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Intermittency in chaotic rotations
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We examine the rotational dynamics associated with bounded chaotic flows, such as those on chaotic
attractors, and find that the dynamics typically exhibits on-off intermittency. In particular, a properly defined
chaotic rotation tends to follow, approximately, the phase-space rotation of a harmonic oscillator with occa-
sional bursts away from this nearly uniform rotation. The intermittent behavior is identified in several well
studied chaotic systems, and an argument is provided for the generality of this behavior.

PACS numbd(s): 05.45—-a

Rotation is a fundamental characteristic associated witlerating on-off intermittency is that the differential equations
many natural and technological processes that are matlaslescribing the system possess a symmetric invariant sub-
ematically described by a set of coupled first-order autonospace4]. The results of this paper imply, however, that on-
mous differential equation€lows). Consider, for example, Off intermittency may be more prevalent than previously
the dynamics on a chaotic attractor. While having a sensitivéhought, as it can occur in almost any chaotic flows, regard-
dependence on initial conditions, trajectories on the attractdess of whether the system has a symmetry or not.
are recurrent because the attractor is bounded in the phase We begin by presenting numerical results with thes&er
space. That is, a chaotic trajectory starting from a point in th@scillator [5]: dx/dt=—woy—2z, dy/dt=wex+ay, and
attractor must return to the neighborhood of this point infi-dzZ/dt=b+(x—c)z, wherewy, a, b, andc are parameters.
nitely often but never exactly passes through the initial pointFor the Rasler system, the invariant rotational structure is
again, a behavior that resembles rotation. A chaotic rotatio@pparent: the terms wgy andwpx in the x andy equations,
can, however, be quite complicated in the sense that there fespectively, describe the dynamics of a harmonic oscillator
usually a lack of a well defined center of rotation. Despiteof intrinsic frequencyw,. For many parameter values, the
this difficulty, there has been an interest in the study of chachaotic attractors of the Reler system possess a well-
otic rotations in the context of phase synchronizafidr®]. defined center of rotation, as shown in Figa)] the plot of
There has also been effort to study methods to define prope(t) versusy(t), where the parameter values avg=1.0,
rotations for general chaotic flow8]. a=0.165,b=0.2, andc=10.0. The amplitude of the rotation

In this Rapid Communication, we address one questioan be defined as(t) = \x?(t) +y?(t), and the phase vari-
that is fundamental to understanding the rotational structureble ¢(t) is ¢(t)=tan {y(t)/x(t)]. Figures 1b) and Xc)
of chaotic flows: what are the dynamical characteristics of ahow the time traces af(t) and ¢(t), respectively, where
chaotic rotation with respect to simple rotations such as those
produced by harmonic oscillators? Our motivation comes 29 @) 202

from the intuition and observation that, on average, a chaotic

rotation tends to follow a uniform one. In particular, say we 15
consider the phaséangle variable ¢(t) associated witha € o £10
chaotic rotation. When having a well defined center, the ro-

tation is proper in the sense tha{t) increases monotoni- - —— 5
cally in time. In fact, a linear fit can be found faf(t) in -20 0
large time scales, which indicates that on averag@) in- -20 0 20 0 200 400 600
creases linearly with time, the determining characteristic of a © 3,9
uniform rotation. Our key idea is that the average uniform 600

rotation can in fact be regarded as iamariant propertyof 5
the underlying chaotic flow. Thus, a new dynamical system 4% =
can be defined so that the uniform rotation represents an® 81
invariant manifold. A chaotic rotation thus corresponds to, in 200

the new phase space, a trajectory that evolves near the in 0

variant manifold. We find that, such a trajectory exhibits 0 200 400 600 0 200 400 600
on-off intermittency, a recent subject that has been under t t

extensive study[4]. Our understanding of the rotational  FiG. 1. For the Resler systema) a typical chaotic rotation in
structure of chaotic flows is then as follows: a chaotic rotathe (x,y) plane,(b) amplituder (t) of the rotation,(c) phase angle
tion tends to stay near a uniform rotation with occasionalg(t) of the rotation, andd) time trace of the instantaneous fre-
deviation away from it in the course of time evolution. We quency w(t). Apparently, w(t) exhibits an on-off intermittent
note that in previous studies, a necessary condition for gersehavior.
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we see that the amplitude of the rotation is apparently cha-  54.@
otic (hence the term “chaotic rotation; and the phase vari-

) X ) o 0
able ¢(t) appears to increase linearly with slopg, indi- _ !
cating that on average, we haye(T))=wst. However, g0

