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Intermittency in chaotic rotations
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We examine the rotational dynamics associated with bounded chaotic flows, such as those on chaotic
attractors, and find that the dynamics typically exhibits on-off intermittency. In particular, a properly defined
chaotic rotation tends to follow, approximately, the phase-space rotation of a harmonic oscillator with occa-
sional bursts away from this nearly uniform rotation. The intermittent behavior is identified in several well
studied chaotic systems, and an argument is provided for the generality of this behavior.

PACS number~s!: 05.45.2a
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Rotation is a fundamental characteristic associated w
many natural and technological processes that are m
ematically described by a set of coupled first-order auto
mous differential equations~flows!. Consider, for example
the dynamics on a chaotic attractor. While having a sensi
dependence on initial conditions, trajectories on the attra
are recurrent because the attractor is bounded in the p
space. That is, a chaotic trajectory starting from a point in
attractor must return to the neighborhood of this point in
nitely often but never exactly passes through the initial po
again, a behavior that resembles rotation. A chaotic rota
can, however, be quite complicated in the sense that the
usually a lack of a well defined center of rotation. Desp
this difficulty, there has been an interest in the study of c
otic rotations in the context of phase synchronization@1,2#.
There has also been effort to study methods to define pr
rotations for general chaotic flows@3#.

In this Rapid Communication, we address one ques
that is fundamental to understanding the rotational struc
of chaotic flows: what are the dynamical characteristics o
chaotic rotation with respect to simple rotations such as th
produced by harmonic oscillators? Our motivation com
from the intuition and observation that, on average, a cha
rotation tends to follow a uniform one. In particular, say w
consider the phase~angle! variable f(t) associated with a
chaotic rotation. When having a well defined center, the
tation is proper in the sense thatf(t) increases monotoni
cally in time. In fact, a linear fit can be found forf(t) in
large time scales, which indicates that on average,f(t) in-
creases linearly with time, the determining characteristic o
uniform rotation. Our key idea is that the average unifo
rotation can in fact be regarded as aninvariant propertyof
the underlying chaotic flow. Thus, a new dynamical syst
can be defined so that the uniform rotation represents
invariant manifold. A chaotic rotation thus corresponds to
the new phase space, a trajectory that evolves near th
variant manifold. We find that, such a trajectory exhib
on-off intermittency, a recent subject that has been un
extensive study@4#. Our understanding of the rotationa
structure of chaotic flows is then as follows: a chaotic ro
tion tends to stay near a uniform rotation with occasio
deviation away from it in the course of time evolution. W
note that in previous studies, a necessary condition for g
PRE 621063-651X/2000/62~1!/29~4!/$15.00
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erating on-off intermittency is that the differential equatio
describing the system possess a symmetric invariant
space@4#. The results of this paper imply, however, that o
off intermittency may be more prevalent than previous
thought, as it can occur in almost any chaotic flows, rega
less of whether the system has a symmetry or not.

We begin by presenting numerical results with the Ro¨ssler
oscillator @5#: dx/dt52v0y2z, dy/dt5v0x1ay, and
dz/dt5b1(x2c)z, wherev0 , a, b, andc are parameters
For the Ro¨ssler system, the invariant rotational structure
apparent: the terms2v0y andv0x in thex andy equations,
respectively, describe the dynamics of a harmonic oscilla
of intrinsic frequencyv0 . For many parameter values, th
chaotic attractors of the Ro¨ssler system possess a we
defined center of rotation, as shown in Fig. 1~a!, the plot of
x(t) versusy(t), where the parameter values arev051.0,
a50.165,b50.2, andc510.0. The amplitude of the rotatio
can be defined asr (t)5Ax2(t)1y2(t), and the phase vari
able f(t) is f(t)5tan21@y(t)/x(t)#. Figures 1~b! and 1~c!
show the time traces ofr (t) and f(t), respectively, where

FIG. 1. For the Ro¨ssler system:~a! a typical chaotic rotation in
the (x,y) plane,~b! amplituder (t) of the rotation,~c! phase angle
f(t) of the rotation, and~d! time trace of the instantaneous fre
quency v(t). Apparently, v(t) exhibits an on-off intermittent
behavior.
R29 ©2000 The American Physical Society
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we see that the amplitude of the rotation is apparently c
otic ~hence the term ‘‘chaotic rotation’’!, and the phase vari
able f(t) appears to increase linearly with slopev0 , indi-
cating that on average, we have^f(T)&5v0t. However,
f(t) exhibits fluctuations aboutv0t. Since the underlying
harmonic oscillator has a constant frequency, which can
regarded as a natural invariant property, we choose the
stantaneous frequencyv(t)[df(t)/dt to be the phase spac
variable in the new dynamical system. Figure 1~d! shows the
time trace ofv(t), from which we see that indeed, the in
stantaneous frequency of the chaotic rotation exhibits a
havior that resembles on-off intermittency.

