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Spin-dependent edge states in two-dimensional Dirac materials with a flat band
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The phenomenon of spin-dependent quantum scattering in two-dimensional (2D) pseudospin-1/2 Dirac
materials leading to a relativistic quantum chimera was recently uncovered. We investigate spin-dependent
Dirac electron optics in 2D pseudospin-1 Dirac materials, where the energy-band structure consists of a pair of
Dirac cones and a flat band. In particular, with a suitable combination of external electric fields and a magnetic
exchange field, electrons with a specific spin orientation (e.g., spin-down) can be trapped in a class of long-lived
edge modes, generating resonant scattering. The spin-dependent edge states are a unique feature of flat-band
Dirac materials and have no classical correspondence. However, electrons with the opposite spin (i.e., spin
up) undergo conventional quantum scattering with a classical correspondence, which can be understood in the
framework of Dirac electron optics. A consequence is that the spin-down electrons produce a large scattering
probability with broad scattering angle distribution in both near- and far-field regions, while the spin-up electrons
display the opposite behavior. Such characteristically different behaviors of the electrons with opposite spins lead
to spin polarization that can be as high as nearly 100%.
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I. INTRODUCTION

Dirac electron optics concerns the behaviors of ballistic
electrons in two-dimensional (2D) Dirac materials [1–7], in
which a paradigm is graphene p-n junction systems [8]. In par-
ticular, due to the relativistic quantum phenomenon of Klein
tunneling and the gapless Dirac-cone dispersion relation, the
transmission of Dirac electrons through the p-n junction in-
terface resembles a highly transparent focusing lens with a
negative refractive index [4]. It corresponds to a Vaselago
lens [9] for chiral Dirac fermions in graphene and provides an
experimental way to tune the refractive index by varying the
gate potential, making it possible to realize graphene-based
electron lens [10] and transistors [11]. In previous studies of
Dirac electron optics, the electronic counterparts of various
optical phenomena were observed, such as Fabry-Pérot res-
onances [12,13], cloaking [14], Dirac fermion microscopes
[15], and electron Mie scattering [16–20]. In addition, in the
framework of Dirac electron optics, diverse unconventional
relativistic quantum phenomena such as anti-super-Klein tun-
neling in phosphorene p-n junctions [8] and tilted energy
dispersion effect [21] were studied. A rigorous semiclassical
theory beyond the standard WKB approximation for the 2D
Dirac equation was developed [22] as the foundation of Dirac
electron optics. Experimentally, Dirac fermion flows were
imaged through a circular Veselago lens using the polarized
tip of a scanning gate microscope [23] and nanoscale quantum
electron optics was tested in graphene with atomically sharp
p-n junctions [24]. Spin-dependent Dirac electron optics in
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graphene was also studied, leading to the phenomenon of
relativistic quantum chimera [4].

In this paper, we investigate spin-dependent Dirac electron
optics in 2D pseudospin-1 Dirac materials whose energy-
band structure consists of a pair of Dirac cones and a flat
band. Compared with graphene, pseudospin-1 Dirac materials
exhibit unconventional physical phenomena such as super-
Klein tunneling [25], conical diffraction [26–28], and chaos
Q-spoiling defiance with edge states [29]. An example of
pseudospin-1 materials is the dice lattice, as illustrated in
Fig. 1(a), where the quasiparticles can be described by the
generalized 2D Dirac-Weyl Hamiltonian [30]. Following the
previous work on spin-dependent electron optics in graphene
[4], we consider an eccentric circular cavity of dice lattice
consisting of a large circle and a small circular domain inside
the large one, where the centers of the two circles do not
coincide, as shown in Fig. 1(b). The real spin degree of free-
dom of the electron becomes relevant when the whole device
is placed on a ferromagnetic substrate [31,32], as described
by a magnetic exchange potential in the Hamiltonian. Now
apply two distinct gate voltages to the cavity: one to the large
circular domain excluding the small circle and another to the
small circular domain. With appropriate combinations of the
magnetic exchange field (MEF) strength and the gate voltages,
the quantum scattering behaviors of the spin-up and spin-
down electrons can be characteristically distinct. For example,
spin-up electrons can exhibit lensing modes while spin-down
electrons would focus on the edge of the large cavity. As
a result, the spin-down electrons produce a large scattering
probability with broad scattering angle distribution in both
the near-field and far-field regions, while the spin-up electrons
display the opposite behavior. Such characteristically different
behaviors of the electrons with opposite spins lead to spin
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FIG. 1. Configuration of the eccentric circular cavity of 2D
pseudospin-1 lattice. (a) Dice lattice (a potential material to real-
ize the pseudospin-1 Dirac Weyl Hamiltonian), whose energy band
structure consists of a pair of Dirac cones and a flat band and (b) a
concrete device configuration, and spin-dependent potentials V ↑↓

i

(i = 1, 2) generated by the gate voltages ν1 and ν2 and the magnetic
exchange potential μ1 = μ2 = μ, which are applied to the blue and
yellow domains, respectively. The radii of the two circular regions
are R1 = r0 and R2 = 0.6r0, with r0 ∼ 100 nm being the characteris-
tic length.

polarization that can be as high as nearly 100%. We note that
the edge modes for spin-down electrons break the ray-wave
correspondence and confine the electrons for a relatively long
time [29]. In contrast, the lensing modes for spin-up electrons
have a classical correspondence in the small wavelength limit
and tend to leak from the cavity in a short time. The phe-
nomenon of spin-dependent quantum scattering, particularly
the scattering from the edge mode, is also studied using a
classically chaotic system: the stadium cavity.

The reasons to exploit MEF instead of an external magnetic
field are as follows. While an external magnetic field can
induce spin polarization and other intriguing physical phe-
nomena, the required magnitude of the magnetic field can be
on the order of tesla, which may be challenging in experi-
ments. Magnetic insulators or magnetic impurities provide a
viable solution, as the induced MEF is equivalent to a strong
magnetic field of the required magnitude [33]. In particular,
in the absence of an external magnetic field, the MEF can
be induced by an adjacent magnetic insulator, such as EuS

[31] or a ferromagnetic insulator [32] for spin generation
and modulation [34,35]. Remarkably, the MEF in magnetic
multilayers can be exploited to realize a magnetic field of
tens or even hundreds of tesla [31,36]. In addition, electronic
spin lenses [37], i.e., the counterpart of the photonic chiral
metamaterials generated by spin-resolved negative refraction
Klein tunneling, were studied with the MEF in graphene in a
ferromagnetic configuration. The MEF thus makes it possible
to study electron optics [22–24,38]. For these reasons, we
chose to study the behaviors of 2D flat-band Dirac materials
in combined electrical and magnetic fields, where the latter is
realized through the MEF interaction.

