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Floquet quantum many-body scars in the tilted Fermi-Hubbard chain
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The one-dimensional tilted, periodically driven Fermi-Hubbard chain is a paradigm in the study of quantum
many-body physics, particularly for solid-state systems. We uncover the emergence of Floquet scarring states, a
class of quantum many-body scarring (QMBS) states that defy random thermalization. The underlying physical
mechanism is identified to be the Floquet resonances between these degenerate Fock bases that can be connected
by one hopping process. It is the first-order hopping perturbation effect. Utilizing the degenerate Floquet
perturbation theory, we derive the exact conditions under which the exotic QMBS states emerge. Phenomena
such as quantum revivals and subharmonic responses are also studied. Those results open the possibility of
modulating and engineering solid-state quantum many-body systems to achieve nonergodicity.
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I. INTRODUCTION

Since the experimental observation of quantum revivals
in Rydberg atom arrays [1], the phenomenon of quantum
many-body scarring (QMBS) [2] has attracted a great deal
of interest [3–22]. In general, QMBS states signify a weak
breaking of ergodicity and thus a violation of the eigen-
state thermalization hypothesis (ETH) [23,24] for quantum
many-body interacting systems that are expected to thermalize
and thus be ergodic [25]. A recent experimental work [26]
showed that quantum revivals can be enhanced and stabilized
via periodic driving, opening the possibility that QMBS can
arise in quantum Floquet systems and raising the questions of
whether QMBS states can arise in driven quantum systems
in general. An affirmative answer would open the door to
exploiting Floquet engineering for modulating and controlling
the QMBS dynamics, and uncovering the underlying physical
mechanism responsible for the emergence of Floquet scarring
states then becomes an important issue. There were recent
efforts in systems such as the driven PXP model [27–32], the
Bose-Hubbard model [33–36], discrete-time crystals [37–39],
and others [40–43]. For example, in the PXP model under
some engineered driving protocols, a breakdown of the ETH
was demonstrated and the Floquet scarring states were ana-
lyzed [27–29]. Most existing works on the Floquet scarring
dynamics were based on the PXP model with engineered
driving protocols.

The one-dimensional (1D) Fermi-Hubbard chain repre-
sents another paradigm for studying complex many-body
physics, particularly in solid-state systems. Recently, exper-
imental realization of the 1D titled Fermi-Hubbard chain was
achieved by using cold atoms in a 3D optical lattice [44],
providing a natural setting for investigating weak ergodicity
breaking due to Hilbert space fragmentation [44–46]. It was
also found that, beyond fragmentation, the 1D titled Fermi-
Hubbard chain hosts QMBS states in some specific regime at
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half filling [17]. An outstanding question is whether Floquet
scarring states can generally arise in the driven tilted Fermi-
Hubbard systems. We note that, if the answer is affirmative,
the cold-atom systems would provide a feasible experimental
platform for verification, where the on-site Coulomb interac-
tion strength can be readily controlled through a Feshbach
resonance [33,47,48]. Another potential experimental system
is the lattices of dopant-based quantum dots [49]. The Floquet
tilted Fermi-Hubbard chain has thus become paradigmatic for
studying quantum many-body phenomena. It is particularly
appealing because of the potential feasibility of experimental
implementation.

In this paper, we report Floquet scarring states in 1D
tilted Fermi-Hubbard chains with periodically driven on-site
Coulomb interaction, as illustrated by Fig. 1. First, we numer-
ically identify the signatures of the possible Floquet scarring
states according to the typical features of QMBS states in
the static chain [17], which include persistent quantum re-
vivals following quenches from some specific initial states,
suppressed entanglement entropy, and the scarred tower struc-
tures in the overlaps of the Floquet eigenstates with some
specific initial states. We find that the emergence of pos-
sible Floquet scarring dynamics are associated with robust
synchrony of the quantum state with the driving frequency,
regardless of its strength. In particular, the scarring dy-
namics periodically emerge as the static detuning term of
the Coulomb interaction varies in integer multiples of the
driving frequency. Then, exploiting the degenerate Floquet
perturbation theory [27], we derive the analytic emergence
conditions for the Floquet scarring states. It leads to the un-
derlying mechanism: the Floquet scarring dynamics are the
result of the resonances between these degenerate Fock bases
that can be connected by one hopping process. That is, the
resonances induced by first-order hopping perturbation lead
to the Floquet scarring dynamics. We also find that, simi-
lar to the static chain, the equal quasienergy separation of
the scarred towers is responsible for the observed quantum
revivals [27,35]. The subharmonic and incommensurate re-
sponses of the revivals to driving are observed in distinct
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FIG. 1. A schematic illustration of the 1D tilted Fermi-Hubbard
chain. The on-site Coulomb interaction is driven by a periodic sig-
nal: U (t ) = U0 + Um sgn[cos(ωt )], where J is the nearest-neighbor
hopping amplitude and � is a spin-independent tilted potential. The
spin up (down) fermions are colored in red (blue).

frequency regimes. These responses and the synchroniza-
tion effect open the door to modulating and engineering the
Floquet scarring dynamics [31,32].

The resonance mechanism uncovered here is surprising,
making it possible to heat up the system in a nonergodic man-
ner. In general, Floquet resonances may lead to unbounded
heating in many-body Floquet systems, thus a stable scarring
state requires the absence of the resonances [41]. In Ising and
Heisenberg interacting systems, it was found [41] that the
resonances play a somewhat opposite role in the emergence
of Floquet scarring states. In these systems, the emergence
mechanism was found to be dynamical freezing under a strong
driving. In particular, at so-called scar points, the longitudi-
nal magnetization becomes an emerged conserved quantity,
preventing the system from heating up ergodically. The reso-
nances tend to destroy the inertness of the scar point, implying
the emergence of stable Floquet scarring dynamics without
such resonances. A similar role of resonances also was ob-
served in the driven PXP model [27]. The reason for the
seeming contradiction with our work lies in the nature of
the unperturbed dynamics. In their system, the unperturbed
systems can heat up ergodically, which is thermal. At scar
points, the dynamics are severely constrained by the emer-
gence of the local conserved quantity, while the resonances
would significantly weaken the dynamical constraint. In our
system, the unperturbed system does not thermalize because
all the fermions are fully confined to their initial lattice sites.
The resonances induced by the hopping perturbation then
open the way to heat up. In addition, the resonances do not
lead to unbounded heating, since the hopping amplitude is
typically much smaller than on-site Coulomb interaction and
tilted potential strength.

In Sec. II, we introduce the 1D driven tilted Fermi-
Hubbard chain and describe the phenomenon of QMBS in
the corresponding static chain. The Floquet scarring states are
investigated in Sec. III, where the phenomenon of quantum
revivals is studied in Sec. III A and the conditions dictating the
emergence of the Floquet scarring states are obtained numer-
ically in Sec. III B. An analytic derivation of the emergence
conditions is presented in Sec. IV A based on the degener-
ate Floquet perturbation theory, and the connection between
the undriven and Floquet QMBS dynamics is analyzed in
Sec. IV B. The phenomena of subharmonic and incommensu-

rate responses to driving are presented in Sec. V. A summary
and discussion are given in Sec. VI. The methods for calculat-
ing the quantum evolution dynamics, bipartite von Neumann
entanglement entropy, and an error analysis are provided in
Appendix A. The transition from Wannier-Stark localization
to Floquet scar phase is described in Appendix B. A detailed
introduction to the Floquet perturbation theory is given in
Appendix C and the robust period-doubling phenomenon is
described in Appendix D.

