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Experimentally feasible methods to determine the Berry phase, a fundamental quantity characterizing a
quantum material, are often needed in applications. We develop an approach to detecting the Berry phase by using
a class of two-dimensional (2D) Dirac materials with a flat band, the α-T3 lattices. The properties of this class of
quantum materials are controlled by a single parameter 0 � α � 1, where the left and right end points correspond
to graphene with pseudospin- 1

2 and the dice lattice with pseudospin-1 Dirac-Weyl quasiparticles, respectively,
and each specific value of α represents a material with a unique Berry phase. Applying a constant electric field
to the α-T3 lattice, we calculate the resulting electric current and find a one-to-one correspondence between the
current and the Berry phase in both the linear and nonlinear response regimes. In the linear (Kubo) regime, the
main physics is the Zitterbewegung effect. In the nonlinear regime, the Schwinger mechanism dominates. Beyond
the nonlinear regime, Bloch-Zener oscillations can arise. Measuring the current thus provides an effective and
experimentally feasible way to determine the Berry phase for this spectrum of 2D quantum materials.
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I. INTRODUCTION

The Berry phase (the geometric phase or the
Pancharatnam-Berry phase) [1–3] of the electronic wave
function is a fundamental characteristic of quantum materials
and can have significant effects on material properties and
physical phenomena such as polarization, magnetism, and
quantum anomalous spin Hall effects [4]. The Berry phase
arises when a parameter of the system completes a cycle
of adiabatic changes: even as the parameter returns to its
initial value, the wave function gains an extra phase of purely
geometric origin. The value of the Berry phase depends on
the nature of the quasiparticles which, in turn, depends on
the specific quantum material. Given a family of quantum
materials, the Berry phase is effectively a unique identifier
of each material in the family. For example, monolayer
graphene hosting a pair of Dirac cones and pseudospin- 1

2
quasiparticles, the Berry phase is ±π associated, respectively,
with the electronic states in the two Dirac cones [5,6]. For
bilayer graphene, the Berry phase is 2π , which leads to
unconventional quantum Hall effect [7]. For pseudospin-1
Dirac-Weyl materials, the Berry phase is zero [8,9]. In recent
years, various two-dimensional (2D) Dirac materials have
been discovered at a rapid pace [10–12], each carrying a
unique type of quasiparticles with a unique value of the
Berry phase. Given a new quantum material, knowing the
Berry phase is thus of theoretical, experimental, and applied
interests.

*Contact author: Ying-Cheng.Lai@asu.edu

In principle, the phenomenon of Aharonov-Bohm inter-
ference provides an approach to assessing the Berry phase
[13–15]. Take graphene as an example. For a circular
graphene p-n junction resonator, due to the ±π Berry phase
of the quasiparticles, as the strength of an external magnetic
field is tuned, a sudden change in the energy of the angular-
momentum states can occur, providing an indirect way to
ascertain the value of the Berry phase [14,15]. For photonic
crystals, their analogy with graphene was exploited to mea-
sure the geometric Berry phase by removing the dynamical
phase [16]. For a general family of 2D Dirac-Weyl materials
(the α-T3 lattices), the semiclassical dynamics of a chaotic
cavity made of such a material were explored to infer its Berry
phase [9]. In particular, by applying a gate voltage to generate
a quasiconfinement of a certain geometric shape that gener-
ates chaos in the classical limit, a one-to-one correspondence
between the exponential rate of particles escaping from the
cavity and the Berry phase was identified. Despite the theoret-
ical appeal of this semiclassical phenomenon, experimentally
monitoring the decay of an ensemble of quasiparticles from a
cavity of certain quantum material is not feasible at present.

In this paper, we present theoretical calculations leading
to an experimentally feasible approach to detecting the Berry
phase for the α-T3 lattice family whose material properties
are controlled by a single parameter: 0 � α � 1. An α-T3

lattice has the honeycomb lattice as its base with an addi-
tional atom at the center of each hexagonal unit cell. In the
tight-binding approximation, the center atom couples with
any of the hexagonal atoms with the energy αtε , where tε
is the nearest-neighbor coupling energy of the honeycomb
lattice. Because of the center atom, an α-T3 lattice with α > 0
possesses three distinct energy bands: a pair of Dirac cones
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and a flat band through the contact point of the two Dirac
cones. As α increases from zero, a continuous spectrum of
2D Dirac-Weyl materials is generated: from the graphene
(α = 0) to the dice lattice (α = 1), and the corresponding
Berry phase can change from π to zero. As a result of the
continuous decrease in the Berry phase, a number of per-
tinent physical phenomena change their characteristics. For
example, the flat band plays an important role in the accurate
quantization of the Hall conductivity in α-T3 lattices [17].
Wave-packet dynamics and Zitterbewegung [18], the effect
of periodic kicks [19], Floquet dynamics driven by an elec-
tromagnetic field [20], the size effects on atomic collapse
[21], and topological phase transitions [22] have also been
explored in an α-T3 lattice. The orbital magnetic response [23]
at the Dirac point changes from diamagnetic (α = 0) to para-
magnetic (α = 1) and the nature of the Hall quantization [8]
switches from relativistic to nonrelativistic. Moreover, the pat-
terns of optical response [24] and magneto-optical modulation
[25] change because they depend on the interband transitions
among the three bands. Further, optical conductivity quanti-
zation and higher-order harmonic generation were observed
[26], so was the effect of a broken flat band on the integer
quantum Hall effect by the disorder or staggered lattice po-
tential [27]. Experimentally, the α-T3 lattice has been realized
in the critical doping material [28] Hg1−xCdxTe. For α = 1,
the dice lattice described by the pseudospin-1 Dirac-Weyl
Hamiltonian can be grown in the transition-metal oxide [29]
SrTiO3/SrIrO3/SrTiO3 or in graphene-In2Te2 bilayer [30].