In a finite graphene sheet, edge states are common. In
previous works on pseudospin-1 materials [29,39–41], a class
of robust but spin-independent edge modes was found, which
can resist even fully developed classical chaos and Klein
tunneling [29,41]. The edge modes were deemed a unique
feature of pseudospin-1 Dirac materials in the absence of a
magnetic exchange potential where the real spin degrees of
freedom are degenerate. The focus of the present paper is
on the effect of the MEF on the spin-dependent quantum
scattering dynamics in pseudospin-1 materials. It is also note-
worthy that, in a previous work [42], 100% spin polarization
was realized in monolayer transition metal dichalcogenides
assisted by total external reflection with spin-orbit coupling
and an electrostatic potential barrier. The system configuration
is less complicated and experimentally more feasible than our
design. The main feature of our work is spin-dependent edge
states. In particular, in our system, two types of quantum
states arise and coexist: Electronic quasibound states with
a well-defined classical correspondence and spin-dependent
edge states without such a classical correspondence, where the
latter can produce a much broader scattering angle distribution
and stronger scattering compared with the former. It is the
drastically different scattering behaviors that make a near
100% spin polarization possible. The physical mechanism
leading to such a high spin polarization is thus different than
that reported in Ref. [42]. We report on this phenomenon
of coexistence of two different types of relativistic quantum
states, one with and another without a classical correspon-
dence.

II. PSEUDOSPIN-1 ECCENTRIC CIRCULAR
SCATTERING SYSTEM

We consider (real) spin-1/2 Dirac electron scattering from
the 2D pseudospin-1 Dirac system in Fig. 1(b). The eccentric
circular scattering cavity is created by an electric gate po-
tential Vgate(r) [19,20] and the magnetic exchange potential
M(r) induced by an adjacent magnetic insulator within the
gate region [4]. The total Hamiltonian is

Ĥ = vF σ0 ⊗ S · p̂ + h̄vF [σ0⊗S0Vgate(r) − σz ⊗ S0M(r)],

(1)

with pseudospin-1 matrix vector S, spin-1/2 Pauli matrix σz,
and identity matrices σ 2×2

0 and S3×3
0 . Using the relation [σz ⊗

S0, Ĥ ] = 0, we block diagonalize the Hamiltonian as

Ĥ = diag[Ĥ1, Ĥ−1], (2)
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where

Ĥs = vF S · p̂ + h̄vF [Vgate(r) − sM(r)] (3)

for spin index s (s = 1 or ↑ for spin-up and s = −1 or ↓ for
spin-down). The total potential is thus dependent upon the real
spin:

V s(r) ≡ Vgate(r) − sM(r). (4)

The radii of the two eccentric circles are R1 and R2 < R1

whose origins are located at O and O′, respectively, with
the eccentric distance ξ , as shown in Fig. 1(b). For ξ �= 0,
classical chaos can arise [29]. The whole physical space
can be divided into three parts: region I (r > R1), region II
[r < R1 (origin O) and r′ > R2 (origin O′)], and region III
(0 < r′ < R2). The gate potentials Vgate(r) are ν1 and ν2 applied
to regions II and III, respectively, and the magnetic exchange
potential M(r) is μ1 = μ2 ≡ μ. The total magnetic exchange
and electric potential with spin index s is

V s
i = νi − sμ (5)

for i = 1, 2 in regions II and III, respectively. In region I,
we have V0 = 0. The energy is ε = h̄vF E , where E is the
normalized energy with the same dimension of the wavelength
in units of 1/r0 with the characteristic length r0. The wave
vectors in the three regions are

kI = |E |,
ks

II = |E − V s
1 |,

ks
III = |E − V s

2 |.
Using the principle of Dirac electron optics [4,6] and spin-
resolved Snell’s law, we have that the effective refractive
indices are n0 = (E − V0)/E = 1 (vacuum) and ns

i = (E −
V s

i )/E with i = 1, 2.
The characteristic units of energy, including the electronic

energy, electrostatic energy, and the energy of the MEF, are
in terms of h̄vF /r0 ∼ 0.01 eV with r0 ∼ 100 nm (the radius
of the large circular cavity) and the Fermi velocity vF ∼ 106

m/s. The typical wavelength of a Dirac electron inside the
cavity is λ = h̄vF /Ed ∼ 10 nm, where Ed is the energy differ-
ence between the electronic energy and the total potential of
magnitude on the order ∼ 0.1 eV. The Dirac electron inside the
cavity then exhibits a particlelike behavior in some reasonable
Fermi energy range [43,44] ∼ 0.1 eV, where the width of
the p-n junction edge is as sharp as [3,18,45] d ∼ 1 nm. In
this energy regime, the concepts of Dirac electron optics are
applicable. For convenience, we use dimensionless quantities
in our analysis and computation.

We use the S-matrix approach to calculate various scatter-
ing cross sections, as detailed in Appendices A–D.

III. RESULTS

A. Spin-dependent edge states in the eccentric circular cavity

With the configuration in Fig. 1(b), the edge modes are
relativistic quantum resonant states that confine the electrons
to a quasi-1D region, where the resonant energy is about
half the potential. Figure 2(a) demonstrates an edge mode
associated with spin-down electrons (the left inset) confined

around r′ ≈ R2 with E ≈ 15 = (V1 + V2)/2. For comparison,
the right inset shows a conventional pseudospin-1 scattering
mode [29]. Spin-up electrons, however, exhibit characteristi-
cally different scattering behaviors, as illustrated in Fig. 2(b)
for two energy values. The corresponding scattering proba-
bility distributions for the spin-down and spin-up electrons
are shown in Figs. 2(c) and 2(d), respectively. The edge
mode produces a large scattering probability with wide di-
rectional distribution in both the near- and far-field regions.
(Section III D provides a detailed analysis of the edge-mode
enhanced scattering for spin-down electrons.) In contrast,
the scattering patterns for the spin-up electrons are remi-
niscent of lensing modes in geometric optics that arise in
the small wavelength limit: kII = |E − V1| ≈ 73, kIII = |E −
V2| ≈ 23, and kI = |E | ≈ 15. The distinct scattering behaviors
for spin-down and spin-up electrons can also be characterized
by the momentum-transport cross section, defined as σtr ≡∮

dθ f (θ )σdiff with incident direction θ ′ = 0, where f (θ ) ≡
1 − cos θ , the differential cross section σdiff is determined
by the scattering matrix, and σtr is proportional to the re-
sistance σ

↑↓
tr ∝ R↑↓ (see Appendices A–D for details). The

edge modes generate a much larger resistance than the lensing
states, as shown by the differential momentum-transport cross
section in Figs. 2(e) and 2(f), respectively.