II. 1D TILTED FERMI-HUBBARD CHAIN

The 1D tilted Fermi-Hubbard chain under periodic driving
is given by the following Hamiltonian [17,44]:

H =
∑

j,σ=↑,↓
(−Jĉ†

j,σ ĉ j+1,σ + H.c. + � jn̂ j,σ )

+ U (t )
∑

j

n̂ j,↑n̂ j,↓, (1)

where ĉ†
j,σ (ĉ j,σ ) is the fermionic creation (annihilation)

operator on site j with the spin index σ , n̂ j,σ = ĉ†
j,σ ĉ j,σ

is the density operator, J and � are the nearest-neighbor
hopping amplitude and spin-independent tilted potential, re-
spectively. For simplicity, the on-site Coulomb interaction is
governed by a square-wave driving function: U (t ) = U0 +
Um sgn(cos(ωt )), where U0 is the static detuning, Um is the
modulation amplitude, and ω is the driving frequency. The
linear static tilt � can be implemented using a magnetic field
gradient and the time-periodic signal U (t ) can be modulated
via a Feshbach resonance [33,47,48]. We assume that the the
system has an even number L of sites, with the initial state
containing equal numbers of spin-up and spin-down fermions
[17]. Periodic boundary conditions are applied to eliminate
the boundary effects.

To recognize Floquet scarring states, we describe QMBS
states in the corresponding undriven system [17]. We use the
following notations: ↑ for spin up, ↓ for spin down, 0 for an
empty site, and � for a doublon. At the filling factor

ν = (N↑ + N↓)/L = 1, (2)

the undriven system hosts QMBS states in the regime � ≈
U � J , which can be conveniently probed using a quan-
tum quench process from some special nonequilibrium initial
states |ψs〉. Such initial states can be

|↓↑↑↓ · · ·〉 and |↓ · · · ↓� 0 ↑ · · · ↑〉 ,

as well as their spin-reversed states:

|↑↓↓↑ · · ·〉 and |↑ · · · ↑� 0 ↓ · · · ↓〉 .

A salient feature of QMBS states is the fidelity revival ob-
served during the time evolution that starts from the special
initial states |ψs〉. The fidelity is characterized by the overlap
between the time-evolved quantum state |ψ (t )〉 and its initial
state |ψ0〉, defined as

F (t ) ≡ |〈ψ (t )|ψ0〉|2. (3)

Differing from previous work [17], we treat the full chain
directly, following the numerical methods in Ref. [44]. The
details are provided in Appendix A. For convenience, the
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hopping parameter and the Planck constant are normalized
to J ≡ 1 and h̄ ≡ 1, respectively. We set the system size to
L = 8. In an undriven chain, the revivals from the initial state

|ψs〉 = |↓↑↑↓↓↑↑↓〉

are shown in blue in Fig. 2(a), where the revival period is
T∗ ≈ √

2π . The revivals are not perfect, where the height
of the revival peak decreases with time. Another quantity
characterizing the evolution of a quantum state is the bi-
partite von Neumann entanglement entropy SN/2, which is
suppressed in a quantum quench. Figure 2(b) plots SL/2 =
Sl = −tr(ρl log ρl ) (blue), where the subscript l (r) denotes
the left (right) half-chain, and ρl (t ) = trr |ψ (t )〉〈ψ (t )| is the
reduced density matrix for the left subsystem by tracing out
the right subsystem. The system eigenstates can be calculated
by diagonalizing the Hamiltonian of the full chain in the stan-
dard Fock space. The overlap of eigenstates with the initial
state |ψs〉 is shown in Fig. 2(c), demonstrating the scarred
eigenstates [3] as marked by the scarred tower structures and
the black dots at the top of the towers. These towers have
a near-equal energy separation δE ≈ √

2, as the embedding
construction in a thermal eigenstate. The scarred eigenstates
have an abnormally high overlap with the initial state |ψs〉,
resulting in the revivals in Fig. 2(a) with the revival period
T∗ ≈ 2π/δE , i.e., ω∗ ≈ δE .

Another type of nonequilibrium initial states at the filling
factor ν = 1 (N↑ = N↓ = L/2) is the so-called thermalized
initial state, e.g.,

|ψth〉 = |↑↓↑↓↑↓↑↓〉 .

When quenched from |ψth〉, both the undriven and driven
systems rapidly thermalize, as shown in Fig. 3. In particular,
Fig. 3(a) shows that the fidelity quickly decreases to near zero
values and remains at such values. Figure 3(b) shows that SL/2

increases with time and rapidly becomes saturated.

III. EMERGENCE OF FLOQUET SCARRING STATES

A. Quantum revivals

Figure 2(a) presents an example of the phenomenon of
quantum revivals, where the fidelity exhibits distinct peaks
during the time evolution and the revival period is about twice
of that for the undriven case: Tr ≈ 2T∗. The results in Fig. 2(a)
suggest that the periodic driving induces and enhances quan-
tum revivals, as characterized by the higher revival amplitude
in Fig. 2(a). Similarly, the entanglement entropy SL/2 in the
driven system is relatively lower, as shown in Fig. 2(b). It is
worth noting that, for static detuning U = U0 = 4.4, there is
no revival of the initial state |ψs〉 due to the rapid thermaliza-
tion, as exemplified in Fig. 4. Insights into the driven revival
dynamics from |ψs〉 can be gained by studying the Floquet
eigenstates. In particular, the periodically modulated Hamil-
tonian H (t ) = H (t + T ) is determined by the time evolution
of the Floquet operator over one period T [50]:

U (t0 + T, t0) = T exp

[
−i

∫ t0+T

t0

H (t )dt

]
, (4)
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FIG. 2. Scarring dynamics in a quench process in the 1D tilted
Fermi-Hubbard system. The initial state is |ψs〉 = |↓↑↑↓↓↑↑↓〉.
The system parameters are L = 8 and � = 10. The undriven case
for U = 10 is represented by the blue color, and the driven case
by orange for U0 = 4.4, Um = 5.6, and ω = 2

√
2. Time evolution of

(a) wave function fidelity F and (b) bipartite entanglement entropy
SL/2. (c), (d) The overlap of the eigenstates and Floquet eigenstates
with |ψs〉 for the undriven and driven cases, respectively, where the
black dots indicate the top of every tower structures, corresponding to
the scarring states in (c) and the Floquet scarring states in (d). These
towers have an equal or approximately equal energy separation of
about

√
2 in (c) and ω/4 in (d).

where T denotes the time ordering and the initial time t0
is set to 0. For square-wave driving, the Floquet operator
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FIG. 3. Distinct dynamical behaviors following a quench from
a thermalized initial state. The nonequilibrium initial state is given
by |ψth〉 = |↑↓↑↓↑↓↑↓〉. The undriven system has U = 10 and the
Floquet has a square-wave driving U (t ) = U0 + Um sgn[cos(ωt )] =
4.4 + 5.6 sgn[cos(2

√
2t )]. (a) Time evolution of the wave function

fidelity: Both the undriven and Floquet systems rapidly thermalize
as the fidelity quickly decreases to zero without any revivals, and (b)
SL/2 increases and rapidly becomes saturated. Other system parame-
ters are L = 8 and � = 10.