We focus on the electric current density (or simply the
current) produced when a constant electric field is applied to
the α-T3 lattice. In the classical Drude picture, when driven
by a constant electric field E , the electron momentum in the
ballistic transport regime increases with time: q = eEt . Nev-
ertheless, Dirac electrons will be excited “instantaneously” to
the Fermi velocity (pinned to the “light cone”) [31], where
the excitation mechanism is described by the Schwinger ef-
fect [32] or the Landau-Zener dynamics [33,34] that occur
where there are two avoided-crossing energy levels under
the adiabatic evolution induced by the electric field. Another
relevant phenomenon is Bloch oscillations [35,36] in the time
evolution of the electronic states in a single energy band.
When multiple bands without crossings are present, Bloch-
Zener oscillations [37–39] can take place. For the α-T3 lattice,
irregular Bloch-Zener oscillations [40] can arise, due to the
mixed interference of the quantum states in multibands based
on Landau-Zener-Stuckelberg-Majorana transitions [41,42].
In addition, the mass term associated with the Dirac electrons
or a weak disorder can render a nonzero minimal conductivity
that depends on the value of α [43]. Other relevant transport
phenomena in the α-T3 lattice includes the linear response
in graphene with the chiral anomaly and nonlinear response
when the perturbation theory breaks down [44], as well as
nonlinear conductivity with THz-induced charge transport
[45]. Nonequilibrium dynamics beyond the linear response in
three-dimensional (3D) Weyl semimetals [46] and nodal loop
semimetals [47] have also been studied.

The main physical considerations behind our calculations
of the current are as follows. On different timescales, the
transport properties and the physical mechanisms are distinct.
In particular, in the Kubo regime [31] under the weak field

approximation, the average current density is saturated and
dominated by the Zitterbewegung effect [48] originated from
the interference between the energy bands, which defines the
regime of linear response. A strong electric field places the
system in the Schwinger regime [32], where the electrons
are excited by the Schwinger mechanism in which the vac-
uum field loses energy to produce electron-positron pairs. The
transition probabilities among the energy bands are described
by the Landau-Zener dynamics [49], where the quasiparticles
adiabatically evolve and transitions occur about the point at
which the two levels are closest to each other but without
crossing. In this regime, the current is proportional to the num-
ber of the excited particles, representing a nonlinear response.
When the product of the electric field and time is compara-
ble to the lattice constant, Bloch oscillations [35,36] become
important in the Landau-Zener dynamics, leading to Bloch-
Zener oscillations [37–39]. The main finding is a monotonic
dependence of the current on the materials parameter α in
both the linear and nonlinear response regimes, implying a
one-to-one correspondence between the current and the Berry
phase, thereby providing a possible experimental scheme to
determine the latter.

II. CURRENT AND BERRY PHASE CALCULATION
FOR α-T3 LATTICE

A. Zero-field effective Hamiltonian

To calculate the current and the Berry phases in an α-T3

lattice, we begin with the zero-field lattice Hamiltonian. The
basic lattice structure is shown in Fig. 1(a), where there are
three distinct atoms in a unit cell: A and B atoms belonging to
the base hexagonal lattice, and C atom at the center of the unit
cell. The tight-binding Hamiltonian is given by [23]

H =
⎡⎣ 0 fp cos ϕ 0

f ∗
p cos ϕ 0 fp sin ϕ

0 f ∗
p sin ϕ 0

⎤⎦, (1)

with

fp = −tε (1 + e−ip·a1/h̄ + e−ip·a2/h̄), (2)

where p = (px, py) and tε is the nearest-neighbor hopping
energy between an A and a B atom with the parametriza-
tion [23]: tan ϕ = α ∈ [0, 1]. In the position space, the
primitive translation vectors are a1 = a(

√
3/2, 3/2), a2 =

a(−√
3/2, 3/2), where a is the lattice constant (intersite

distance). The base vectors in the reciprocal lattice of the
hexagonal Brillouin zone are b1 = (

√
3/3, 1/3)2π/a and

b2 = (−√
3/3, 1/3)2π/a. The eigenenergy spectrum [23] of

α-T3 lattice is independent of the value of α, which con-
sists of a zero-energy flat band E0 = 0 and two linearly
dispersive bands Eλ = λ| fp| with the band index λ = ±.
The structure of the positive band is shown in Fig. 1(b).
There are two nonequivalent Dirac contact points: +K =
(2/(3

√
3), 0)2π/a and −K = ( − 2/(3

√
3), 0)2π/a.

Denoting the momentum vector from a Dirac point ζK
as q and linearizing the corresponding function fq in the
Hamiltonian as

fq ≈ vF (ζqx − iqy), (3)
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FIG. 1. Structure of α-T3 lattice and zero-field energy-band
structure. (a) The lattice structure, where each unit cell contains three
distinct atoms. The nearest-neighbor hopping energy between the A
and B sites is tε and that between B and C sites is αtε . The material
parameter α characterizes the relative coupling strength between
the flat band and the Dirac-cone bands. (b) The zero-field energy
spectrum of the positive dispersion band in the 2D momentum space
for any α value, where the red hexagon denotes the first Brillouin
zone and the zero-energy points give two topologically nonequiva-
lent Dirac points ζK with the valley index ζ = ±1.

where vF is Fermi velocity, qx, qy are the momentum com-
ponents measured from Dirac points with the valley index
ζ = ±1, we obtain the effective Hamiltonian in the continuum
limit at low-energy excitation as

Hq ≈ vF [ζS′
x(ϕ)qx + S′

y(ϕ)qy], (4)

with

S′
x(ϕ) ≡

⎡⎣ 0 cos ϕ 0
cos ϕ 0 sin ϕ

0 sin ϕ 0

⎤⎦, (5)