The physical reason underlying the emergence of the edge
modes lies in the boundary condition for the three-component
spinor stipulated by the generalized Dirac-Weyl equation for
pseudospin-1 quasiparticles [46]. In particular, the radial or
normal current density across the boundary of the scatterer
must be continuous, but it is not necessary for the angular or
tangent component of the current density to be continuous.
In addition, the probability density needs not be continuous
across the boundary. In fact, a larger difference in the proba-
bility density can arise if there is a significant imbalance in the
first and third components of the spinor across the boundary. If
the scattering potential redistributes the spinor wave-function
components properly, there will be a significant increase in
the probability density from the exterior to the interior of the
scattering boundary, leading to strong boundary trapping of
the quasiparticles inside the potential and thereby to robust
edge modes. This phenomenon of boundary confinement is
most pronounced when the Fermi energy of the particle is
about half of the potential height—the Klein tunneling regime
[46].

We now demonstrate that spin-dependent edge modes can
lead to unusually nearly complete spin polarization. Fig-
ure 3(a) shows, in the 2D parameter plane (ξ, μ), color-coded
values of the spin polarization averaged over a relevant range
of the Fermi energy, which is defined as (Appendix C)

〈Pz〉 = 〈(σ ↓
tr − σ

↑
tr )/(σ ↓

tr + σ
↑
tr )〉.

There exists a relatively large area in the parameter plane
in which the spin polarization exceeds 85%. Figure 3(b)
shows the maximum spin polarization versus μ, which can
reach a value as high as 97% (for μ ≈ 24), due to the
drastically different scattering behaviors associated with the
spin-down and spin-up electrons. Figure 3(c) shows, for
μ = 24, the energy-averaged momentum-transport cross sec-
tions 〈σtr〉 versus ξ for spin-down and spin-up electrons,
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FIG. 2. Emergence of spin-specific edge states in an annular cavity (ξ = 0). (a), (b) The average total scattering cross section σt in the Fermi
energy range [43,44]: ∼ 0.1 eV with E ∼ 0.01 eV, for spin-down and spin-up electrons, respectively, where σt is obtained by averaging the
total scattering crossing section σt (θ ′) = ∮

dθ | f (θ, θ ′)|2, over all possible incident directions θ ′. The insets display the probability distribution
patterns. In (a), the left inset corresponds to an edge state with no classical correspondence while the right inset is a conventional state. In (b),
the scattering states are lensing-like with a classical correspondence. (c), (d) The scattering probability distribution (defined in Appendix C in
the near-field region I for spin-down and spin-up electrons, respectively). (e), (f) Differential momentum-transport cross section [differential
cross section σdiff times f (θ ) ≡ (1 − cos θ )] versus the scattering angle θ for spin-down and spin-up electrons, respectively. For the former,
the total potentials are V ↓

1 = −10 and V ↓
2 = 40. For the latter, the corresponding parameter values are V ↑

1 = −10 − 2μ and V ↑
2 = 40 − 2μ

(μ = 24). The incident plane wave is along the x axis with θ ′ = 0 and the scattering angle is between −π and π (at the resolution of 1000
points).

where the cross section values for spin-down electrons are
markedly larger than those for spin-up electrons. The dif-
ference is the largest for ξ � 0, leading to the highest spin
polarization there. For a fixed value of μ, as ξ increases
from zero (integrable classical dynamics) to, e.g., 0.3 (chaotic
classical dynamics), the spin polarization can be maximized
by some value of ξ . Figure 3(d) shows the average spin
polarization versus ξ for μ = 24. Since ξ is a geometric
parameter controlling the degree of classical chaos (as ξ

increases from zero, the classical dynamics become more
chaotic), the result shows that classical chaos deteriorates spin
polarization.

The top left inset in Fig. 3(b) shows a mode corre-
sponding to a classical geometric optic lensing pattern. This
type of lensinglike mode can shrink an incident parallel
beam into a narrow parallel emission flow, as illustrated in
Fig. 4.

The characteristic difference between the edge modes for
spin-down electrons and the lensing modes for spin-up elec-
trons can also be revealed by the maximum Wigner-Smith

time delay defined as

τ (E ) ≡ −ih̄Tr[S†∂S/∂E ],

with S being the scattering matrix in Appendix C. Figure 5
shows, for μ = 24, the maximum delay τmax (over Fermi en-
ergy) versus the geometric parameter ξ for spin-down (blue)
and spin-up (red) electrons, where the former is significantly
larger than that for the latter. A remarkable feature is that,
as ξ increases from zero so the classical dynamics changes
from being integrable to mixed and then to chaotic, τmax

for spin-down electrons hardly vary, indicating that the edge
modes have no classical correspondence. In contrast, τmax for
spin-up electrons continue to decrease with ξ , which agrees
with the classical intuition that, as the dynamics become more
chaotic, the average time that an electron can stay inside
the cavity should decrease. Because of the classical-quantum
correspondence for the lensing modes, their properties can
be understood using ray tracing from geometric optics in
Sec. III C.
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FIG. 3. Realization of nearly complete spin polarization in the
eccentric circular cavity. (a) Color-coded values of the average spin
polarization 〈Pz〉 in the parameter plane (ξ, μ) averaged over the
Fermi energy. High spin polarization can be achieved in a sub-
stantial area in the plane. (b) Maximum average spin polarization
max〈Pz〉 about ξ versus μ. The upper inset displays the scattering
probability density of the lensing modes for μ = 20, E = 14.8, and
ξ = 0.165, and the lower inset shows 〈Pz〉 versus μ for ξ = 0. Near-
perfect spin polarization characterized by max〈Pz〉 � 1 is achieved.
(c) Momentum-transport cross section 〈σtr〉 averaged over the Fermi
energy versus ξ for the spin-down and spin-up electrons, for μ = 24.
(d) Average spin polarization 〈Pz〉 versus ξ for μ = 24.

