviors, many otheraoise levelD*, where
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FIG. 2. The Chua’s circuit used in our experiment.
behavior of the first-passage frequency.,(D)=1/

log D log D’ (Ttp)(D) versus the noise amplitud®, which is obtained
utilizing an arbitrary value ob and an arbitrary initial con-
FIG. 1. Mechanism for coherence resonance in nonbursting chalition vo. The general feature is that the frequency increases
otic systems: the dashed horizontal line denotes the deterministiwith noise. Since the internal frequenay, is approximately
frequency and the solid curve indicates the general behavior of theonstant, generically the.,(D) curve can intersecb, at
first-passage frequency of the underlying stochastic process. Cohesome optimal noise amplitud@*, leading to the time-scale
ence resonance occurs when there is a match between the two ifyatch required for coherence resonance. The optimal noise

dependent frequencies at some optimal noise IBVel level D* depends on the details of the system and cannot be
predicted by our simple theory.
Text(D*) = Tint - 1) For a more general chaotic system, the internal time scale

o ) Tint Can be regarded as arising from the recurrence of the

The above heuristic argument can in fact be made morgow, For instance, one can imagine a Poincaweface of
quantitative. In particular, the existence of the external stosection and observe the average time interval between suc-
chastic time scale, and how it varies with noise can be cessjve piercing through the section. A coherence resonance
studied by considering the following simple one-dimensionalcan occur when this deterministic time matches the first-
model with a reference state, under the influence of noise: passage time induced by noise.

d Our experimental system is the Chua’s chaotic circuit

_X:[_)\Jrh(t)]x+ D&(t), (2)  [12], as shown in Fig. 2. The differential equations that de-

dt scribe the circuit in a noiseless situation at&/dt=(1/

) i Cp)l(y—X)/R—=1(x)], dy/dt=(1/C)[(x—Yy)/R+z], and
wheree! is the largest eigenvalue of the the reference statg z/qt= —(1/L)(y+R"2), wherex, y, andz are proportional
x=0, h(t) is a zero-mean processither random or chaolic 1, {he voltages across the capacit@gs and C,, and the
that models the finite-time fluctuations in the stability of the o, ;rent through the inductdr, respectively. The nonlinear
reference state, anB¢(t) is the external noise. The time gigde has the following piecewise linear, current-voltage re-
seriesx(t) is thereforg a r'ealllzat!on of a ;tochasnc Processation: f(x)=Gyx+(G,— Gy)(|x+E|—|x—E|)/2. The cir-
X(t), and its probability distribution functiof(x,t) obeys ¢yt is assembled on a high quality printed-circuit board and
the Fokker-Planck equation, enclosed in a electromagnetic sheilding box to avoid the in-
fluence of external disturbances. The circuit is powered by a
low ripple, low noise power suppfHPE3631A, HP. Exter-
nal Gaussian white noise is introduced in the circuit by using
(3) a synthesized function generat@S345, SR¥in which the
noise amplitude can be controlled digitally. The circuit oper-
where 7 is the amplitude oh(t). To compute the first pas- ates in the audio-frequency range and the signals are mea-
sage time, imagine there is an absorbing boundary=ad. sured using a 12-bit data acquisition boadPCI3110,
The boundedness of the system implies that there must bekeeithley) with sampling frequency at least one order of mag-
reflecting boundary at=b. With these boundary conditions, nitude higher than the Nyquist rate. The parameters of the
the Fokker-Planck equation can be solved to yield the folcircuit are tuned so that it generates a chaotic attractor.
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lowing expression for the first-passage tifid]: In the recent experimental work in Rd®8], the Chua’s
circuit is tuned to generate a double-scroll chaotic attractor
a ) L ;
_ 2 N oy—1/2 and the bistable behavior is extracted for testing coherence
(Tip) ZJXOdy( 7y"+D) resonance. In particular, the dynamical variak{€), which

exhibits chaotic switchings between the two components of
Y 1/ the attractor, is digitized to yield a signa(t) that assumes
X 2+ 1/2—N\In ol 2k h .
fb (72°+D) dz “ only two distinct values, say- 1. This is done by assigning
u(t)=1 when the trajectory moves on one scroll and)
wherexg is the initial value ofx(t). Figure 1 shows a typical =—1 when it moves on another. The effect of noise on the

015204-2



RAPID COMMUNICATIONS

CAN NOISE MAKE NONBURSTING CHAOQOTIC SYSTENS . .. PHYSICAL REVIEW E 66, 015204R) (2002
0.5 T T T x10™ x10™*
1 1
(a) (b)
§ ‘\ ]‘ D=1.0 D=2.5
= T o5 § 0.5
0% 5 10 15
t(ms) % 5000 10000

o | (H2)

FIG. 3. Chaotic signay(t) from the Chua'’s circuit that we use

to study coherence resonance. (c)
D=8.0
temporal regularity of the bistable signa(t) is then inves- T 05
tigated and coherence resonance is found. Our aim here is on
coherence resonance for more genemitinuous-timecha- o o 0 s
otic signals, so we focus on a dynamical variable that appar- f (Hz) D (V)

ently does not exhibit a bursting behavior. The signét

from the Chua’s circuit satisfies this requirement, as shown FIG. 4. From the Chua’s chaotic circuit in Fig. @)—(c) Fou-

in Fig. 3. rier spectra at three different noise voltagéd) the coherence-

For the parameter setting in Fig. 2, under the influence ofesonance measu versus the noise voltage.

noise, the Fourier spectrum gft) exhibits a peak centered

at fo~4.5 kHz, as shown in Figs.(d—4(c) for noise volt- increased further. These are features of coherence resonance,

age at 1.0 V, 2.5 V, and 8.0 V, respectively. The dominantwhich appear to be quite general in wide parameter regimes

peak in the power spectrum at the intermediate noise levedf the circuit. Figures @&)—4(d) thus represent a direct ex-

(2.5 V) is apparently sharper than those at (redatively) perimental support that coherence resonance can occur in

small and large noise levels, indicating a higher degree ofionbursting chaotic systems.

temporal regularity at noise levels néar=2.5 V. This is In summary, we have presented theoretical arguments and

clearly the sign of noise-induced enhancement of a frequencgxperimental evidence for the existence of coherence reso-

componenf2] or coherence resonanpé. To quantify it, we  nance in chaotic systems. Our emphasis is on chaotic signals

utilize the following quantity first proposed by Hat al.[3]: that do not exhibit any excitable feature such as bistability.
We show that in a general sense, coherence resonance is the

B=Hf,/Af, (5) result of the match between two time scales, one determin-

istic and the other stochastic. While the deterministic time

whereH is the height of the spectral pedlk, is the location  scale can be readily identified for excitable systems, we ar-

of the peak in the spectrum, ald is the half width of the gue that any chaotic system, excitable or not, naturally pos-

peak. Thus, a sharper and higher spectral peak yields sesses such a time scale due to recurrence. Our results sug-

higher value ofg, indicating a higher degree of temporal gest that coherence resonance is a very common

regularity. Figure 4d) shows the coherence-resonance meaphenomenon in chaotic dynamical systems.

sureB, defined with respect to the spectral peakatversus

the noise voltaged. We see thaiB is small at low noise This work was sponsored by AFOSR under Grant No.

levels, increases as the noise is increased, reaches a mak#9620-98-1-0400 and by NSF under Grant No. PHY-

mum at an optimal noise level, and decreases as the noise 93996454.
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