S′
y(ϕ) ≡

⎡⎣ 0 −i cos ϕ 0
i cos ϕ 0 −i sin ϕ

0 i sin ϕ 0

⎤⎦. (6)

For α = 0, S′
x(0) and S′

y(0) become σx ⊕ 0 and σy ⊕ 0, respec-
tively, leading to

Hq|α=0 = vF (ζσxqx + σyqy) ⊕ 0, (7)

Hspin- 1
2

= vF (σxqx + σyqy). (8)

For α = 1, S′
x(π/4) and S′

y(π/4) are Sx and Sy, respectively,
i.e., the components of the spin-1 matrix vector. In this case,
we have

Hq|α=1 = vF (ζSxqx + Syqy), (9)

Hspin-1 = vF (Sxqx + Syqy). (10)

The continuum effective Hamiltonian of the α-T3 lattice,
as given by Eq. (4), is a general model that includes the
pseudospin- 1

2 and pseudospin-1 lattices as the two opposite
limiting cases. By varying the coupling strength α ∈ [0, 1], a
continuous spectrum of Dirac-Weyl materials with a flat band
can be generated.

B. Low-excitation continuum effective α-T3 Hamiltonian
in a constant electric field

We apply a uniform and constant electric field to an α-T3

lattice in the x direction starting at time t = 0, represented by
a time-dependent vector potential [31,50]. The corresponding
continuum effective Hamiltonian around the two nonequiva-
lent Dirac points becomes

Hq(t ) = vF [ζS′
x(ϕ)qx(t ) + S′

y(ϕ)qy], (11)

with qx(t ) ≡ qx − eA(t ), where A(t ) = Et	(t ) and 	(t ) is a
unit step function of time. The quantum dynamics are gov-
erned by

ih̄∂tψq(t ) = Hq(t )ψq(t ). (12)

In the Landau-Zener adiabatic basis [31,49], under an in-
finitesimal electric field, the evolution of a quantum state is
transformed by

U †
q (t )Hq(t )Uq(t ) = Szεq(t ), (13)

where Sz is the z component of the spin-1 matrix vector and
Uq(t ) is given by⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

cos ϕ eiθq sin ϕ eiθq
1√
2

cos ϕ eiθq

1√
2

0 − 1√
2

1√
2

sin ϕ e−iθq − cos ϕ e−iθq
1√
2

sin ϕ e−iθq

⎤⎥⎥⎥⎥⎥⎥⎦, (14)

with θq(t ) being the phase of fq(t ) and

tan θq(t ) = −ζqy/[qx − eA(t )]

because of

fq(t ) ≈ vF [ζqx(t ) − iqy]. (15)

The eigenstates of positive-, zero-, and negative-energy bands
can then be written and be distinguished. For example, the
positive-eigenenergy spectrum εq(t ) ≡ +| fq(t )| is given by

εq(t ) = vF

√
[qx − eA(t )]2 + q2

y . (16)

The transformed time-dependent Dirac equation becomes

ih̄∂t�q(t ) =
[

Szεq(t ) − S̃x
h̄v2

F qyeE
ζε2

q(t )

]
�q(t ), (17)
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where

�q(t ) ≡ U †
q (t )ψq(t ),

S̃x ≡ Sx sin 2ϕ − SL cos 2ϕ,

with SL defined by

SL ≡
⎡⎣−1/2 0 −1/2

0 1 0
−1/2 0 −1/2

⎤⎦. (18)

The second term in Eq. (17) arises from the time de-
pendence of the unitary transformation −ih̄U †

q (t )∂tUq(t ).
Consider the initial state in which the lower Dirac cone is fully
occupied:

�q(t = 0) = [0, 0, 1]T , (19)

the average current density 〈Jx〉q(t ) in the momentum space
is invariant under the unitary transformation:

〈Jx〉q(t ) ≡ −e[ψq(t )]†(∂qx(t ) Hq(t ))ψq(t ),

= −evF ζ �†
q(t )[U †

q (t )S′
x(ϕ)Uq(t )]�q(t ). (20)

In the adiabatic basis, �q(t ) can be expressed as

�q(t ) = [ξq(t ), γq(t ), βq(t )]T , (21)

where |ξq|2, |γq|2, and |βq|2 are the probabilities of finding the
quasiparticle in the upper, flat, and lower band, respectively.
The average current density can be decomposed into two
parts [31],

〈Jx〉q(t ) = 〈Jx〉intra
q (t ) + 〈Jx〉inter

q (t ), (22)

which are the intraband and interband currents, respectively,
given by

〈Jx〉intra
q (t ) = −evF ζ cos[θq(t )](|ξq(t )|2 − |βq(t )|2), (23)

〈Jx〉inter
q (t ) = −evF ζ sin[θq(t )](2 cos[2ϕ] Re[iξ ∗

q (t )βq(t )]

+
√

2 sin[2ϕ] Re[iξ ∗
q (t )γq(t ) + iγ ∗

q (t )βq(t )]),

(24)

with

sin[2ϕ] = 2α/(1 + α2),

cos[2ϕ] = (1 − α2)/(1 + α2).

The intraband component represents the current density of the
electrons and holes in the upper and lower band, respectively,
with the opposite signs. The interband component depicts the
current density due to the interference between the upper, flat,
and lower bands, where the material parameter α modulates
contributions to the current density from the coupling between
energy bands. In particular, for α = 0, the only contribution to
the current is the transition from the lower to the upper band.
However, for α = 1, the current density is due to the coupling
between the flat band and the other bands. For α ∈ (0, 1),
the interband current density is a mixture of the two extreme
cases.