B. Scattering-direction dependent spin polarization

The average momentum-transport cross section is defined
as

〈σtr〉 = 1

E1 − E0

∫ E1

E0

dE
∫ 2π

0
dθ (1 − cos θ )| f (θ, θ ′)|2,

(6)

where | f (θ, θ ′)|2 is the probability for scattering associated
with incident angle θ ′ and scattering angle θ as in Eq. (C8).
The weighting factor 1 − cos θ is used to quantify the scat-
tering angle deviation from the incident angle θ ′ = 0. The
quantity 〈σtr〉 contains two implicit parts: the total scattering
probability (or scattering background σt ) and the scattering
angle θ distribution with respect to the incident direction. To
separate the effect of scattering direction on spin polariza-
tion, we remove the background by normalizing the scattering
probability over θ with the total scattering cross section,
| f (θ, θ ′)|2/σt , and define an alternative spin polarization that
depends on the scattering direction as

qz = σ
↓
tr /σ

↓
t − σ

↑
tr /σ

↑
t

σ
↓
tr /σ

↓
t + σ

↑
tr /σ

↑
t

, (7)

where the ratio σtr/σt is proportional to the average momen-
tum transfer cross section [47] over the scattering angle with

〈�p〉� = qx̂σtr/σt , (8)

where the incident direction is along x̂, �p ≡ pin − pout, q is
the incident momentum magnitude, and � is the scattering

FIG. 4. Lensing-like pattern for a spin-up Dirac fermion. (a),
(b) The quantity f (θ )〈σdiff〉 versus θ for μ = 20 and μ = 22, respec-
tively, where f (θ ) ≡ 1 − cos θ and the differential cross section σdiff

is averaged over the Fermi energy. In each case, results from three
values of ξ are displayed. (c), (d) Average spin polarization 〈Pz〉
over Fermi energy versus the eccentric parameter ξ for μ = 20 and
μ = 22, where the maximum value of 〈Pz〉 occurs at ξ = 0.165
and 0.12, respectively. (e), (f) Average total cross section σ̄t versus
Fermi energy for μ = 20 and μ = 22, respectively. In each panel, the
lower-left inset shows the probability distribution while the upper-
right inset displays the scattering probability distribution for the
specific energy value as indicated by the arrows. Other parameters
are the same as those in Fig. 2. These modes have a well-defined
classical correspondence: the second kind of classical lensing ray
pattern satisfying the conditions C2 (see Sec. III C for details).

FIG. 5. Contrast between edge modes and lensing modes in
terms of the Wigner-Smith time delay. Shown is a typical case of
the delay maximized over the Fermi energy versus the geometric
parameter ξ associated with the edge modes for spin-down (blue)
and the lensing modes for spin-up (red) electrons. The magnetic
exchange potential is μ = 24. The delay time for the edge modes
is independent of the classical dynamics and is significantly longer
than that for the lensing modes, where for the latter, the delay
time decreases continuously as the classical dynamics become more
chaotic.
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FIG. 6. Scattering-direction dependent spin polarization. (a) Av-
erage direction-dependent spin polarization 〈qz〉 in the (ξ, μ)
parameter plane. (b) The maximum value max〈qz〉 (over ξ ) versus
μ. The inset corresponds to the case of ξ = 0. (c) The removed
average scattering background cross section 〈σ ↑

t 〉 in the (ξ, μ) plane.
(d) Average momentum-transport cross section 〈σ ↑

tr 〉 in the (ξ, μ)
plane.

solid angle. Figure 6(a) shows the numerically calculated 〈qz〉
over Fermi energy in the parameter plane (ξ, μ). It can be seen
that high spin polarization can be achieved. Figure 6(b) shows,
the maximum value max〈qz〉 versus μ, which can be as large
as 96%! Figure 6(c) shows the removed average scattering
background cross section 〈σ ↑

t 〉 in the (ξ, μ) plane, which
exhibits a periodic structure in μ. For reference, Fig. 6(d)
shows the average momentum-transport cross section 〈σ ↑

tr 〉 in
the (ξ, μ) plane.

C. Understanding spin-up fermion lensing modes
based on Dirac electron optics

We provide a geometric-optics-based interpretation to un-
derstand the lensinglike scattering states associated with
spin-up Dirac fermions through two kinds of classical lensing
ray patterns. Figures 7(a) and 7(b) show the total potential
and effective refractive index versus the exchange potential
μ, respectively, for spin-down and spin-up electrons.

The set of conditions under which the first type of clas-
sical lensing ray pattern arises (denoted as C1), as shown
in Fig. 7(c), is (1) an infinitesimal refractive angle δ1, (2)
approximately equal lengths of the solid and dashed blue ray
paths, (3) �2 ≈ �0 + δ� with infinitesimal term δ�, and
(4) �0 < �c

0 < π/2. The Snell’s law, sin �2 ≈ 2δ1n1/n2 and
sin �0 ≈ δ1n1/n0, gives

sin(�0 + δ�) ≈ sin(�0)2n0/n2 � sin(�0).

Condition C1 requires 2n0/n2 � 1, so the refractive index n2

should be at least n2 ≈ 2 − δn � 2. The first kind of clas-
sical lensing pattern displayed in Fig. 7(c) corresponds to
the μ = 24 case with the effective refractive index in the
small wavelength limit: n2 � 2, n1 ≈ 5, and n0 = 1, as shown
in Fig. 7(b). In this case, the average spin polarization 〈Pz〉

(c) (d)

(e) (f)

(a) (b)

FIG. 7. Geometric optics interpretation for the quantum lens-
inglike scattering states associated with spin-up Dirac fermions.
(a) Total potential versus the exchange potential μ for spin-down and
spin-up electrons. (b) Effective refractive index in the small wave-
length limit versus μ for spin-down and spin-up electrons. (c) For
μ = 24, the annular circular cavity displays one classic lensing pat-
tern analogous to the one produced by two convex lenses. An incident
ray with �0 < �c

0 exhibits no significant scattering. (d) For �0 �
�c

0, total internal reflection occurs at the inner interface between
regions II and III. However, at the outer boundary, total internal
reflection does not occur under the condition C1 (see text) and spin-
resolved Snell’s law, generating a broad scattering angle distribution.
(e) For μ = 20, an annular cavity produces large scattering angles
even for �0 < �c

0 due to the distinct refractive index configuration,
away from both conditions C1 and C2. (f) For μ = 20, an eccentric
circular cavity generates a different kind of lensing pattern analogous
to the one created by one convex and another concave lens.

reaches maximum for the annular cavity with ξ = 0 and the
ray pattern in Fig. 7(c) resembles the scattering probability
of the corresponding lensinglike mode in the left panel in
Fig. 2(d) in the main text for E = 14.8. For μ = 24, the critic
incident angle is determined by

sin �c
0 ≈ δc

1 n1/n0 ≈ 0.75,

with sin �2 = 2δc
1 n1/n2 = 1, so �c

0 ≈ 48.6o. For �0 � �c
0,

total internal reflections occur at the inner interface between
regions II and III but will not at the outer boundary, resulting
in a vast scattering angle distribution, as shown in Fig. 7(d),
which resembles the pattern with the resonant quantum state
in the Fermi energy range of lensinglike modes in Fig. 2(b) in
the main text. In principle, the directional distribution of the
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leaking of the quantum resonant states can be quantitatively
understood by semiclassical simulation [6,48].