FIG. 4. Time evolution of the wave-function fidelity. The quan-
tum state is quenched from (a) |ψs〉 and (b) |ψth〉 for two undriven
cases with U = 10 (blue) and U = 4.4 (red). System parameter
values are L = 8 and � = 10.

becomes

U = e−iH+T/4e−iH−T/2e−iH+T/4, (5)

where

H± = Hs ± Um

∑
j

n̂ j,↑n̂ j,↓, (6)

with the static detuning Hamiltonian Hs. The Floquet opera-
tor is unitary with complex eigenvalues {e−iεnT } and Floquet
eigenstates {|n〉}. The quantities {εn} are multivalued, whereas
the quasienergies {εn mod ω} can be uniquely determined by
a shift. Further, the time-independent stroboscopic Floquet
Hamiltonian [50] HF can be defined according to U = e−iHFT ,
following HF |n〉 = εn |n〉. The quasienergies and the Floquet
eigenstates can be calculated through exact diagonalization of
the Floquet operator U in the standard Fock space. For L sites
and filling factor ν = 1, the dimension of this space is(

L
L/2

)
×

(
L

L/2

)
.

For L = 8, the dimension is 4900.
Figure 2(d) shows the overlap of the Floquet eigenstates

with the initial state |ψs〉 for the same values of the driving
parameters as in Fig. 2(a). The quasienergies fall within the
interval (−ω/2, ω/2) of the driving frequency, exhibiting four
apparent tower structures with near-equal quasienergy separa-
tion δε ≈ ω/4 ≈ √

2/2. The tops of these towers correspond
to the Floquet scarring eigenstates, marked by the black dots.
The strong overlaps are akin to the ones in Fig. 2(c). The
equal quasienergy separation of the towers is responsible for
quantum revivals: the quasienergy separation is equal to the
revival frequency ωr ≈ δε (a similar property was also noted
previously [27,35]). Combining the relation δE = 2δε, we
obtain the doubling period Tr ≈ 2T∗.

B. Emergence conditions of Floquet scarring states

To uncover the dependence of ωr on the driving pa-
rameters, we search for potential Floquet scarring states. In
particular, we fix � = 10 and scan the parameter plane of U0

and Um to calculate the average fidelity for different driving
frequencies:

〈F 〉t = 1

τ

∫ τ

0
F (t )dt, (7)

where the upper integration bound τ is set as 50. In an approx-
imate sense, the average fidelity characterizes the revivals.
Note that a high value of the average fidelity is not necessarily
indicative of revivals, as it may be the result of many-body
localization or extremely slow thermalization. The following
relative discrepancy of the average fidelity between different
initial states provides a more appropriate way to characterize
quantum revivals:

� = 〈Fs〉t − 〈Fth〉t

〈Fth〉t
, (8)

where the subscripts s and th correspond to the initial state
|ψs〉 and another one chosen as |ψth〉 = |↑↓↑↓ · · ·〉, respec-
tively. The relative discrepancy � in fact quantifies the degree
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FIG. 5. Emergence of Floquet scarring in driven 1D tilted Fermi-Hubbard system. The system size is L = 8. (a), (b) Relative discrepancy
� of the average fidelity between two initial states |ψs〉 and |ψth〉 = |↑↓↑↓↑↓↑↓〉 in the parameter plane (U0,Um ). The average fidelity is
calculated over the time interval [0,50]. The driving frequency is ω = 2

√
2 for (a) and ω = 3.5 for (b). The Floquet scarring states (encircled

in red) appear at some specific values of U0. The regions surrounded by the black curves correspond to the transition states. (c) The quantity Ũ
as the minimum threshold value for the emergence of the scarring dynamics (blue dots) and (U0 )optimal corresponding to the maximal value of
� (red dots) for 31 discrete values of the driving frequency. (d) The quantity Ũ characterized by a series of linear functions fk = � − kω, for
� = 10 and k = 1, 2, · · · , 6.

of quantum revivals after removing the thermal decay behav-
ior of quench from |ψth〉. Figures 5(a) and 5(b) show � versus
U0 and Um for two values of the driving frequency: ω = 2

√
2

and ω = 3.5, respectively, for L = 8. The regions with high
� values are encircled in red, in which Floquet scarring states
arise. These states appear for some specific U0 values (denoted
as U s

0 ) over a wide range of Um, as indicated by the horizontal
lines with bright red. The results suggest

U s
0 ≈ Ũ + nω, (9)

where Ũ is the minimum threshold value for the emergence of
the scarring dynamics for n being an integer and Ũ depends
only on the driving type and its frequency ω. The regions
encircled by the black curves do not correspond to the Floquet
scarring states, even though their � values are not too small. In
fact, in these regions, states are in a transition from Wannier-
Stark localization to the Floquet scarring phase, where both
the quantum fidelity quenching from |ψs〉 and |ψth〉 have large
average values and oscillations, whereas the evolution of |ψs〉
revives without reaching zero. More details of the transition
states are presented in Appendix B.

We further scan the independent parameter space of U0 ∈
[0, 10] and Um ∈ [0, 10] for 31 discrete driving frequencies
ω = √

2, 1.1
√

2, 1.2
√

2, · · · , 4
√

2. At each frequency, the
optimal parameter is given by

(U0)optimal = arg max
U0,Um

{�(U0,Um)}, (10)

which corresponds to the most distinct scarring dynamics in
the entire parameter plane (U0,Um), as shown in Fig. 5(c). The
quantity � is a function of parameters U0 and Um: �(U0,Um),
where the argmax function in Eq. (10) optimizes over both
U0 and Um. The threshold values of Ũ can be obtained from
Eq. (9), which decreases to zero linearly with increased ω

and then attains a larger value. With respect to �, the optimal
parameter (U0)optimal has a similar behavior. The dependency
of Ũ on ω can be characterized by a series of linear functions:

Ũ = � − kω, (11)

for k = 1, 2, 3, · · · , as shown in Fig. 5(d). Since Ũ is the
minimum U s

0 within the range 0 � U0 � 10, the integer k
can be determined by 0 � � − kω < ω for specific driving
frequency ω.

The relations (9) and (11) are the conditions under which
the Floquet scarring states can emerge periodically over a
wide range of the modulation amplitude Um as the static
detuning term U0 varies. This signifies a resonance induced
by the periodic driving, whose frequency is exactly the driving
frequency. While the emergence of the Floquet scarring states
has been illustrated using the analytically treatable case of
discrete pulsed driving, the phenomenon occurs if the driving
is sinusoidal, as shown in Figs. 6 and 7.

IV. ANALYTIC DERIVATION
OF THE EMERGENCE CONDITIONS

A. Emergence conditions

The emergence of the Floquet scarring states, as stipulated
by the conditions in Eqs. (9) and (11), are our main results. We
now analytically derive these conditions from the degenerate
Floquet perturbation theory [27,51]. To begin, we express the
Hamiltonian (1) as H (t ) = H0(t ) + V , where

H0(t ) = �
∑

j,σ=↑,↓
jn̂ j,σ + U (t )

∑
j

n̂ j,↑n̂ j,↓,

V = −J
∑

j,σ=↑,↓
(ĉ†

j,σ ĉ j+1,σ + H.c.). (12)

In the standard Fock basis, H0(t ) is a diagonal matrix
and commutes with itself at different times, V is com-
pletely off-diagonal and can be regarded as a small time-
independent perturbation due to the conditions � � J and
(U0 + Um) � J .