Using the normalization condition, we have

|ξq(t )|2 − |βq(t )|2 = 2|ξq(t )|2 + |γq(t )|2 − 1. (25)

Substituting Eq. (25) into the intraband current in Eq. (23),
we have that the constant in the third term of Eq. (25) van-
ishes [31] after a momentum integration. Theoretically, the
integration region is infinite over the momentum space from
a Dirac point ζK. From Eq. (23), the integrand is a periodic
function: cos[θq(t )], whose integration over an infinite region
is zero. The intraband current is then the contribution from the
flat and upper bands. More specifically, we denote J intra(t )
and J inter(t ) as the momentum integration of 〈Jx〉intra

q (t ) and
〈Jx〉inter

q (t ), respectively. Since numerical integration cannot
be done in the infinite-momentum space from a Dirac point,
we limit the integration region in the continuum model to
a finite-momentum region to ensure the convergence of the
current: J (t ) = J intra(t ) + J inter(t ). It is worth noting that
the effective model described by Eq. (11) is derived using a
Taylor expansion about a single Dirac point, so the integration
of the average current density from the effective Hamiltonian
includes contributions from this Dirac point only. We can
decompose the contributions from all the energy bands in the
intraband and interband currents by integrating Eqs. (23) and
(24) over the momentum space and following the term order
in Eqs. (23) and (24) to define

J intra(t ) = J intra
ξ (t ) + J intra

γ (t ),

J inter(t ) = J inter
ξβ (t ) + J inter

ξγ (t ) + J inter
γ β (t ). (26)

These expressions are convenient for treating the contribu-
tions to the current by the multiple energy bands in the weak
field (Sec. III A) and strong field (Sec. III B) cases.

To streamline numerical calculations, we define a number
of dimensionless physical quantities in the continuum effec-
tive α-T3 model:

t̃ = t/t0,

q̃x = qx/q0,

q̃y = qy/q0,

Ẽ = E/E0,

ε̃q(t ) = εq(t )/ε0, (27)

J̃ (t ) = J (t )/J0,

〈J̃x〉q(t ) = 〈Jx〉q(t )/〈J0〉q,

where t0 ≡ h̄/tε , q0 ≡ tε/vF , E0 ≡ t2
ε /(eh̄vF ), ε0 ≡ tε ,

J0 ≡ e2E0/h̄ ∼ evF /a2,

and 〈J0〉q ≡ evF .

C. General α-T3 lattice Hamiltonian in a constant electric field

With a constant electric field switched on at t = 0 in the x
direction, the x component of the momentum is px(t ) ≡ px −
eEt . The general Hamiltonian of the α-T3 lattice is given by

H (t ) =
⎡⎣ 0 fp(t ) cos ϕ 0

f ∗
p (t ) cos ϕ 0 fp(t ) sin ϕ

0 f ∗
p (t ) sin ϕ 0

⎤⎦, (28)
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where

fp(t ) = −tε

[
1 + 2 exp

(
−i

3

2

pya

h̄

)
cos

(√
3

2

px(t )a

h̄

)]
.

(29)

The eigenenergy spectrum of the flat band is ε0 = 0, and
the positive dispersion band in the whole hexagonal Brillouin
zone is determined by εp(t ) = +| fp(t )|:

εp(t ) = tε
√

1 + 4 cos Xp(t )[cosYp + cos Xp(t )], (30)

where Xp(t ) = √
3px(t )a/(2h̄) and Yp = 3pya/(2h̄). The uni-

tary transformation Up(t ) is similar to that in Eq. (14) except
that θq(t ) is now replaced by θp(t ), which is the phase of fp(t )
in Eq. (29). The transformed quantum dynamics are governed
by [40]

ih̄∂t�p(t ) =
[

Szεp(t ) − S̃x
at2

ε eE

ε2
p(t )

Cp(t )

]
�p(t ), (31)

with the coefficient given by

Cp(t ) =
√

3 sin Yp sin Xp(t ).

The average current density 〈Jx〉p(t ) contains two contribu-
tions: interband and intraband transitions [31], which can
generally be written as [40]

〈Jx〉intra
p (t ) = J11

x, p(t )(|ξp(t )|2 − |βp(t )|2), (32)

〈Jx〉inter
p (t ) = 2 Re

[
J13

x, p(t )ξ ∗
p (t )βp(t )

]
+ 2 Re

[
J12

x, p(t )ξ ∗
p (t )γp(t ) + J23

x, p(t )γ ∗
p (t )βp(t )

]
.

(33)

To gain insights into these contributions to the average current
density 〈Jx〉p(t ), we recall the matrix of the current density
operator:

Jx, p(t ) = −eU †
p (t )∂px (t )H (t )Up(t ).

The intraband contribution is made by both electrons and
holes, corresponding to

J11
x, p(t ) ≡ J0

x, p(t ) cos 	p(t ),

J33
x, p(t ) = −J11

x, p(t ),

respectively. The interband contribution arises from the inter-
ference of the transitions from the lower to the flat band or the
upper band and from the flat to the upper band, correspond-
ing to J23

x, p(t ), J13
x, p(t ), and J12

x, p(t ), respectively, which are
given by

J13
x, p(t ) ≡ iJ0

x, p(t ) cos[2ϕ] sin[	p(t )],

J12
x, p(t ) ≡ iJ0

x, p(t ) sin[2ϕ] sin[	p(t )]/
√

2, (34)

J23
x, p(t ) = J12

x, p(t ),

where 	p(t ) ≡ θp(t ) + Yp and J0
x, p(t ) is the common factor

with the dimension of the current density:

J0
x, p(t ) = −

√
3 sin[Xp(t )]eatε/h̄.

We use J (t ) to denote the integration of 〈Jx〉p(t ) in the first
Brillouin zone, which will be used to characterize the Bloch
oscillations (in Sec. III C).