The set of conditions C2 under which the second type of
lensing pattern arises, as shown in Fig. 7(f), is (1) infinitesimal
refractive angle δ1, (2) the two red dashed ray segments in
Fig. 7(f) being approximately parallel, (3) �2 ≈ �0, and (4)
�0 < �c

0 < π/2. Starting from the conditions C1, if n2 is
away from two, such as for μ = 20 with n2 ≈ 1, the annular
cavity shape produces large scattering angles because of the
large deviation of �2 from �0, as shown in Fig. 7(e), breaking
both conditions C1 and C2. For the potential configuration with
μ = 20, condition C2 is satisfied for an eccentric circular cav-
ity, producing the lensing pattern in Fig. 7(f), which resembles
the corresponding lensinglike mode in the insets of Figs. 4(e)
and 4(f) and the upper inset of Fig. 3(b) in the main text. The
corresponding critical incident angle is �c

0 ≈ 30o, which is
smaller than that in the μ = 24 case.

In general, total internal reflections disrupt parallel rays,
where a small critical incident angle will generate a large
spread of the emitted rays. While all rays in the effective
refractive index configuration associated with the classical-
quantum correspondence for μ ∈ [20, 24] can produce the
classical lensing ray pattern with the proper incident angle and
eccentric parameter ξ , an enlarged critical angle is indicative
of the contribution to scattering from the lensing patterns.
As a result, in the corresponding quantum regime, the spin
polarization increases from μ = 20 to μ = 24. In principle, if
μ is increased further, the corresponding classical lensing ray
pattern will occur for ξ < 0 and generate patterns similar to
those for ξ > 0.

We note that the edge states of spin-down electrons break
the ray-wave correspondence [29], their scattering behaviors
cannot be explained by geometric optics.

D. Spin-dependent edge mode in a chaotic stadium cavity

In a previous work [29], it was demonstrated that a spin-
independent edge mode can confine a particle for a long time,
defying any Q-spoiling effect induced by classical chaos. To
further demonstrate the peculiar behavior of the edge modes,
we set up and study a spin-resolved scattering cavity of the
stadium shape, whose geometric boundary is shown as the
blue curve in Fig. 8(a), where a is a so-called chaotic pa-
rameter in the sense that the classical dynamics are chaotic
for a > 0. To calculate the scattering cross sections, we
use a previously developed method, the multiple-multipole
method originated from optics [49–53] and adopted to pho-
tonic crystal waveguides [54], to surface plasmons in metallic
nanostructures [52], and to Dirac-Weyl spinor systems under
different geometrical and mass settings [29,39,55,56]. By this
method, two sets of dipoles, one inside and another outside
the cavity, as shown in Fig. 8(a), are used as the sources to
produce the far-field scattering wave function. For spin-down
electrons, the total potential in the cavity is V0 = 50. There
are quasibound edge modes with Fermi energy about half of
the total potential, as shown by the peaks in the total cross
section in Fig. 8(b). For spin-up electrons, the total poten-
tial in the cavity is V0 = 70 and the classical dynamics are
chaotic, which smooths out the sharp resonances, as shown
in Fig. 8(c). For the edge mode associated with spin-down

FIG. 8. Spin-resolved Dirac electron scattering from a stadium
cavity of 2D pseudospin-1 Dirac material. (a) The stadium geom-
etry (blue) defined by two parameters: the chaotic parameter a (the
classical dynamics are chaotic for a > 0) and R, the radius of the two
semicircles. Two sets of dipoles are displayed, one inside and another
outside the stadium, which are used to calculate the scattering cross
sections according to the multiple-multipole method developed for
pseudospin-1 relativistic quantum scattering [29]. (b) Total cross
section versus the Fermi energy parameter ER for a spin-down Dirac
fermion for three values of a, where the total potential within the
stadium is V0 = ν + μ = 50. (c) Total cross section versus ER for a
spin-up Dirac fermion for three values of a, where the total potential
inside the stadium is V0 = ν − μ = 70. (d) Momentum-transport
cross section 〈σtr〉 versus the chaotic parameter for a spin-down
(blue) and a spin-up (red) electron.

electrons, the resonant peaks have also been smoothed out.
Intuitively, a larger potential in the cavity produces stronger
scattering. However, the edge mode leads to strong scatter-
ing even with a small potential, as shown in Fig. 8(d), the
momentum-transport cross section versus the stadium param-
eter a. It can be seen that a spin-down electron, due to its large
momentum-transport cross section 〈σtr〉 as the result of the
edge mode, produces larger and larger equivalent scattering
resistance than that from a spin-up electron as the chaotic
parameter increases.

IV. DISCUSSION

We investigated spin-dependent quantum scattering in 2D
pseudospin-1 Dirac materials. The scatterer is placed on a
magnetic insulator substrate so the real spin degree of the
electrons becomes physically relevant, where the spin-up and
spin-down electrons experience a different magnetic exchange
potential and exhibit distinct scattering behaviors. We studied
an eccentric circular scatterer that was previously used to
uncover spin-dependent scattering behaviors in graphene. We
found that a class of edge modes can arise for electrons with a
specific spin orientation, where the electrons can be confined
around the edge modes for a long time, generating resonant
scattering with a large momentum-transport cross section.
The quantum scattering behaviors of these electrons do not
have a classical correspondence. On the contrary, electrons
with the opposite spin do not possess such edge modes: they
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tend to stay in the scattering region for a much shorter time
with a small cross section. For these electrons, the quantum
scattering dynamics have a classical correspondence, so ray
tracing with Dirac electron optics can be used to understand
their behaviors. The remarkable difference in the spin-specific
scattering cross sections leads to tunable spin polarization and
can even generate near-perfect spin polarization. The physical
principles laid out in this paper can be useful for applications
in spintronics.