In the unperturbed system [H (t ) = H0(t )], the Flo-
quet eigenstates are simply the Fock bases |F〉, following
H (t ) |Fi〉 = Ei(t ) |Fi〉 with index i marking the ith Fock basis.
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FIG. 6. Emergence of Floquet scarring states under sinusoidal
driving. Shown is the time evolution of (a) wave-function fidelity and
(b) entanglement entropy. The undriven, cosine drive, and sine drive
cases are marked by blue, red, and green, respectively. System pa-
rameter values are L = 8 and � = 10. On-site Coulomb interactions
are U = 0 for undriven model, U (t ) = U0 + Um cos(ωt ) = 4.4 +
5.6 cos(2

√
2t ) for cosine drive, and U (t ) = 4.4 + 5.6 sin(2

√
2t ) for

sine drive.

FIG. 7. Overlap of the Floquet eigenstates with the initial state
under cosine driving. The initial state is (a) |ψs〉 and (b) |ψth〉. The
driving parameter values are the same as those in Fig. 6. The system
parameter values are L = 8 and � = 10. The initial states are |ψs〉 =
|↓↑↑↓↓↑↑↓〉 and |ψth〉 = |↑↓↑↓↑↓↑↓〉. The black dots indicate the
top of each tower structure.

The Floquet modes are [50]

|Fi(t )〉 = e−i
∫ t

0 dt ′Ei (t ′ ) |Fi〉 . (13)

For t = 0, the Floquet modes are the Floquet eigenstates:
|Fi(0)〉 = |Fi〉. Intuitively, without the hopping perturbation
V , the number of spin up (down) fermions at each site does
not change with time and the energy varies in synchrony with
the drive. In this case, the dynamics are fully constrained.

For small V , the Floquet modes start to hybridize and
deviate from the unperturbed Floquet modes. Using Eq. (13),
we expand the Floquet mode |F′

i(t )〉 in the unperturbed eigen-
states set [27] {|Fi〉}:
|F′

i(t )〉 = e−i
∫ t

0 dt ′Ei (t ′ ) |Fi〉 +
∑
j �=i

c j (t )e−i
∫ t

0 dt ′Ej (t ′ ) |F j〉 , (14)

where c j (t ) � 1 is of the order J/� for all j �= i and all t .
The coefficients c j (t ) characterize the small deviations from
the unperturbed Floquet modes. For the perturbed eigenstate
|F′

i〉 at t = 0, we have [27]

c j (0) = −i 〈F j |V |Fi〉
∫ T

0 dtei
∫ t

0 dt ′[Ej (t ′ )−Ei (t ′ )]

ei
∫ T

0 dt[Ej (t )−Ei (t )] − 1
. (15)

More details about Eq. (15) can be found in Appendix C. The
analysis so far holds for nondegenerate states. It breaks down
when degeneracy occurs under the condition [52]

ei
∫ T

0 dt[Ej (t )−Ei (t )] = 1. (16)

Suppose that there are p unperturbed eigenstates degenerate
with a certain Fock basis |Fi〉, satisfying the condition (16)
for |Fi〉. These p Fock bases can be denoted as |Fi j〉 with j =
1, 2, · · · , p, and |Fi〉 ≡ |Fi0〉, following

H0(t ) |Fi j〉 = Ei j (t ) |Fi j〉
and Ei0(t ) = Ei(t ), which form a degenerate set Di =
{|Fi j〉 | j = 0, 1, · · · , p}. From the degenerate perturbation
theory [52], we disregard the expansion on the other unper-
turbed eigenstates. Any state in the perturbed degenerate set
D′

i is then given by

|F′
i j (t )〉 =

p∑
j=0

c j (t )e−i
∫ t

0 dt ′Ei j (t ′ ) |Fi j〉 (17)

at t = 0, where all c j (0) are of the order 1 (not the order J/�).
As a result of first-order perturbation, the Floquet Hamiltonian
HF becomes [27]

(HF) j j′ = 〈Fi j |V |Fi j′ 〉
T

∫ T

0
dtei

∫ t
0 dt ′[Ei j (t ′ )−Ei j′ (t ′ )], (18)

where j, j′ = 0, 1, · · · , p, and details are in Appendix C.
In general, the scarring states, as some embedding con-

structions in the thermal eigenstates, are the result of an
anomalously high overlap with the initial state, shown as
the top of the tower structures in Figs. 2(c) and 2(d). For
L = 8, the special initial state |ψs〉 = |↓↑↑↓↓↑↑↓〉 is one of
the Fock bases: |Fi〉 = |ψs〉. In the nondegenerate case, the
overlap of the perturbed Floquet eigenstates with the initial
state is

|〈F′
j |Fi〉|2 =

{
1, j = i
|ci(0)|2, j �= i.
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According to Eq. (15), the overlap has an anomalously high
value if and only if j = i, which does not allow the formation
of scarred tower structures. Consequently, the Floquet scar-
ring states can arise only in the degenerate case. Any state in
D′

i may have an anomalously high overlap with |Fi0〉, forming
the scarred tower structure. It requires∫ T

0
dt[Ei j (t ) − Ei j′ (t )] = 2kπ, (19)

where k is an integer.
We next treat the degenerate set Di. Since |Fi0〉 lacks

doublon, its eigenenergy is Ei0 = ∑L
k=1 k�. Other Fock base

states with the same eigenenergy (Ei0) must be degenerate
with |Fi0〉, whose number is(

L
L/2

)
− 1.

If Di is entirely composed of the above ( L
L/2) Fock states, then

HF is just the zero matrix according to Eq. (18), since all
the 〈Fi j |V |Fi j′ 〉 terms are zero. Then the eigenstates |F′

i j〉 of
HF cannot have an anomalously high overlap with |Fi0〉. To
ensure that HF has nonzero elements, Di must be extended. In
this regard, the Fock bases can be connected to |Fi0〉 by one
hopping process in Di. If the hopping

|↑↓〉 ↔ |� 0〉 ↔ |↓↑〉
is allowed, the common eigenenergy of the Fock base states
with one doublon is

Ei j (t ) = U (t ) − � +
L∑

k=1

k�.

The degenerate condition now is∫ T

0
dt[Ei0(t ) − Ei j (t )] =

∫ T

0
dt[� − U (t )]

= (� − U0)T

= 2kπ, (20)

i.e., U0 = � − kω, which is exactly the emergence conditions
obtained from numerical calculations: Eqs. (9) and (11).

The above analysis provides some physical insights into
the emergence of the Floquet scarring states. In the presence
of a small hopping process, the Floquet eigenstates start to
hybridize and deviate slightly from the Fock bases. The small
deviations are characterized by c j (t ) in Eq. (14), correspond-
ing to the nondegenerate case. During the hybridization, the
hopping between a series of degenerated unperturbed Floquet
eigenstates can subject the system to heating up and exhibiting
stable Floquet eigenstates with an anomalously high overlap
with the initial state. The conclusion is that the Floquet scar-
ring dynamics originate from the resonances between these
degenerate Fock bases that can be connected by one hopping
process.

B. From undriven to Floquet scarring states

To gain more insights into the emergence of Floquet scar-
ring states, we explore the connection between undriven and

Floquet scarring states. For the undriven system, scarring dy-
namics originate from a subgraph that is weakly connected
to the rest of the Hamiltonian’s adjacency graph [17]. The
vertices of the adjacency graph consist of a series of Fock
states that share the same energy as the initial state |ψs〉. When
the system is quenched from |ψs〉, the wave function |ψ (t )〉
slowly leaks out of this subgraph over time. In the regime
� ≈ U � J , the effective Hamiltonian [17] is

H+
eff = −J

∑
j,σ=↑,↓

ĉ†
j,σ ĉ j+1,σ n̂ j,σ (1 − n̂ j+1,σ ) + H.c.