For the general α-T3 lattice calculations, the following
dimensionless quantities are convenient:

p̃x = px/p0,

p̃y = py/p0,

Ẽ = E/E0, (35)

J̃ (t ) = J (t )/J0,

〈J̃x〉p(t ) = 〈Jx〉p(t )/〈J0〉p,

with p0 ≡ h̄/a, E0 ≡ tε/(ea), J0 = e2E0/h̄ ∼ etε/(h̄a), and
〈J0〉p = eatε/h̄.

D. Calculating the Berry phases of the α-T3 lattice

The Berry phases associated with the conical and flat
bands can be calculated by assuming that the corresponding
eigenstates adiabatically evolve with time along an arbitrarily
closed loop around the Dirac points ζK in the momentum
space [8]:

φn,ζ = −i

π

∮
d p · 〈ψn|∇p|ψn〉, (36)

which can be calculated either by the continuum effective
Hamiltonian or by the general lattice Hamiltonian (both giv-
ing the same results). For example, from the general lattice
model, the eigenstate of the flat band is

|ψ0〉 =
⎡⎣ sin ϕ eiθp

0
− cos ϕ e−iθp

⎤⎦, (37)

and the eigenstates of the conduction and valence bands with
λ = ±1, respectively, are

|ψλ〉 = 1√
2

⎡⎣ cos ϕ eiθp

λ

sin ϕ e−iθp

⎤⎦, (38)

where θp is the phase of the fp in Eq. (2). The eigenstates in the
continuum effective model are similar to those in the general
lattice model except that θp is replaced by θq, the phase of the
fq in Eq. (3). The Berry phases of the dispersive conical bands
and the dispersionless flat band are given by [8,23]

φλ, ζ = πζ cos 2ϕ = πζ

(
1 − α2

1 + α2

)
, (39)

φ0, ζ = −2πζ cos 2ϕ = −2πζ

(
1 − α2

1 + α2

)
, (40)

respectively. Note that the Berry phases are topological but
not π quantized [23] and are distinct in the +K and −K
valleys except for α = 0, 1. Figure 2 shows that the Berry
phase is a monotonic function of the material parameter α.
The average current density in Eqs. (23), (24), (32), and (33)
also depends on α. If this dependence is monotonic, there will
be a one-to-one correspondence between the current and the
Berry phases, providing a mechanism to determine the Berry
phases by measuring the current.
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FIG. 2. Berry phases of orbits in different energy bands around
the Dirac points ±K versus the material parameter α. The depen-
dence of the Berry phases on α is monotonic.

III. BALLISTIC TRANSPORT
AND BERRY PHASE DETECTION

For nonequilibrium quantum transport in the α-T3 lattice
at zero temperature, depending on the timescale of ballistic
transport, distinct physical behaviors can arise. First, in the
presence of a uniform electric field, if its product with time is
comparable to the quantity h̄/(ea): EtBloch ∼ h̄/(ea), the av-
erage current density will undergo Bloch oscillations [35,36]
due to the Bloch band in the periodic Brillouin zone. If, on this
timescale, two levels do not cross each other, Landau-Zener
transition will occur, leading to Bloch-Zener oscillations [40].
Second, if the timescale is much shorter than the Bloch time
t � tBloch, the lattice can effectively be described by the con-
tinuum effective α-T3 Hamiltonian. Third, when the timescale
is in the Schwinger regime√

h̄/(vF eE ) � t � tBloch,

the transport process becomes nonlinear: J ∝ tE3/2. Fourth,
when the timescale continues to reduce to the Kubo regime

h/W � t �
√

h̄/(vF eE ),

where W is the bandwidth, the average electric current density
is saturated and independent of time: J ∝ E . Finally, for
the ultrashort time transient response t � h/W , the current
behavior becomes full classical J ∝ Et .

To describe our results unambiguously, it is necessary to
distinguish the electric field and current in the two cases where
the α-T3 material is described by the effective continuum
model and by the general lattice model. We use E and J to
denote the electric field and current in the former, while E
and J in the latter.

A. Kubo regime

In the Kubo regime of the weak electric field, we have

|q| =
√

q2
x + q2

y � eEt, (41)

for |q| �= 0 (not too close to the Dirac points). In Eq. (17), the
term eEt in εq(t ) can then be neglected but the field term in the
numerator term −ih̄U †

q (t )∂tUq(t ) should be retained. Initially,
at t = 0, all electrons stay in the lower-energy band. For
t > 0, a uniform constant electric field is switched on along

the x direction, and electron-positron pairs are created by
the Schwinger mechanism [31,32] in the continuum effective
model. Since only a small number of the particles are excited,
the interband (or polarization) contribution from the interfer-
ence between the energy bands dominates over the intraband
(or conduction) contribution. In this regime, Zitterbewegung
governs the small field linear response, where all electrons
propagate with the maximal velocity vF , leading to a saturated
current independent of time.

Integrating the average current density associated with the
momentum 〈Jx〉inter

q (t ) over the whole momentum space gives

J inter ≡ 〈Jx〉inter

= 1

π2h̄2

∫ ∞

0
q dq

∫ 2π

0
dϕ 〈Jx〉inter

q (t ), (42)

where q and ϕ are the radial and angular variables in mo-
mentum space, respectively. For pseudospin- 1

2 quasiparticles
(α = 0), the linear scaling law for the current is [31]

J inter
spin-1/2 = e2E/(4h̄)

with the dimensionless relation

J̃ inter
spin-1/2 = 1

4 Ẽ . (43)

For pseudospin-1 quasiparticles (α = 1), due to the flat band,
the current saturation value is amplified by a factor of 2 and
the corresponding linear scaling law becomes [50]

J̃ inter
spin-1 = 1

2 Ẽ . (44)

For 0 < α < 1, the saturated value of the current over the
electric field J̃ inter/Ẽ is between 1

4 and 1
2 , as shown in Fig. 3,

where the current is normalized by the constant 1
4 .