The basic principle of spintronics is to manipulate the
spin degree of freedom to bring unique capabilities to mi-
croelectronics and information technology with applications
such as magnetic memories and sensors, radio-frequency
and microwave devices, and logic and non-Boolean devices
[57]. In spintronics, a key requirement is to achieve high
spin polarization in functional materials [58], which has re-
mained a challenge. For example, the early proposition of
spin field-effect transistors for large-scale integrated circuits
[59] requires high spin polarization [58,60–64]. Graphene
spintronics [65] based on relativistic quantum mechanics of
pseudospin-1/2 fermions possess certain advantages such
as room-temperature spin transport with long spin diffusion
lengths of several micrometers [66,67], gate-tunable carrier
concentration, high electronic mobility, and efficient spin in-
jection [68,69]. An early work [70] realized a nearly ±100%
spin-polarized current in two-terminal bipolar spin diodes
of zigzag graphene nanoribbons. A recent work reported a
breakthrough [42]: 100% spin and valley polarization was
achieved in monolayer transition metal dichalcogenides as-
sisted by total external reflection with spin-orbit coupling and
an electrostatic potential barrier. While an external magnetic
field can also produce spin polarization and other intrigu-
ing physical effects, the required field strength can be on
the order of tesla. Placing the 2D material on a substrate
with magnetic insulators [31,32] or magnetic impurities [33]
to generate an MEF provides a viable solution [31,36].
More generally, MEF facilitates studies of Dirac electron
optics [1–7,38].

Experimentally, it has become feasible to implement elec-
tron scattering in 2D Dirac materials. For example, the width
of p-n junction edge in Dirac materials can already be made
sufficiently sharp [3,18,45] (e.g., d ∼ 1 nm compared with
the typical Fermi wavelength λF ∼ 10 nm). In addition, the
materials can be fabricated on the scale of micrometers to
reach the small wavelength limit at which Dirac electron
optics is applicable [71]. The required magnetic exchange
potential has been realized in experiments [31,32]. For elec-
trostatic potential in the eccentric circular shape, a previous
experimental work [19] demonstrated that a circular p-n
junction (a local embedded gate) in a graphene/hBN het-
erostructure can be created by local defect charge and STM
tip with a square voltage pulse. Also, the Dirac electron
scattering in multicircular quantum dots was studied [20].
Moreover, experimental material platforms already existed
to create pseudospin-1 Dirac systems with a flat band, such
as transition-metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer het-
erostructures [72], SrCu2(BO3)2 [73], and graphene-In2Te2

bilayer [74]. These works suggest the feasibility of fabricating
the eccentric circular cavity in our work by using the STM
technology.

ACKNOWLEDGMENT

This work was supported by Air Force Office of Scientific
Research (AFOSR) under Grant No. FA9550-21-1-0186.

APPENDIX A: S-MATRIX APPROACH TO ELASTIC DIRAC
ELECTRON SCATTERING

Consider electronic scattering from a cavity made of 2D
Dirac materials with a flat band. At low energies, the effective
Hamiltonian describes the dynamics of a pseudospin-1 Dirac-
Weyl quasiparticle. The cavity is subject to external electrical
and MEFs: Its properties are controlled by an electric gate
potential Vgate(r) and a magnetic exchange potential M(r)
induced by the magnetic insulator substrate within the gate
region [4]. The total Hamiltonian is

Ĥ = vF σ0 ⊗ S · p̂ + h̄vF [σ0⊗S0Vgate(r) − σz ⊗ S0M(r)],

(A1)

where S denotes the vector of spin-1 matrices, σ0 and S0

are the 2 × 2 and 3 × 3 identity matrices, respectively, σz

is the Pauli z matrix, and vF is the Fermi velocity. Tensor
product of the three-component pseudospin-1 quasiparticles
and two-component real spin 1/2 electron, so the Hamiltonian
matrix is 6 × 6, which can be block-diagonalized as Ĥ =
diag[Ĥ1, Ĥ−1] with the following two 3 × 3 sub-Hamiltonian
matrices Ĥs for real spin index s = ±1:

Ĥs = vF S · p̂ + h̄vF [Vgate(r) − sM(r)], (A2)

where the identity [σz ⊗ S0, Ĥ ] = 0 has been used. The total
potential is spin dependent:

V s(r) ≡ Vgate(r) − sM(r).

The prototypical system we use to demonstrate achieving high
spin polarization is an eccentric circular cavity defined by two
distinct radii: R1 and R2 < R1, where the centers of the two
circles are located at O (the larger disk) and O′ (the smaller
disk) with the eccentric distance ξ between OO′, as shown in
Fig. 1(b) in the main text. For convenience, we define three
regions in the position space: region I with V0 = 0 for r >

R1, region II with V s
1 for r < R1 and r′ > R2, and region III

with V s
2 for r′ < R2. The wave vectors in the three regions are

given by

kI = |E |,
ks

II = |E − V s
1 |,

ks
III = |E − V s

2 |.
The wave functions in the three regions can be written down
according to the standard form of the spinor wave eigenvector
of Ĥs in the cylindrical coordinates, which are given by

kgm = 1√
2

⎛⎜⎝ fm−1(kr)e−iθ

iα
√

2 fm(kr)

− fm+1(kr)eiθ

⎞⎟⎠eimθ , (A3)

where α ≡ sign(E − V ), k = |E − V |. There are two cases
for the function fm(kr): (i) fm = H (1,2)

m , the Hankel functions
of the first and the second kind, and (ii) fm = Jm, the Bessel
function. For cases (i) and (ii), kgm is given by kgm = kh(1,2)

m
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and kgm = k jm, respectively. In particular, in region I, the
wave function can be expanded in the spinor cylindrical wave
basis as

� (I)(�r) =
+∞∑

m=−∞
aI

m

⎡⎣kI h(2)
m +

+∞∑
j=−∞

Sm j
kI h(1)

j

⎤⎦. (A4)

In region II, the wave function can be written as

� (II)(�r) =
+∞∑

m=−∞

+∞∑
l=−∞

maII
l

⎡⎣kII h(2)
l +

+∞∑
j=−∞

Sod
l j

kII h(1)
j

⎤⎦,

(A5)

where Sod is the off-diagonal scattering matrix for the ec-
centric circular cavity and Scd is the diagonal matrix to
characterize the scattering from a circular domain [4], which
are related by Sod = U −1ScdU , or

Sod
l j =

∑
l ′, j′

(U −1)ll ′S
cd
l ′ j′Uj′ j

=
∑
l ′, j′

Jl−l ′ (kIIξ )Scd
l ′l ′δl ′ j′Jj− j′ (kIIξ )

=
∑

l ′
Jl−l ′S

cd
l ′l ′Jj−l ′ .