+ (U − �)
∑

j

n̂ j,↑n̂ j,↓, (21)

where hopping to the left is allowed only if it increases the
number of doublons. This dynamical confinement is the rea-
son for the weakly connected subgraph. From the perturbation
theory, we have that the degenerate set Di of |ψs〉 constitutes
the vertices in the adjacency graph and each edge connecting
two vertices represents an allowed one hopping process.

In the corresponding Floquet system, similar processes
occur. In particular, the adjacency graph now alternates
over time due to the driving amplitude alternating between
U0 + Um and U0 − Um. Taking the driving protocol U (t ) =
4.4 + 5.6 sgn(cos(2

√
2t )) and L = 6 as an example, we find

that the adjacency graph remains the same as that in the
undriven case for t < T/4 or t > 3T/4. For T/4 � t � 3T/4,
it is in the highly tilted regime � � |U0 − Um|, J with the
effective Hamiltonian [44]

H−
eff = J (3)T̂3 + 2J (3)T̂XY + 2J (3)

∑
j,σ

n̂ j,σ n̂ j+1,σ

+ (U0 − Um)

(
1 − 4J2

�2

) ∑
j

n̂ j,↑n̂ j,↓, (22)

where J (3) = (U0 − Um)J2/�2 and

T̂3 =
∑
j,σ

ĉ j,σ ĉ†
j+1,σ ĉ†

j+1,σ ĉ j+2,σ + H.c.,

T̂XY =
∑
j,σ

ĉ†
j,σ ĉ j+1,σ ĉ†

j+1,σ ĉ j,σ .

In this case, all the Fock states without doublons constitute
the vertices of the adjacency graph, as shown in Fig. 8.
According to the Floquet theory, the effective adjacency graph
is described by the Floquet Hamiltonian HF, following

e−iHFT = e−iH+
eff T/4e−iH−

eff T/2e−iH+
eff T/4,

which can be solved by Eq. (18) within the framework of de-
generate Floquet perturbation theory, due to [H+

eff , H−
eff ] �= 0.

The degenerate set D′
i consists of(

L
L/2

)
= 20.

Fock base states without doublons, 30 Fock states with one
doublon |� 0〉 segment, 12 Fock states with two doublon |� 0〉
segments, and |� 0 � 0 � 0〉. The effective adjacency graph
is similar to the one for the undriven system and the driving
parameters (U0,Um, ω) determine the weights of the edges
according to Eq. (18).
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FIG. 8. Adjacency graph of the effective Hamiltonian for the un-
driven system with L = 6 in the highly tilted regime � � |U |, J . The
red vertices are |ψs〉: |↓↑↑↓↓↑〉 and |↑↓↓↑↑↓〉. The blue vertices
are the other Fock states without doublon.

For the Floquet QMBS states, the emergence conditions
are given by U0 = � − kω, where k is an integer. In the limit
of Um → 0, the Floquet dynamics converge to the undriven
dynamics with U = U0, regardless of the value of ω, as illus-
trated by the blue and red curves in Fig. 9(a). The undriven
QMBS states can be viewed as an emergence at U0 = � = 10
and k = 0. The emergence condition induces the resonances
between vertices in the adjacency graph, facilitating weak
ergodicity breaking. The parameters (J,�, ν,Um, ω) deter-
mine the edges and weights among different vertices, thereby

influencing the Floquet QMBS dynamics. The Floquet QMBS
states include but extend far beyond the undriven one, and our
emergence conditions offer a perspective on both Floquet and
undriven QMBS dynamics.

We have obtained numerical results of the scarring states in
both undriven and driven systems. For U0 = 10 and Um near
zero, the Floquet scarring states persist, in agreement with
our emergence condition. The variation of � as a function of
Um is presented in Fig. 9(b), where a relatively high value
of � (e.g., � > 2) signifies a pronounced revival. Approxi-
mately, the Floquet scarring states arise for Um ∈ [0, 1.3]. For
U0 = 10 and ω = 4, Figs. 9(c) and 9(d) present the defor-
mation of the overlapping quantities |〈ε|ψs〉|2 and |〈ε|ψth〉|2,
respectively, as Um increases from 0.01 (undriven) to 10.
The heights of the three most pronounced overlaps |〈ε|ψs〉|2
for Um = 0.01 continuously decrease as Um increases but
they are still at a relatively high level for Um ∈ [0, 1.3], sug-
gesting the robustness of the corresponding Floquet scarring
states.

A remark is in order. The degeneracy condition Eq. (16)
originates from the degenerate Floquet perturbation theory
[34] for the driven PXP model. In this system, the driving
protocol in one period T = 2π/ω is

H (t ) =
{

HPXP + λ
∑

i ni, t � T/2

HPXP − λ
∑

i ni, t > T/2,

where λ is the driving amplitude and ni is the density of
excitations on site i. It was found [34] that, in the vicinity of
the degenerate condition (λ/h̄ω = 2k with nonzero integers
k), the dynamics are controlled by the non-PXP terms in

FIG. 9. From undriven scarring states to Floquet scarring states with driving parameters U0 = 10 and ω = 4. (a) Time evolution
of the wave-function fidelity quenched from |ψs〉 = |↓↑↑↓↓↑↑↓〉 for U = 10 (blue), U (t ) = 10 + 0.01 sgn(cos(4t )) (red), and U (t ) =
10 + 1 sgn(cos(4t )) (green). (b) Relative discrepancy � of the average fidelity between |ψs〉 and |ψth〉 as a function of Um. (c), (d) Overlaps of
the Floquet eigenstates with the initial state as Um varies from 0.01 to 10.
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the Floquet Hamiltonian, which do not support scars. That
is, the degenerate condition (or the resonances between the
unperturbed degenerated bases) leads to a reentrant transition
from weak ergodicity breaking to the ergodic regimes. It was
found subsequently [41] that the degenerate condition plays a
similar role in a periodically driven, interacting, nonintegrable
Ising chain: the degenerate condition (or resonance) tends to
destroy the scars, suggesting the possible emergence of stable
Floquet scarring dynamics in the absence of resonances. How-
ever, in our driven tilted Fermi-Hubbard chain, the resonances
play a somewhat opposite role in the emergence of Floquet
scarring states. The contradiction can be attributed to the
nature of the unperturbed dynamics. In particular, in the PXP
model, ergodic heating occurs in the unperturbed system. The
Floquet QMBS dynamics are constrained by the emergence
of the local conserved quantity, while the resonances would
significantly weaken such dynamical constraint. In the tilted
Fermi-Hubbard chain, the fermions are fully confined to their
initial lattice sites, so the unperturbed system does not ther-
malize. In this case, the resonances induced by the hopping
perturbation make the system susceptible to weak ergodicity
breaking.

V. SUBHARMONIC AND INCOMMENSURATE
RESPONSES

Figures 2(a) and 2(d) show a fourth subharmonic response,
a phenomenon reported in the discrete time crystal [37], where
the driven revival frequency is a quarter of the driving fre-
quency: ωr ≈ ω/4. In the 1D PXP model [26,31], under a
driven chemical potential, when the initial state is the Néel
state, a robust (second) subharmonic locking of the scarring
frequency ωr ≈ ω/2 arises over a wide range of the driving
frequency [26]. In fact, the driven revival frequency is a func-
tion of ω, U0, and Um, including harmonic, subharmonic, the
forth subharmonic, etc., and even incommensurate responses.
From the point of view of control and modulation, this implies
a high degree of tunability.