F-10

¢(t) exhibits fluctuations aboubyt. Since the underlying
harmonic oscillator has a constant frequency, which can be -20
regarded as a natural invariant property, we choose the in- _zg
stantaneous frequeney(t)=d¢(t)/dt to be the phase space ut)
variable in the new dynamical system. Figufe)lshows the 6000+
time trace ofw(t), from which we see that indeed, the in-
stantaneous frequency of the chaotic rotation exhibits a be- 444
havior that resembles on-off intermittency. £
The reason thab(t) in Fig. 1(d) exhibits an on-off inter- ezooo
mittent type of behavior can be seen as follows. Because the 0
rotation in Fig. 1a) is well defined, we can rewrite 0 -10
the Rossler equations in the cylindrical coordinate 0 200 400 600 0 200 400 600
(r,¢,2): dr/dt=ar sir® $—zcos¢, d¢/dt=wy+ 3asin 2p
+(z/r)sin ¢, anddz/dt=b— cz+rz cos¢. Taking the deriva- FIG. 2. For the Lorenz systena) a typical chaotic rotation in
tive of dg/dt yields the equation governing the dynamics of the [u,H(u)] plane, (b) amplituder (t) of the rotation,(c) phase
the instantaneous frequenayt). We obtain, after change of 2angleg(t) of the rotation, andd) time trace of the instantaneous
variable()(t) = w(t) — wg, the following equation: frequencyw(t).

dQ 1 (= u(t’)

gt = OO+ (), (1) H[u(t)]zPV(;j Wdt’), 2
where «(t) and B(t) are given by a(t)=acos2p
+(2r)cosg, and B(t)=(1/r?)[r(b—cz+rzcos¢) where PV stands for the Cauchy principal value of the inte-
—z(ar sir? ¢—zcos¢]sin ¢. The key observations afé) the  gral. An analytic signa[8] ,(t) can then be constructed,
termsa(t) andB(t) are random in large time scales becausey,(t) =u(t) +iH[u(t)], from which the amplitude and the
the variables (t), z(t), and ¢(t) are chaotic, and2) «(t) phase of the rotation can be definedi,(t)
and 3(t) are zero-mean random variables because on averr(t) exfdi¢(t)]. Figure 2a) show the chaotic rotation in the
age, the frequency of the rotation cannot change, as stipwwomplex plane of the analytic signéi, for the Lorenz cha-
lated by the physical constraint that the flow is bounded. Atic attractor. The rotation is apparently proper because it has
such, we see that E¢l) resembles the general model used toa unique centd9]. Figures 2b) and Zc) show the amplitude
describe on-off intermittency in the presence of additiver(t) and the phases(t) of the rotation, respectively. As in
noise [6]. In particular, if the additive noise termd(t) is  Figs. Ab) and Xc), we see that(t) is chaotic andy(t) is
absent, the dynamical variabfe(t) possesses an invariant monotonic; two defining characteristics of a chaotic rotation.
subspaceQ =0 (or o= wg). Thus, it is reasonable that the Figure 2d) shows the instantaneous frequene{t) of the
one-dimensional dynamical system Kty constructed from rotation about the average frequensy, which exhibits an
the original three-dimensional Bsler system exhibits on-off on-off intermittent behavior. The “off” state in Fig.(d) is,
intermittency. however, broadened compared with that in Figl) lindicat-

We note that the “off” state in Fig. @) is rather sharp: ing that the chaotic rotation of the Lorenz attractor has a
w~wq. The reason is that the backbone of thesfter sys- range of instantaneous frequencies near the “off” state.
tem is an ideal harmonic oscillator of frequenay. For We now present an argument for the intermittent dynam-
general chaotic flows for which the equations do not apparics of the instantaneous frequencies in chaotic flows and of-
ently contain these of a harmonic oscillator, we expect thder explanations for the numerical observations in Figa)-4
“off” state to be broadened. This can be seen by considerind.(d) and 2a)—2(d). For a general chaotic rotation, the phase
another well studied chaotic flow: the Lorenz systEm  variable ¢(t) obeys the following equation:

The classical Lorenz equations aréx/dt=10(y—Xx),
dy/dt=28—y—xz, and dz/dt=—(%)z+xy, for which d¢
there is a chaotic attract¢7]. The attractor apparently has o(t)= gt - @ot F(r,¢.%), ©)

two centers of rotation and, hence, it is not obvious how a

meaningful phase variable can be defined. However, it was . . .
; . . . Where x is the subset of dynamical variables that are not

suggested in Ref[2] that the following variable:u(t) . o ) e . : .

— S0 1y ds t tation. | . explicitly utilized in defining the rotation, anél is a nonlin-

= x*(t) +y*(t) corresponds to a proper rotation. In par ICU~ aar function characterizing the derivation of the rotation

lar, it can be easily verified that for the time sengs), in a from that of a harmonic oscillator of frequenay,. Taking
large time interval, the number of zero-crossing points is thefhe time derivative of Eq(3) yields '

same as the number of local extrema, which is a defining

aspect of a proper rotation. The phase variable in this case

can then be obtained as follows. One first constructs the Hil- d_“’: faH_f ﬂ+ i % )
bert transform otu(t), dt  d¢ Jr dt = ox dt’



RAPID COMMUNICATIONS

PRE 62 INTERMITTENCY IN CHAOTIC ROTATIONS R31
3 : ‘ : : 07
0.6
05
2.51 W i
= | 4
< ”" 'M”l“"" 1 :04
Ec { "[’M A N
=3 i 0.3
2 ey h(“ \
2 Vg 02
0.1
15 . - - ' 0
1 1.2 1.4 g, AT 16 1.8 2

FIG. 3. Algebraic distribution of the intervals between distinct ~ F!G- 4. Broadening of the “off” state due to symmetry-
frequency bursts in the Lorenz systéFig. 2(d)]. breaking in the randomly driven logistic map.