On the ultrashort timescale, the current exhibits a fully
classical behavior: J̃ /Ẽ ∝ t̃ . After a certain time, the cur-
rent saturates. We tune the material parameter α to assess
the interplay between the flat band and the saturated current
in the weak field regime. For α = 0, there is zero coupling
between the flat and the two dispersive bands, so the interband
current is solely determined by the interference between the
lower and the upper conical bands as J̃ inter

ξβ . For the opposite
extreme case of α = 1, the saturated current is the result of the
interference between the lower and the flat band: J̃ inter

γ β . For
0 < α < 1, the total interband saturated current is a mixture
of the interference contributions between J̃ inter

ξβ and J̃ inter
γ β , as

shown in Fig. 3. Note that the interference between the flat and
the upper bands does not directly contribute any current for the
entire α spectrum because the combination of the interference
between the lower and flat bands and that between the flat
and upper bands is physically equivalent to the interference
between the lower and upper bands.

As α increases from zero, the saturated current from the
interference between the lower and upper bands decreases,
and the current from the interference between the lower and
the flat band increases, as shown in Fig. 4(a). In the regime
of weak field, the flat band suppresses the current from the
interference between the lower and upper bands, and enhances
the one from the interference between the lower and flat bands
for α ∈ (0, 1), as shown in Fig. 4(b). In this case, detecting the
Berry phase through the current probe is feasible since there
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FIG. 3. Time evolution of the current from the effective contin-
uum Hamiltonian in the Kubo regime. Shown is the interband current
divided by the electric field: J̃ /Ẽ for 0 � α � 1. (a)–(d) Saturated
currents divided by the electric field: J̃ /Ẽ , for the total interband
current J̃ inter, the interference current between the flat and the up-
per band J̃ inter

ξγ , the current between the lower and the upper band

J̃ inter
ξβ , and that between the lower and the flat band J̃ inter

γβ for α =
0, 0.2, 0.6, 1, respectively. For comparison, all currents are divided
by 1

4 . Other parameters are electric field Ẽ = 0.0004, valley index of
the Dirac point ζ = +1, size of momentum space in q̃x, q̃y ∈ [−8, 8],
and step sizes of momentum and time dq̃ = dt̃ = 0.01. Note the cut
width about the Dirac point is q̃cut = 0.005 in the momentum space to
make valid the weak field approximation and the quantum dynamic
equation (17).

is a one-to-one correspondence between the saturated current
value and the Berry phase, as shown in Figs. 2 and 4(a).

B. Schwinger regime

Under a strong electric field

(qx, eEt − qx ) � |qy|, (45)

the α-T3 lattice system is in the Schwinger regime. In this
regime, electrons are excited from the lower band to the flat
and upper bands via the Schwinger mechanism, where the
electric field in the vacuum decays and loses energy due to
the production of the electron-positron pairs. The transition
probability to the flat or upper band is the same as the Landau-
Zener transition probability, where the finite-energy gap
between the two avoided-crossing levels induces the nona-
diabatic Landau-Zener transition driven by the electric field.
In the general α-T3 lattice or the corresponding continuum
model, Landau-Zener transitions occur in the neighborhood
of the Dirac points [40] because the energy gap is comparable
with that given by the magnitude of the electric field. After the
Landau-Zener transition, the quantum states are superposition
of the states associated with the three levels [40], and the
nonzero component of the occupied probability in the flat
band is a manifestation of the Landau-Zener transition from
the lower band to the flat band. This transition leaves more
holes in the lower band, leading to an increase in the current.

FIG. 4. Flat-band contribution to the saturated current in the
Kubo regime. (a) Corresponding to the Berry phase diagram in Fig. 2,
the saturated current (the current at the end of time evolution in
Fig. 3) changes with the materials parameter α for the total inter-
band contribution J̃ inter, the interference current between the flat
and upper bands J̃ inter

ξγ , the current between the lower and upper

bands J̃ inter
ξβ , and that between the lower and flat bands J̃ inter

γβ . (b) A
schematic display of the mixing process of interference between the
lower and upper bands and that between the lower and flat bands for
α ∈ (0, 1).

Specifically, in the Schwinger regime, the electric current is
dominated by the intraband transitions, including the flat-band
contribution. The flat band is dispersionless because it has
zero group velocity for the wave packets. This means that
the wave packets corresponding to the flat band are localized
in the real space. However, the flat band also contributes to
the intraband current even though its group velocity is zero,
for the following reasons. First, both electrons and holes con-
tribute to the current. Second, a Landau-Zener transition from
the lower to the flat band can create relatively more holes,
giving rise to an extra current compared to the case without
a flat band. As a result, the intraband current is proportional
to the number of excited particles in both the flat and upper
bands.