The boundary conditions for a pseudospin-1 quasiparticle [46]
stipulate continuity of the second component of the spinor
wave function and conservation of the radial current density:

�I
2(R1) = �II

2 (R1), (A6)

�I
1(R1)eiθ + �I

3(R1)e−iθ = �II
1 (R1)eiθ + �II

3 (R1)e−iθ . (A7)

In matrix form, the boundary conditions can be expressed as

AI[X (2) + SX (1)] = αIαIIA
II[x(2) + Sodx(1)], (A8)

AI[[Z (2) − Y (2)] + S[Z (1) − Y (1)]]

= AII[[z(2) − y(2)] + Sod[z(1) − y(1)]], (A9)

where αI ≡ sign(E ), αII ≡ sign(E − V1), AI ≡ [aI
mδm j], AII ≡

[maII
j ], and

X (1,2) ≡ [
H (1,2)

m (kIR1)δm j
]
, x(1,2) ≡ [

H (1,2)
m (kIIR1)δm j

]
,

Y (1,2) ≡ [
H (1,2)

m+1 (kIR1)δm j
]
, y(1,2) ≡ [

H (1,2)
m+1 (kIIR1)δm j

]
,

Z (1,2) ≡ [
H (1,2)

m−1 (kIR1)δm j
]
, z(1,2) ≡ [

H (1,2)
m−1 (kIIR1)δm j

]
.

(A10)

The spinor wave function can be written as

kh(1,2)
m = 1√

2

⎛⎜⎜⎝
H (1,2)

m−1 (kr)e−iθ

iα
√

2H (1,2)
m (kr)

−H (1,2)
m+1 (kr)eiθ

⎞⎟⎟⎠eimθ , (A11)

where the general form of the basis is described by Eq. (A3).
The scattering matrix can be written as

S = −Z (2) − Y (2) − αIαIIX (2)T
Z (1) − Y (1) − αIαIIX (1)T , (A12)

where T ≡ F−1[H − G], and

F ≡ x(2) + Sodx(1),

G ≡ y(2) + Sody(1),

H ≡ z(2) + Sodz(1). (A13)

The coefficient AI is determined by the incident wave function
(see Appendix C) and the coefficient AII is given by

AII = αIαIIA
I[X (2) + SX (1)]F−1.

Using the Graf’s addition theorem [20], we have, for r′ > ξ ,

H (1,2)
m (kr)eimθ =

+∞∑
n=−∞

Jm−n(kξ )einθ ′
H (1,2)

n (kr′), (A14)

which gives

kh(1,2)
m =

+∞∑
n=−∞

Jm−n(kξ ) kh̃(1,2)
n . (A15)

For convenience, in the following, we use the tilde symbol to
denote the quantities in the circular region of origin at O′. We
have

kII h(2)
l +

+∞∑
j=−∞

Sod
l j

kII h(1)
j =

+∞∑
n=−∞

Jl−n(kIIξ ) kII h̃(2)
n +

+∞∑
j=−∞

Sod
l j

[ +∞∑
n=−∞

Jj−n(kIIξ ) kII h̃(1)
n

]

=
+∞∑

l ′=−∞
Jl−l ′

kII h̃(2)
l ′ +

+∞∑
n,l ′=−∞

Jl−l ′S
cd
l ′l ′

+∞∑
j=−∞

(Jj−l ′Jj−n) kII h̃(1)
n

=
+∞∑

l ′=−∞
Jl−l ′ (kIIξ )

[
kII h̃(2)

l ′ + Scd
l ′l ′

kII h̃(1)
l ′

]
, (A16)

where

δl ′n =
+∞∑

j=−∞
Jj−l ′ (kIIξ )Jj−n(kIIξ ).
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The wave function in region II with origin O can be rewritten
as a wave function with origin O′ as �II(r, θ ) = �̃II(r′, θ ′),
where

�̃II(r′, θ ′) =
+∞∑

m=−∞

+∞∑
l=−∞

mãII
l

[
kII h̃(2)

l + Scd
ll

kII h̃(1)
l

]
,

with mãII
l ≡ ∑

l ′
maII

l ′ Jl ′−l (kIIξ ). In region III with origin O′,
the wave function is given by

�̃III(r′, θ ′) =
+∞∑

m=−∞

+∞∑
l=−∞

mb̃l
kIII j̃l . (A17)

Using the boundary condition Eq. (A6), we obtain

mb̃l = αIIαIII
mãII

l

H (2)
l (kIIR2) + Scd

ll H (1)
l (kIIR2)

Jl (kIIIR2)
. (A18)

APPENDIX B: SCATTERING MATRIX FOR A CIRCULAR
CAVITY

To obtain the scattering matrix Scd, we consider a circular
cavity of radius R2 centered at O where r > R2 and 0 < r < R2

define regions II and III, respectively. Due to the circular
symmetry, the wave function for each angular momentum
channel can be written as

�II
m = kII h(2)

m + Scd
mm

kII h(1)
m ,

�III
m = Bm

kIII jm. (B1)

Applying the boundary conditions gives

αII
[
H (2)

m (kIIR2) + Scd
mmH (1)

m (kIIR2)
] = αIIIBmJm(kIIIR2),

kII
1+3h(2)

m (R2) + Scd
mm

kII
1+3h(1)

m (R2) = Bm
kIII
1+3 jm(R2), (B2)

where
kII
1+3h(1,2)

m (R2) ≡ H (1,2)
m−1 (kIIR2) − H (1,2)

m+1 (kIIR2), (B3)

kIII
1+3 jm(R2) ≡ Jm−1(kIIIR2) − Jm+1(kIIIR2). (B4)

We thus have

Scd
mm = −Jm(kIIIR2) kII

1+3h(2)
m (R2) − αIIαIIIH (2)

m (kIIR2) kIII
1+3 jm(R2)

Jm(kIIIR2) kII
1+3h(1)

m (R2) − αIIαIIIH
(1)
m (kIIR2) kIII

1+3 jm(R2)
, (B5)

with αIII ≡ sign(E − V2).