We examine the parameter plane (ω,Um) for the driven
revival frequency at U0 = (U0)optimal, which can be obtained
as ωr = arg maxω [ f (ω)], where

f (ω) =
∫ τ

0
F (t )e−iωt dt (23)

is the Fourier transform of F (t ) (we set τ = 100 in numerical
calculation). Figure 10(a) shows the relative discrepancy � as
a function of ω and Um for U0 = (U0)optimal. In the frequency
domain, a higher amplitude f (ωr ) always corresponds to nar-
rower broadening at ωr , indicating higher revival peaks and
more stable revival frequency, suggesting that the value of
f (ωr ) can be used to characterize the strength of the quantum
revivals. The contour line of f (ωr ) = 1 is plotted in black
chain curve. The frequency of the undriven revivals, f (w∗) =
16.12, serves as a reference point.

Figure 10(b) shows the actual dependence of the revival
frequency ωr on ω and Um for U0 = (U0)optimal, where the
regions with high � correspond to the typical scarring dy-
namics. The regions with low � values (� < 1) can then be
disregarded, shown as the blank area with boundaries marked
by the black chain curves. As (U0)optimal abruptly changes its
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FIG. 10. Quantum revival properties of scarring dynamics in the
driven 1D tilted Fermi-Hubbard systems. The emergence of the
scarring states depends on the modulation amplitude Um and the
driving frequency ω. The system parameters are L = 8 and U0 =
(U0 )optimal. The color scales indicate (a) the relative discrepancy �,
(b) the revival frequency ωr , and (c) the orders of subharmonic
response.

value at ω/
√

2 = 1.1, 1.5, and 2.3 [Fig. 5(c)], the changes in
ωr are discontinuous at these driving frequencies. The modu-
lation amplitude Um tends to shift toward a larger value when
(U0)optimal switches to a larger value. For ω = √

2, the scarring
region follows ωr � 0.84 as marked by the same color (deep
red). Figure 10(c) shows the contour lines representing a com-
mensurate relation between ωr and ω, including the second,
third, . . ., and sixth subharmonic responses, i.e., ωr = ω/k
with k = 2, 3, · · · , 6, marked in different colors with the har-
monic response (ωr = ω) at ω = √

2 shown in the subgraph.
An incommensurate relation can be realized in the regions
between the adjacent contour lines. A convenient method
to regulate these responses is fixing the driving frequency
ω (with the corresponding U0) and then tuning Um, the so-
called engineering subharmonic response via Floquet scarring
states [32].
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VI. DISCUSSION

In complex quantum systems, many-body interactions nat-
urally lead to thermalization that destroys the coherence of the
quantum states. However, QMBS states represent an excep-
tion with significant potential applications, e.g., in quantum
information science and technology. The phenomenon of
QMBS has attracted a great deal of recent attention. From
an application perspective, driven systems are of particular
interest because of the possibility of realizing quantum control
and engineering through some external driving input. In a pe-
riodically driven system, the QMBS states become the Floquet
scarring states that have mostly been investigated using the
PXP model that is specific to the Rydberg atomic systems.
A field in which many-body interactions are fundamental is
solid-state systems that are often more accessible to control
and device engineering, rendering useful and important study-
ing the phenomenon of Floquet scarring in these systems.
A paradigm for probing into Fermionic many-body physics
in these systems is the 1D Fermi-Hubbard chain.

Here, we studied the 1D tilted Fermi-Hubbard system
under periodic driving, motivated by the following consider-
ations. Most existing studies on Floquet scarring focused on
the PXP model under various engineered driving protocols.
Whether QMBS states can emerge in general driven quan-
tum systems and the underlying mechanisms remain open
issues. For example, beyond known QMBS models such as
the PXP model and the spin-1 XY model, distinct types of
Floquet QMBS states may arise in other driven many-body
systems and uncovering the emergence mechanisms could
provide deeper insights into Floquet QMBS and broaden the
applications of Floquet engineering in controlling quantum
many-body dynamics. As a paradigmatic quantum many-
body model, the 1D tilted Fermi-Hubbard chains was argued
to host QMBS states [17], providing an ideal experimen-
tal platform for studying weak ergodicity breaking [44]. We
asked the question of whether Floquet QMBS states can
emerge in this system. Given its rich many-body physics
and the recent experimental realization in cold-atom sys-
tems, this model provides an excellent platform for studying
the interplay between periodic driving and weak ergodicity
breaking. Investigating Floquet QMBS in this system would
not only extend our understanding of nonequilibrium many-
body dynamics beyond the PXP model but also offer insights
into how periodic driving can stabilize or enhance quantum
coherence in interacting systems. Furthermore, the tunabil-
ity of interactions in cold-atom experiments via Feshbach
resonances makes this system particularly suitable for experi-
mental verification, offering a promising direction for Floquet
engineering of quantum many-body states.

The 1D tilted static Fermi-Hubbard chain hosts QMBS
states in a typical parameter regime [17]. The scarring dy-
namics follow a quench from some special initial states and
their spin-reversed states. Our computations and analysis pro-
vide unequivocal evidence for the emergence of the Floquet
scarring states in the systems with physical manifestations
including persistent quantum revivals, suppressed entangle-
ment entropy, and the scarred tower structures in the overlaps
of Floquet eigenstates with the initial state. A unique fea-
ture of the towers is that they have an equal quasienergy

separation that is approximately the revival frequency. This
feature is associated with the wave function fidelity undergo-
ing a constructive (or destructive) process to reach the local
maximum (or minimum), similar to the previous explanation
(Supplemental Material IV in Ref. [35]). Further, there are
subharmonic and incommensurate responses of the revivals
to driving.

The main contribution of our work is the discovery of the
conditions under which the Floquet scarring states emerge.
The general conditions were obtained through a systematic
probe of the parameter space defining the driving signal, re-
vealing that these states are the result of a synchrony between
the static detuning and the driving frequency. An applica-
tion of the degenerate Floquet perturbation theory allowed us
to analytically derive the emergence conditions. Theoretical
analysis revealed that the Floquet scarring states originate
from the resonances between these degenerate Fock base
states that can be connected through a one hopping process.
The resonances are induced by the first-order perturbation
effect, weakening the constraint in the unperturbed dynam-
ics. Floquet scarring states are of fundamental importance to
many-body physics with significant applications in quantum
control and engineering. Our work provides a stepping stone
for further analyzing the breakdown of the ETH in solid-state
systems and a more rigorous understanding of the Floquet
scarring states.
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APPENDIX A: QUANTUM DYNAMICAL EVOLUTION
AND RELATED PHYSICAL QUANTITIES

1. Quantum evolution dynamics

We reduce the dimension of the Hamiltonian Hilbert space
following the method in Ref. [44]. For fixed numbers of spin-
up (N↑) and spin-down (N↓) fermions in a lattice of L sites,
the number of spin σ bases is

dσ =
(

L
Nσ

)
. (A1)

Denoting the occupation sites of the spin-up and spin-down
fermions as {i1, i2, · · · iN↑ , } and { j1, j2, · · · , jN↓}, respec-
tively, we obtain the typical number state as

|ψ〉 = ĉi1,↑ĉi2,↑ · · · ĉiN↑ ,↑ĉ j1,↓ĉ j2,↓ · · · ĉ jN↓ ,↓ |0〉 . (A2)