Writing  dF/d¢=an,(t) and @F/dr)(dr/dt)+ (IF/ lated to generate the histogram. Thg d_istribution shows a
ax) - (dx/dt)=Bny(t), wherea and 8 are constantsn,(t) clear algebraic behavior, a characteristic feature of on-off
and n,(t) are chaotic processes, we obtaidw/dt intermittency under random noi¢é,6]. The exponential be-

= an,(t) o+ Bn,(t). For typical systems such as théRter  havior expected at large times in the presence of noise or
oscillator, the phase anglé(t) is a fast variable of time Symmetry-breaking4,10] is, however, apparently not re-

t while » changes slowly most of the time. Sineg(t)  solved in our numerical experiments.

depends ong(t), it is reasonable to assume that the time While the additive termBn,(t) can be regarded as ran-
scales ofn,(t) andw(t) are different. Approximatelyn,(t) dom in large time scales, it has a strong correlation in small
can be treated as a random process that is independent tirhe scales, so does the modulation tesumg(t). Thus, in
o(t). Taking the time average oflw/dt then yields small time scales, the terg@n,(t) can no longer be regarded
an, () wg+ Bny(t) =0, wheren,(t) andn,(t) are the time as random noise. In fact, it is nowsgmmetry-breakingerm
averages of;(t) andn,(t), respectively. The apparent so- with respect to the equationdw/dt=[h, +angy(t)]w,
lution is n;(t)=n,(t)=0 [the other solutiom(t)/n,(t)= which possesses an invariant subspace. As a result, we ex-
— Bl(awg) will typically impose an additional constraint on pect the “off” state to be broadened, as can be seen from
the constantsyy, o, andg and, consequently, on the original Fig. 2(d). To better understand the broadening behavior, we
chaotic flow, which is then nonphysidaWe see thah,(t) consider the following symmetry broken on-off intermittent
andn,(t) can be treated as random processes with approximap:z,,=f(z,) =ax,z,(1-z,) + €, wherex, is a random
mately zero mean, which is also consistent with the physicabariable uniformly distributed ifi0,1] ande is the symmetry-
requirement for a chaotic attractor that its rotational fre-breaking parameter that destroys the invariant subspace
quency not increase or decrease indefinitely. We write=0. Figure 4 shows an on-off intermittent time seriggor
any(t)=h_+angy(t), whereny(t)=0 and the constartt, a=2.5 ande=0.02. We observe that, never goes below

is approximately zero. The reason to introduce the quantityhe line z= e so that the “off” state is broadened fromy

h, is to make an analog with the typical system setting for=0 to z,4< €. In addition, there is a high probability for the
studying on-off intermittency under influence of noise, insignal to be in the intervdle, (1+ «) €] (indicated by the two
which h, is the transverse Lyapunov exponent defined withhorizontal lines. A detailed analysis of the effect of symme-
respect to the invariant manifold, or the “off” stafé,6].  try breaking on on-off intermittency can be found in Ref.
Equation(4) is thus completely analogous to, say, the mode[10].

system for on-off intermittency treated in R¢6], and we The Rasler and Lorenz systems that we utilized to dem-
thus expect to see an intermittent behavior in the instanteenstrate on-off intermittency in chaotic rotations have the
neous frequency of a chaotic flow. In particular, say the chafeature that proper rotations can be defined, either by using
otic variables(t) andn,(t) have a characteristic time scale the original dynamical variablg&ig. 1) or their combination

7 so that they can be considered as randontfer. Since  (Fig. 2. What about chaotic flows for which no apparent
h, is essentially zero, we expect the typical time betweerproper rotation can be defined? Here we wish to suggest our
bursts to be larger thanand, hence, intermittent bursts can approach to search for intermittent behavior in rotations of
be observed in large time scales and are rare, as shown such chaotic flows. Given a dynamical variaklg) from a

Fig. 2(d), where we see that there are approximately 16 disehaotic flow, we can decompose it into a few number of
tinct bursts for Gst<600. Thus, we have=<30 for the Lo- modes, for which proper rotations can be defined, by using
renz chaotic attractor. Figure 3 shows, on a logarithmiche empirical decomposition procediidel,3]. The basic idea
scale, the statistical distribution of the time intervals betweeris that, for a time series coming from a proper rotation, the
bursts for the Lorenz attractor, where*Ifursts are accumu- number of maxima and minima is equal to the number of
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zeros in a given large time intervgll]. Thus, an arbitrary viding new insights into the fundamental organization of
time series can be considered as a combination of a numbehaotic flows in terms of rotatiorfd.3], our results also im-
of proper rotations on distinct time scales. We have studiegly that on-off intermittency may be more pervasive than

systems such as the Chua’s circuit mofie?] and found

previously thought, as its existence in chaotic flows appar-

on-off intermittencies in the proper rotations embedded irently does not rely on symmetry in the system equations.

the underlying chaotic flow.

In summary, we have discovered an intermittent behavior
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