The reason thatv(t) in Fig. 1~d! exhibits an on-off inter-
mittent type of behavior can be seen as follows. Because
rotation in Fig. 1~a! is well defined, we can rewrite
the Rössler equations in the cylindrical coordina
(r ,f,z): dr/dt5ar sin2 f2zcosf, df/dt5v01 1

2 a sin 2f
1(z/r)sinf, anddz/dt5b2cz1rz cosf. Taking the deriva-
tive of df/dt yields the equation governing the dynamics
the instantaneous frequencyv(t). We obtain, after change o
variableV(t)5v(t)2v0 , the following equation:

dV

dt
5a~ t !V1b~ t !, ~1!

where a(t) and b(t) are given by a(t)5a cos 2f
1(z/r)cosf, and b(t)5(1/r 2)@r (b2cz1rz cosf)
2z(ar sin2 f2zcosf#sinf. The key observations are~1! the
termsa(t) andb(t) are random in large time scales becau
the variablesr (t), z(t), andf(t) are chaotic, and~2! a(t)
and b(t) are zero-mean random variables because on a
age, the frequency of the rotation cannot change, as s
lated by the physical constraint that the flow is bounded.
such, we see that Eq.~1! resembles the general model used
describe on-off intermittency in the presence of addit
noise @6#. In particular, if the additive noise termb(t) is
absent, the dynamical variableV(t) possesses an invarian
subspace:V50 ~or v5v0). Thus, it is reasonable that th
one-dimensional dynamical system Eq.~1! constructed from
the original three-dimensional Ro¨ssler system exhibits on-of
intermittency.

We note that the ‘‘off’’ state in Fig. 1~d! is rather sharp:
v'v0 . The reason is that the backbone of the Ro¨ssler sys-
tem is an ideal harmonic oscillator of frequencyv0 . For
general chaotic flows for which the equations do not app
ently contain these of a harmonic oscillator, we expect
‘‘off’’ state to be broadened. This can be seen by consider
another well studied chaotic flow: the Lorenz system@7#.
The classical Lorenz equations aredx/dt510(y2x),

dy/dt528x2y2xz, and dz/dt52( 8
3 )z1xy, for which

there is a chaotic attractor@7#. The attractor apparently ha
two centers of rotation and, hence, it is not obvious how
meaningful phase variable can be defined. However, it
suggested in Ref.@2# that the following variable:u(t)
5Ax2(t)1y2(t) corresponds to a proper rotation. In partic
lar, it can be easily verified that for the time seriesu(t), in a
large time interval, the number of zero-crossing points is
same as the number of local extrema, which is a defin
aspect of a proper rotation. The phase variable in this c
can then be obtained as follows. One first constructs the
bert transform ofu(t),
a-
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H@u~ t !#5PVS 1

pE2`

` u~ t8!

t2t8
dt8D , ~2!

where PV stands for the Cauchy principal value of the in
gral. An analytic signal@8# cu(t) can then be constructed
cu(t)5u(t)1 iH @u(t)#, from which the amplitude and the
phase of the rotation can be defined:cu(t)
5r (t) exp@if(t)#. Figure 2~a! show the chaotic rotation in the
complex plane of the analytic signalcu for the Lorenz cha-
otic attractor. The rotation is apparently proper because it
a unique center@9#. Figures 2~b! and 2~c! show the amplitude
r (t) and the phasef(t) of the rotation, respectively. As in
Figs. 1~b! and 1~c!, we see thatr (t) is chaotic andf(t) is
monotonic; two defining characteristics of a chaotic rotatio
Figure 2~d! shows the instantaneous frequencyv(t) of the
rotation about the average frequencyv0 , which exhibits an
on-off intermittent behavior. The ‘‘off’’ state in Fig. 2~d! is,
however, broadened compared with that in Fig. 1~d!, indicat-
ing that the chaotic rotation of the Lorenz attractor has
range of instantaneous frequencies near the ‘‘off’’ state.

We now present an argument for the intermittent dyna
ics of the instantaneous frequencies in chaotic flows and
fer explanations for the numerical observations in Figs. 1~a!–
1~d! and 2~a!–2~d!. For a general chaotic rotation, the pha
variablef(t) obeys the following equation:

v~ t !5
df

dt
5v01F~r ,f,x!, ~3!

where x is the subset of dynamical variables that are n
explicitly utilized in defining the rotation, andF is a nonlin-
ear function characterizing the derivation of the rotati
from that of a harmonic oscillator of frequencyv0 . Taking
the time derivative of Eq.~3! yields

dv

dt
5

]F

]f
v1

]F

]r

dr

dt
1

]F

]x
•

dx

dt
. ~4!