The state can be represented by a pair of tuples (α, β ) ≡
((i1, i2, · · · iN↑ ), ( j1, j2, · · · , jN↓ )) with the ordering 1 � i1 <

i2 < · · · < iN↑ � L and 1 � j1 < j2 < · · · < jN↓ � L. The
number of full basis is thus d↑ × d↓ and a state is
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given by

|ψ〉 =
∑
α,β

|α, β〉 〈α, β|ψ〉 ≡
∑
α,β

M (ψ )
αβ |α, β〉 , (A3)

where M (ψ ) is a d↑ × d↓ matrix, and |α, β〉 is the full basis
corresponding to the tuple pair (α, β ). The Hamiltonian be-
comes

H = Hhop
↑ ⊗ 1↓ + 1↑ ⊗ Hhop

↓ + Hdiag, (A4)

where 1σ is the dσ × dσ unit matrix,

Hhop
σ =

∑
i

ĉ†
i,σ ĉi+1,σ + H.c.

is the dσ × dσ matrix, and Hdiag is a d↑d↓ × d↑d↓ diagonal
matrix. Defining the d↑ × d↓ matrix F ≡ diag(Hdiag) with the
elements

Fαβ =
⎛
⎝ N↑∑

k=1

ik +
N↓∑

k=1

jk

⎞
⎠� + UNd , (A5)

where

Nd = |(i1, i2, · · · iN↑ ) ∩ ( j1, j2, · · · , jN↓ )|
is the number of the doublons, we obtain the Schrödinger
equation as

i
∑
α,β

∂M (ψ )
αβ

∂t
|α, β〉 = (Hhop

↑ ⊗ 1↓ + 1↑ ⊗ Hhop
↓ + F )

·
∑
α,β

M (ψ )
αβ |α, β〉 , (A6)

i.e.,

i∂M (ψ )/∂t = Hhop
↑ M (ψ ) + M (ψ )Hhop

↓ + F ◦ M (ψ ), (A7)

where ◦ represents the element-by-element multiplication
(Hadamard product). An application of the Trotter-Suzuki
decomposition stipulates that the dynamical evolution of the
initial state is described by

M (ψ )(t + δt ) ≈ e−iδt◦F ◦ e−iδtHhop
↑ M (ψ )(t )e−iδtHhop

↓ , (A8)

where the matrices F , Hhop
↑ , and Hhop

↓ are all time dependent
and e−iδt◦F is the element-wise exponentiation. As a result, the
matrix computation has been reduced from the d↑d↓ × d↑d↓
dimension to the d↑ × d↓ dimension.

2. Bipartite von Neumann entanglement entropy
and error analysis

The basis numbers for the left and right half-chains are dl

and dr , respectively. A typical quantum state is

|ψ〉 =
∑
l,r

ψlr |l〉 ⊗ |r〉 , (A9)

where ψlr is the element of the dl × dr matrix ψ , |l〉 and |r〉
are the bases of the left and right half-chains, respectively. The
reduced density matrix is

ρl = trr |ψ〉 〈ψ | =
∑

r′
〈r′|ψ〉 〈ψ |r′〉 = ψψ†, (A10)

FIG. 11. Error estimates for Trotter-Suzuki decomposition. The
exact values are calculated by the fourth-order Runge-Kutta method.
Shown are the standard Lp norms of (a), (b) fidelity F ; (c), (d) bi-
partite entanglement entropy SL/2; and (e), (f) imbalance I as the
function of (a), (c), (e) the Trotter steps n or (b), (d), (f) time t .

and similarly ρr = (ψ†ψ )T . Using the singular value decom-
position, we obtain the matrix ψ as

ψ = A�B†, (A11)

where � is a dl × dr diagonal matrix, and A and B are dl × dl

and dr × dr unitary matrices, respectively. When the lattice
number L is even, we have dl = dr = 2L and the bipartite von
Neumann entanglement entropy is

SL/2 = Sl = Sr = −
dl∑

i=1

�2
i ln �2

i . (A12)

The Trotter-Suzuki decomposition leads to error accumula-
tion, but the error decreases with increased time steps n in per
time unit τ . The error can be quantified by the standard Lp

norm

∥∥OR − OT
n

∥∥
p =

(∫ t

0

∣∣OR(t ) − OT
n (t )

∣∣p
dt

)1/p

, (A13)

with p = 1, 2, ...,∞, where O is some physical quantity,
OR represents the exact value calculated by the fourth-order
Runge-Kutta method, and OT

n is the value calculated by the n-
step Trotter-Suzuki decomposition. Specifically, p = 1 means
the average difference between OT

n and OR and = ∞ with∥∥OR − OT
n

∥∥
∞ = max

(∣∣OR(t ) − OT
n (t )

∣∣)
means the largest difference between them. Figures 11(a)
and 11(b) show Lp norms with p = 1, 2,∞ of the fidelity
F for different time step n with the fixed integration upper
bound t = 100τ , and for different upper bound t for a fixed
time steps n = 200, respectively. Figures 11(c)–11(f), respec-
tively, display the corresponding Lp norms for the bipartite
von Neumann entanglement entropy SL/2 and the imbalance
I = (No − Ne)/(No + Ne) on the even and odd sublattices. In
an approximate sense, the Lp norm approaches zero as 1/n,
and decreases slightly for increasing time.
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FIG. 12. Properties of the transition state encircled by
black curves in Fig. 5(a). The parameters are (U0,Um, ω) =
(2.5, 6.2, 2

√
2). (a), (b) Dynamics of the wave function fidelity

in a quench process from the initial state (a) |ψs〉 or (b) |ψth〉.
Wannier-Stark localization with U = 0 is colored in blue and the
transition state is colored in orange. (c), (d) The overlap of the
Floquet eigenstates with (c) |ψs〉 or (d) |ψth〉.

APPENDIX B: WANNIER-STARK LOCALIZATION

For a noninteracting system with U = 0, the Hamiltonian
can be diagonalized as [54]

H =
∑

m,σ=↑,↓
�mb̂†

m,σ b̂m,σ + H.c. (B1)

by the transformation

b̂m =
∑

j,σ=↑,↓
J j−m(2J/�)ĉ j,σ , (B2)

where Jn is the Bessel function of the first kind. Since
|Jn(2J/�)| < e−|n| for 2J/� � n, all eigenstates are local-
ized for any � �= 0: the phenomenon of called Wannier-Stark
localization [55]. More specifically, each eigenstate is local-
ized about site m with an inverse localization length

ξ−1 ≈ 2 sinh−1(�/2J )

and exhibits Bloch oscillations [56,57] with the characteristic
period T = h/� = 2πτ/� in our units. The wave function
fidelity oscillates about a high value, as shown in blue in
Figs. 12(a) and 12(b). This is a manifestation of Bloch os-
cillations of the period T ≈ 0.628, in consistence with the
theoretical result.

In Figs. 12(a)–12(d), the orange represents the case in the
regions encircled by the black curves in Fig. 5(a): ω = 2

√
2,

U0 = 2.5, and Um = 6.2. The fidelity oscillates about a value
that decays slowly over time. It does not decrease to zero
and so does not indicate a revival behavior. In addition, there
is no intrinsic difference between the initial states |ψs〉 and
|ψth〉, for both the quantum fidelity [Figs. 12(a) and 12(b)]
and the overlap of Floquet eigenstates with the initial states
[Figs. 12(c) and 12(d)]. Especially in Fig. 12(c), the tower
structure and the anomalously high overlap with |ψs〉 do not
exist. While both the average fidelity 〈Fs〉t from |ψs〉 and the
relative discrepancy � are high, none of the above characteris-
tics are consistent with the scarring dynamics. In this regard,
these regions encircled by black curves in Figs. 5(a) and
5(b) correspond to the transition states from Wannier-Stark
localization to the Floquet scarring phase.