Integrating the current 〈Jx〉intra
q (t ) over the whole momen-

tum space gives

J intra(t ) ≡ 〈Jx〉intra(t )

= 1

π2h̄2

∫ ∞

0
q dq

∫ 2π

0
dϕ 〈Jx〉intra

q (t ), (46)
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FIG. 5. Time evolution of the normalized intraband current from
the continuum effective model in the Schwinger regime. The quan-
tity displayed is J̃ /(Ẽ3/2̃t ). (a)–(d) The total intraband saturated
current J̃ intra from the upper band current J̃ intra

ξ and the flat-band

current J̃ intra
γ for α = 0, 0.2, 0.6, 1, respectively. For comparison,

all currents are divided by 2/π 2. Other parameters are electric field
Ẽ = 0.4096, valley index ζ = +1, size of momentum space q̃x, q̃y ∈
[−8, 8], and step sizes of momentum and time dq̃ = dt̃ = 0.01. The
width of the region in the momentum space about the Dirac point in
which the continuum effective Hamiltonian holds is q̃cut = 0.0001.

with q and ϕ being the radial and angular variables in momen-
tum space, respectively. This form is similar in mathematical
form to that of the interband case. However, a key difference is
that the time-dependent intraband current displays a nonlinear
response. For pseudospin- 1

2 Dirac particles, the dimensionless
form of the intraband current is given by [31]

J̃ intra
spin-1/2 (̃t ) = 2

π2
Ẽ3/2̃t . (47)

For pseudospin-1 Dirac-Weyl particles, the intraband current
is [50]

J̃ intra
spin-1 (̃t ) = 2

√
2

π2
Ẽ3/2̃t, (48)

where the flat-band contribution is

J̃ intra
flat (̃t ) = 2(

√
2 − 1)

π2
Ẽ3/2̃t . (49)

The continuum effective α-T3 Hamiltonian can be used to
gain insights into the origin of the intraband current in the
Schwinger regime. For α = 0 with pseudospin- 1

2 Dirac parti-
cles, there is no coupling between the flat band and the two
conical dispersive bands, so the only excitation is one from
the lower to the upper band. The intraband current depends
only on the Landau-Zener transition to the upper band, as
illustrated in Fig. 5(a).

Graphene can serve as a benchmark for comparison with
the general α > 0 cases. For the opposite extreme case of
α = 1 with pseudospin-1 Dirac-Weyl particles, the quantity
J̃ /(Ẽ3/2̃t ) of the upper band is in principle the same as that
for the α = 0 case, with the current from the Landau-Zener

FIG. 6. Flat band contributions to the saturated current in the
Schwinger regime. (a) Corresponding to the Berry phase diagram in
Fig. 2, the saturated current (at the end of the time evolution in Fig. 5)
varies with the material parameter α for the total intraband current
density J̃ intra, the upper band current J̃ intra

ξ , and the flat band current

J̃ intra
γ for 0 � α � 1. (b) A schematic illustration of the electron-hole

excitation and the extra holes from the flat band in comparison with
the graphene case. The flat band, despite its zero group velocity, has
the ability to enhance the electric current.

transition to the flat band converging to the constant
√

2 − 1,
as shown in Fig. 5(d). For 0 < α < 1, the intraband current of
the upper band is approximately constant and flat-band current
is enhanced with increasing α, as shown in Figs. 5(a)–5(d) and
6(a). In the Schwinger regime, the flat band contributes extra
holes with positive charges, thereby enhancing the intraband
current by the factor of

√
2 compared with the graphene

benchmark, as schematically illustrated in Fig. 6(b). Since
the converged intraband current depends monotonically on the
materials parameter α, it can be exploited to assess the Berry
phase.

In the Schwinger regime, the total difference in the pref-
actor of the intraband current between pseudospin- 1

2 and
pseudospin-1 Dirac-Weyl particles from Eqs. (47) and (48),
respectively, arises from the Landau-Zener transitions. The
results in Eqs. (47) and (48) have a difference of

√
2 in the

prefactor. Since the 2 × 2 spin- 1
2 and the 3 × 3 spin-1 matrices

differ by a prefactor of 1/
√

2, could this be the reason for the
perfactor difference in the current? To answer this question,
we note that, mathematically, in the effective Hamiltonian, the
intraband current J intra(t ) is in principle the integration of the
average intraband current density over the infinite-momentum
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FIG. 7. Time evolution of the total current (interband and intra-
band) calculated from the general α-T3 lattice model. The quantity
displayed is J̃/Ẽ . (a), (b) Ultrashort time transient response as well as
the linear and nonlinear responses for Ẽ = 0.002, 0.004, 0.008 and
for α = 0, 1, respectively. For comparison, all currents are divided
by 1

4 , the saturated value of the weak field for graphene, and a factor
of 2 due to the momentum integration region being the first hexag-
onal Brillouin zone that contains two nonequivalent Dirac points.
(c), (d) Bloch-Zener oscillations for α = 0, 1, respectively, for dif-
ferent electric fields. Relevant parameter values are time-step size
dt̃ = 0.01, momentum-step size d p̃x = d p̃y = 0.002, width around
the Dirac point p̃cut = 0.001 in the momentum space.

space 〈Jx〉intra
q (t ), as given by Eq. (46). In the Schwinger

regime, the intraband contribution dominates, so the interband
current effect can be neglected. The total average current
density 〈Jx〉q(t ) is obtained from the original Hamiltonian in
Eq. (20). From this formula, we see that the current contri-
bution depends not only on the spin matrix S′

x(ϕ) but also on
the intrinsic dynamical evolution of the wave function ψq(t ).
Furthermore, the derived intraband average current density is
given by Eq. (23), which does not provide explicit evidence
that the current depends solely on the spin matrices.

C. Bloch-Zener oscillations

The linear and nonlinear responses are obtained from the
continuum effective α-T3 model that is valid for low-energy
excitations. More experimentally relevant is the general lattice
model. Here, using this model, we calculate the currents for
the Kubo, Schwinger, and Bloch-Zener oscillation regimes.
Figures 7(a) and 7(b) show that the ultrashort time transient,
linear and nonlinear responses generated by the continuum
effective model persist for the lattice model with the respec-
tive timescale increment factors h/W ,

√
h̄/(vF eE ), tBloch ∼

h̄/(eaE ), for any fixed electric field. In the Kubo regime,
the total current J̃/Ẽ still saturates. The consistency between
Figs. 7(a), 7(b) and 4(a) suggests that the linear response can
be used to detect the Berry phase. In the Schwinger regime,
the current is the result of nonlinear response

J̃/Ẽ ∝ Ẽ1/2̃t, (50)

as shown in Figs. 7(a) and 7(b).