FIG. 2. For the Lorenz system:~a! a typical chaotic rotation in
the @u,H(u)# plane, ~b! amplituder (t) of the rotation,~c! phase
anglef(t) of the rotation, and~d! time trace of the instantaneou
frequencyv(t).
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Writing ]F/]f[an1(t) and (]F/]r )(dr/dt)1(]F/
]x)•(dx/dt)[bn2(t), wherea and b are constants,n1(t)
and n2(t) are chaotic processes, we obtaindv/dt
5an1(t)v1bn2(t). For typical systems such as the Ro¨ssler
oscillator, the phase anglef(t) is a fast variable of time
t while v changes slowly most of the time. Sincen1(t)
depends onf(t), it is reasonable to assume that the tim
scales ofn1(t) andv(t) are different. Approximately,n1(t)
can be treated as a random process that is independe
v(t). Taking the time average ofdv/dt then yields
an1(t)v01bn2(t)50, wheren1(t) and n2(t) are the time
averages ofn1(t) andn2(t), respectively. The apparent so
lution is n1(t)5n2(t)50 @the other solutionn1(t)/n2(t)5
2b/(av0) will typically impose an additional constraint o
the constantsv0 , a, andb and, consequently, on the origin
chaotic flow, which is then nonphysical#. We see thatn1(t)
andn2(t) can be treated as random processes with appr
mately zero mean, which is also consistent with the phys
requirement for a chaotic attractor that its rotational f
quency not increase or decrease indefinitely. We w
an1(t)5h>1an0(t), wheren0(t)[0 and the constanth'

is approximately zero. The reason to introduce the quan
h' is to make an analog with the typical system setting
studying on-off intermittency under influence of noise,
which h' is the transverse Lyapunov exponent defined w
respect to the invariant manifold, or the ‘‘off’’ state@4,6#.
Equation~4! is thus completely analogous to, say, the mo
system for on-off intermittency treated in Ref.@6#, and we
thus expect to see an intermittent behavior in the insta
neous frequency of a chaotic flow. In particular, say the c
otic variablesn0(t) andn2(t) have a characteristic time sca
t so that they can be considered as random fort>t. Since
h' is essentially zero, we expect the typical time betwe
bursts to be larger thant and, hence, intermittent bursts ca
be observed in large time scales and are rare, as show
Fig. 2~d!, where we see that there are approximately 16 d
tinct bursts for 0<t<600. Thus, we havet&30 for the Lo-
renz chaotic attractor. Figure 3 shows, on a logarithm
scale, the statistical distribution of the time intervals betwe
bursts for the Lorenz attractor, where 105 bursts are accumu

FIG. 3. Algebraic distribution of the intervals between distin
frequency bursts in the Lorenz system@Fig. 2~d!#.
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lated to generate the histogram. The distribution show
clear algebraic behavior, a characteristic feature of on
intermittency under random noise@4,6#. The exponential be-
havior expected at large times in the presence of noise
symmetry-breaking@4,10# is, however, apparently not re
solved in our numerical experiments.

While the additive termbn2(t) can be regarded as ran
dom in large time scales, it has a strong correlation in sm
time scales, so does the modulation terman0(t). Thus, in
small time scales, the termbn2(t) can no longer be regarde
as random noise. In fact, it is now asymmetry-breakingterm
with respect to the equation:dv/dt5@h'1an0(t)#v,
which possesses an invariant subspace. As a result, we
pect the ‘‘off’’ state to be broadened, as can be seen fr
Fig. 2~d!. To better understand the broadening behavior,
consider the following symmetry broken on-off intermitte
map:zn115 f (zn)5axnzn(12zn)1e, wherexn is a random
variable uniformly distributed in@0,1# ande is the symmetry-
breaking parameter that destroys the invariant subspaz
50. Figure 4 shows an on-off intermittent time serieszn for
a52.5 ande50.02. We observe thatzn never goes below
the linez5e so that the ‘‘off’’ state is broadened fromzoff
50 to zoff<e. In addition, there is a high probability for th
signal to be in the interval@e,(11a)e# ~indicated by the two
horizontal lines!. A detailed analysis of the effect of symme
try breaking on on-off intermittency can be found in Re
@10#.

The Rössler and Lorenz systems that we utilized to de
onstrate on-off intermittency in chaotic rotations have t
feature that proper rotations can be defined, either by us
the original dynamical variables~Fig. 1! or their combination
~Fig. 2!. What about chaotic flows for which no appare
proper rotation can be defined? Here we wish to suggest
approach to search for intermittent behavior in rotations
such chaotic flows. Given a dynamical variablex(t) from a
chaotic flow, we can decompose it into a few number
modes, for which proper rotations can be defined, by us
the empirical decomposition procedure@11,3#. The basic idea
is that, for a time series coming from a proper rotation,
number of maxima and minima is equal to the number

FIG. 4. Broadening of the ‘‘off’’ state due to symmetry
breaking in the randomly driven logistic map.
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zeros in a given large time interval@11#. Thus, an arbitrary
time series can be considered as a combination of a num
of proper rotations on distinct time scales. We have stud
systems such as the Chua’s circuit model@12# and found
on-off intermittencies in the proper rotations embedded
the underlying chaotic flow.

In summary, we have discovered an intermittent behav
associated with rotations arising in chaotic flows. Our ana
ses and numerical computations suggest that the intermi
behavior is analogous to on-off intermittency. Besides p
ev
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ys
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viding new insights into the fundamental organization
chaotic flows in terms of rotations@13#, our results also im-
ply that on-off intermittency may be more pervasive th
previously thought, as its existence in chaotic flows app
ently does not rely on symmetry in the system equations
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