APPENDIX C: FLOQUET PERTURBATION THEORY

Here we introduce the Floquet perturbation theory [27].
The Hamiltonian H (t ) = H0(t ) + V has the period T , where
V is the time-independent perturbation term. Assuming that
H0(t ) commutes with itself at different times, its eigenstates
|m〉 are time independent in the specific basis, as the result of
H0(t ) |m〉 = Em(t ) |m〉 and 〈q|m〉 = δqm. We also assume that
V is completely off-diagonal in this basis, i.e., 〈m|V |m〉 = 0
for all |m〉.

The Floquet modes |m(t )〉 of H (t ) satisfy the Schrödinger
equation:

i
∂|m(t )〉

∂t
= H (t )|m(t )〉 (C1)

and

|m(T )〉 = e−iεm |m(0)〉 , (C2)

where εm are quasienergies of H (t ), and εm are eigenvalues
of the Floquet Hamiltonian HF: HF |m〉 = εm |m〉. For t = 0,
the Floquet modes |m(0)〉 are referred to as the Floquet eigen-
states, which are indeed equivalent to the eigenstates |m〉. For
V = 0, we have

|m(t )〉 = e−i
∫ t

0 dt ′Em (t ′ ) |m〉 ,

e−iεm = e−i
∫ T

0 dtEm (t ).

For small V , the Floquet modes |m(t )〉 can be expanded in
terms of the unperturbed eigenstates:

|m(t )〉 =
∑

q

cq(t )e−i
∫ t

0 dt ′Eq (t ′ ) |q〉 , (C3)

where cm(t ) � 1 for all t , and cq(t ) is of the order V for all
q �= m and all t . Substituting Eq. (C3) into the Schrödinger
equation, we obtain

i
∑

q

dcq(t )

dt
e−i

∫ t
0 dt ′Eq (t ′ ) |q〉 = V

∑
q

cq(t )e−i
∫ t

0 dt ′Eq (t ′ ) |q〉 .

Taking the inner product with 〈m| leads to

i
dcm(t )

dt
= cm(t ) 〈m|V |m〉

+
∑
q �=m

cq(t )ei
∫ t

0 dt ′[Em (t ′ )−Eq (t ′ )] 〈m|V |q〉 . (C4)

Since 〈m|V |q〉 and cq(t ) are of the order V , their product in the
sum represents a second-order term in V that can be neglected.
Since 〈m|V |m〉 = 0, we have dcm(t )/dt = 0. Consequently,
cm(t ) can be chosen as one for all t . We get

|m(t )〉 = e−i
∫ t

0 dt ′Em (t ′ ) |m〉 +
∑
q �=m

cq(t )e−i
∫ t

0 dt ′Eq (t ′ ) |q〉 , (C5)

where cq(t ) is of the order V for all q �= m and all t .
Taking the inner product with 〈q(t )| and integrating the

Schrödinger equation (C1) from t = 0 to t = T , we obtain

cq(T ) = cq(0) − i 〈q|V |m〉
∫ T

0
dtei

∫ t
0 dt ′[Eq (t ′ )−Em (t ′ )]. (C6)
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In addition, utilizing the relation (C2) for all q �= m, we get

cq(T ) = ei
∫ T

0 dt[Eq (t )−Em (t )]cq(0). (C7)

Combining Eqs. (C6) and (C7), we have

cq(0) = −i 〈q|V |m〉
∫ T

0 dtei
∫ t

0 dt ′[Eq (t ′ )−Em (t ′ )]

ei
∫ T

0 dt[Eq (t )−Em (t )] − 1
. (C8)

The analysis so far holds for nondegenerate states. It breaks
down when degeneracy occurs under the condition

ei
∫ T

0 dt[Eq (t )−Em (t )] = 1. (C9)

Suppose that there are p states satisfying the condition (C9)
with |m〉, denoted as |mi〉 with i = 1, 2, · · · , p and |m〉 ≡
|m0〉. Ignoring all other states of the system for the moment,
the Floquet mode |mi(t )〉 now is

|mi(t )〉 =
p∑

j=0

c j (t )e−i
∫ t

0 dt ′Ej (t ′ ) |mj〉 (C10)

for i = 0, 1, · · · , p, where all the c j (t )’s are of the order one
(not of the order V ). Equation (C4) becomes

i
dci(t )

dt
=

∑
j �=i

c j (t )ei
∫ t

0 dt ′[Ei (t ′ )−Ej (t ′ )] 〈mi|V |mj〉 , (C11)

where the sum term is no longer a second-order term in V . To
the first order of V , we can replace c j (t ) by c j (0) on the right
side of Eq. (C11). Integrating from t = 0 to t = T , we have

ci(T ) = ci(0) − i
∑
j �=i

〈mi|V |mj〉 c j (0)

×
∫ T

0
dtei

∫ t
0 dt ′[Ei (t ′ )−Ej (t ′ )],

which can be written as matrix form as

c(T ) = (I − iM )c(0), (C12)

where c(t ) = [c0(t ), c1(t ), · · · , cp(t )]T and the (p + 1) ×
(p + 1) matrix M has the elements

Mi j = 〈mi|V |mj〉
∫ T

0
dtei

∫ t
0 dt ′[Ei (t ′ )−Ej (t ′ )]. (C13)

Let the eigenvalues of M be ςi with i = 0, 1, · · · , p. The
corresponding eigenstates are c(T ) = e−iςi c(0). The Floquet
modes |mi(t )〉 satisfy the condition

|mi(T )〉 = e−iεiT |mi(0)〉 .

FIG. 13. Period doubling of quantum revival under square-wave
drive. (a) Period doubling occurred for U0 = (U0 )optimal and Um =
U − U0, for U = 10. (b) Driven quantum revival from |ψs〉, which
is enhanced and stabilized by the square-wave driving, for optimal
parameter set (U0,Um, ω) = (8.26, 2.66,

√
2).

The Floquet quasienergies are then given by

e−iεiT = e−iςi−i
∫ T

0 dtEi (t ), (C14)

and the Floquet Hamiltonian is

(HF)i j = Mi j

T
. (C15)

APPENDIX D: ROBUST PERIOD DOUBLING

In contrast to the tunable responses, there is a robust
period-doubling phenomenon relating the driven and undriven
revival periods: Tr = 2T∗ for U0 = (U0)optimal and Um = U −
U0, as exemplified in Fig. 2(a). Figure 13(a) shows such a
phenomenon for ωr ≈ ω∗/2 over a wide range of ω. For ω =√

2, there is a harmonic response: Tr ≈ T∗. In this case, we
have identified an overall optimal parameter set (ω,U0,Um) =
(
√

2, 8.26, 2.66) for 31 values of the driving frequency, in
which the quantum revival is greatly enhanced and stabilized
by periodic driving, especially for a long-time evolution, as
shown in Fig. 13(b). The optimal driving frequency is close to
the undriven revival frequency: ωoptimal ≈ ω∗, and the driven
revival frequency is close to the optimal driving frequency:
ωr ≈ ωoptimal (the harmonic response).
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