FIG. 8. Scaling law of the first peak of Bloch-Zener oscillations
with the material parameter α. Shown are the scaling relations for
different values of the electric field corresponding to the Berry-phase
plots in Fig. 2 for quantum states from the conical and flat bands
around the Dirac points ±K .

In the Kubo regime where the timescale is larger than the
classical time h/W , the interference between energy bands
begins to contribute to the Landau-Zener transitions. In the
Schwinger regime, the nonlinear response is dominated by the
Landau-Zener transitions. For EtBloch ∼ h̄/(ea), Bloch oscil-
lations occur. The combination of the Landau-Zener transition
and Bloch oscillation leads to Bloch-Zener oscillations, as
shown in Figs. 7(c) and 7(d) for α = 0, 1, where the Bloch
time period is t̃B = 4π/(

√
3Ẽ ). The decay of the amplitude

and the irregular behavior of the Bloch-Zener oscillations in
α-T3 lattice are the result of mixed interference of quantum
states in multiple bands modulated by the geometric and
dynamic phases [40]. For a range of the electric field, the
timescales of the ultrashort transient and linear responses can
be neglected compared with that of the nonlinear response.
In this case, the first peak in the Bloch-Zener oscillations
displays a scaling law, as shown in Fig. 8.

Taken together, the first peak in the Bloch-Zener oscil-
lations, the nonlinear response, and the saturated current
associated with the linear response all depend monotonically
on the material parameter α. These physical quantities can
then be exploited to detect the Berry phase.

IV. DISCUSSION

The Berry phase in the α-T3 lattice varies monotonically
with the material parameter α. We investigated electronic
transport when an α-T3 lattice system is driven by a constant
electric field and calculated a number of current densities
as a function of α in both the linear (Kubo) and nonlinear
(Schwinger) response regimes. Remarkably, the current den-
sity also exhibits a monotonic dependence on α, implying that
the Berry phase as a fundamental material characteristic can
be determined by measuring the current (e.g., using graphene
for calibration).

The various experimentally relevant scaling behaviors of
the current density concerning the electric field and time
as well as the underlying state transitions are summarized
in Fig. 9. Depending on the product Ẽ t̃ of the normalized
electric field and time, five distinct scaling regimes arise. For
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FIG. 9. Summary diagram: scaling behaviors, transitions, and physical mechanisms associated with ballistic transport in α-T3 lattice on
different timescales.

Ẽ t̃ ∼ 0, the current density is zero. In the transient phase,
the current density is proportional to Ẽ t̃ . The linear response
regime comes after the transient phase, in which the current
is proportional just to the electric field. In the nonlinear re-
sponse regime that follows the linear regime, the current is
proportional to Ẽ3/2t̃ . For much larger values of Ẽ t̃ , Bloch-
Zener oscillations arise, whose amplitude can be an irregular
function of time [40]. While the scenario in Fig. 9 is based
on the effective continuum Hamiltonian, direct calculations
of the lattice Hamiltonian indicate that the ultrashort time
transient response, linear and nonlinear responses still arise.
In fact, Landau-Zener transitions begin to occur in the linear
response regime and become dominant in the nonlinear re-
sponse regime. When Ẽ t̃ is comparable to a quantity of the
same physical dimension determined by the lattice constant,
Bloch-Zener oscillations occur. In this case, the first peak of
the oscillation exhibits a scaling law with α by the nonlinear
response mechanism when the ultrashort time transient and
linear responses are negligible. Consequently, the linear and
nonlinear responses can be exploited for experimental detec-
tion of the Berry phase, so can the Bloch-Zener oscillations,
as the timescale around the time for the first oscillation peak
to occur is currently experimentally feasible [51].

Zitterbewegung oscillations are not exclusive to Dirac elec-
trons [52]. They have been experimentally observed in various
physical systems characterized by a linear dispersion, such
as ultracold atoms [53], photonic crystals [54], Bose-Einstein
condensate [55,56], and photonic microcavities [57]. Zitter-
bewegung provides a physical interpretation for the minimal
conductivity in graphene [48] and conductance fluctuations in
quantum wells [58], and offers a calculation method for the
optical conductivity [59,60]. These oscillations can be inter-
preted as a measurable consequence of the momentum-space

Berry phase, as the amplitude of Zitterbewegung is modulated
by the Berry phase [18,53,59,61]. A plausible mechanism for
Zitterbewegung is the interference between the positive- and
negative-energy solutions of the Dirac equation [18] in the ef-
fective low-energy approximation model. For the α-T3 lattice,
the Zitterbewegung effect has been less studied [18]. In our
work, we calculated the linear response in quantum transport,
which reveals an interplay between Zitterbewegung and Berry
phases in both the lattice and the low-energy effective models
of α-T3.

In a previous work [62], a semiclassical treatment of
Dirac electrons in the effective α-T3 model was developed. In
particular, under a finite mass potential, the Wentzel-Kramers-
Brillouin (WKB) semiclassical method was employed to
investigate the transmission of the Dirac electrons, where the
finite-mass potential opens up a gap in the energy spectrum. In
our work, there is no energy gap due to the absence of a mass
potential. We incorporated a time-dependent vector potential
into the momentum to study the interaction of massless Dirac
electrons with an electric field. At the present, developing
a semiclassical theory to understand the electric currents in
α-T3 lattice subject to an electric field is difficult because
of the prerequisites for applying the WKB approximation.
These include a potential that varies slowly compared to the
wavelength of the particle, energy levels not being too close
to the turning points, and consideration of the Klein tunneling
effect of the relativistic quantum nature, etc.
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