APPENDIX C: SCATTERING CROSS SECTIONS

The wave function in region I from Eq. (A4) can be rewrit-
ten as the sum of the contributions from the incident and
scattering waves:

� (I)(�r) =
∞∑

m=−∞
aI

m

⎡⎣2 kI jm +
∞∑

m′=−∞
(Smm′ − δmm′ )kI h(1)

m′

⎤⎦
= χin +

∞∑
m=−∞

aI
m

∞∑
m′=−∞

Tmm′ kI h(1)
m′ . (C1)

The incident wave function corresponds to

χin ≡
∞∑

m=−∞
2aI

m
kI jm. (C2)

The norm square of the second term in Eq. (C1), which is the
scattering wave function, is defined as the scattering proba-
bility in the near field measured from the cavity in region I,
with the transmission matrix defined as Tmm′ ≡ Smm′ − δmm′ .
The coefficient aI

m for each angular momentum channel is
determined by the incident plane wave function:

χin(r, θ ) = 1

2

⎛⎝e−iθ ′
√

2s
eiθ ′

⎞⎠eikin·r, (C3)

with the incident wave vector kin = kI(cos θ ′, sin θ ′). Expand-
ing the incident wave function for each angular momentum

channel by the Jacobi-Anger formula

eikIr cos(θ−θ ′ ) =
+∞∑

m=−∞
imJm(kIr)eim(θ−θ ′ ), (C4)

we obtain

χin(r, θ ) =
+∞∑

m=−∞

1√
2

im−1e−imθ ′ kI jm. (C5)

Note that jm is the three-component vector defined by
Eq. (A3), while Jm is the scalar Bessel function. The coeffi-
cient aI

m(θ ′) in Eqs. (C1) and (C2) is then given by

aI
m(θ ′) = im−1e−imθ ′

/(2
√

2). (C6)

Scattering cross section characterizes the behavior of particles
in the far-field region kr � 1 (from the cavity). In the far field,
the wave function from Eq. (C1) tends to

lim
kr�1

ψ (r, θ ) = χin + f (θ, θ ′)
2
√−ir

⎛⎝e−iθ√
2s

eiθ

⎞⎠eikIr, (C7)

with the scattering angle distribution in the far field as

f (θ, θ ′) = 2√
πkI

∞∑
m=−∞

aI
m(θ ′)

∞∑
m′=−∞

Tmm′ (−i)m′
eim′θ , (C8)

a result of the asymptotic behavior of the Hankel function

lim
x→∞ H (1,2)

m (x) →
√

2

πx
e±i(x−mπ/2−π/4),
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and the standard plane-wave normalization requirement. The
differential cross section σdiff is given in terms of f (θ, θ ′) as

σdiff ≡ dσ

dθ
= | f (θ, θ ′)|2, (C9)

and the total scattering cross section, which records the prob-
ability of scattering events under all possible directions, is
given by

σt (θ
′) =

∮
dθ | f (θ, θ ′)|2. (C10)

The momentum-transport cross section is defined as

σtr (θ ′) =
∮

dθ (1 − cos θ )| f (θ, θ ′)|2. (C11)

Averaging over the incident angle θ ′ leads to

σ̄t = 1

2π

∮
dθ ′σt (θ

′), (C12)

σ̄tr = 1

2π

∮
dθ ′σtr (θ ′). (C13)

Performing an average over some Fermi energy interval,
we get

〈σtr〉 = 1

E1 − E0

∫ E1

E0

dE σtr(E ). (C14)

The momentum transport cross section determines the trans-
port relaxation time τtr through

1

τtr
= ncvF σtr, (C15)

where nc is the concentration of identical scatters. Our scatter-
ing system is sufficiently dilute so multiple scattering events

can be neglected. For ballistic transport and elastic scattering
with system size comparable with the mean-free path: Ls ≈
Lmean−free = vF τtr, the semiclassical Boltzmann transport the-
ory gives that the conductivity is inverse of the σtr:

G ∝ 1

σtr
. (C16)

The spin polarization is defined by the spin-resolved transmis-
sion coefficient as [75]

Pz = (T ↓ − T ↑)/(T ↓ + T ↑).

We thus have

Pz = σ
↓
tr − σ

↑
tr

σ
↓
tr + σ

↑
tr

, (C17)

with σ
↓↑
tr ∝ R↓↑, where the resistance R is the inverse of the

conductivity G.

APPENDIX D: VALIDATION OF S-MATRIX APPROACH

1. Reduction from eccentric circular to annular cavity

For an annular scattering cavity (ξ = 0), the scattering ma-
trix can be analytically calculated, providing a way to validate
the scattering-matrix approach to the general case of ξ �= 0.
For this purpose, we consider the annular scattering cavity
ξ = 0 but with two boundaries: one at R1 and another at R2.
In the three regions, the wave functions associated with an
angular momentum channel are

�I
m = kI h(2)

m + Smm
kI h(1)

m ,

�II
m = Am

[
kII h(2)

m + Scd
mm

kII h(1)
m

]
,

�III
m = Bm

kIII jm. (D1)

Imposing the boundary conditions at r = R1 and r = R2 gives

⎡⎢⎢⎢⎢⎣
kII
2 h(2)

m (R1) 0 kII
2 h(1)

m (R1) −kI
2 h(1)

m (R1)
kII
1+3h(2)

m (R1) 0 kII
1+3h(1)

m (R1) −kI
1+3h(1)

m (R1)
kII
2 h(2)

m (R2) −kIII
2 jm(R2) kII

2 h(1)
m (R2) 0

kII
1+3h(2)

m (R2) −kIII
1+3 jm(R2) kII

1+3h(1)
m (R2) 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Am

Bm

Cm

Sm

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
kI
2 h(2)

m (R1)
kI
1+3h(2)

m (R1)

0

0

⎤⎥⎥⎥⎥⎦, (D2)

where Cm ≡ AmScd
mm and

ki
2 h(1,2)

m (Rj ) = siH
(1,2)
m (kiR j ),

ki
1+3h(1,2)

m (Rj ) = H (1,2)
m−1 (kiR j ) − H (1,2)

m+1 (kiR j ),

ki
2 jm(Rj ) = siJm(kiR j ),

ki
1+3 jm(Rj ) = Jm−1(kiR j ) − Jm+1(kiR j ),

with i = I, II, III and j = 1, 2. Note that kII
2 h(2)

m (R1) and kII
1+3h(2)

m (R1) are scalars, roughly corresponding to the second component
and the sum of the first and third components of the radial part of kII h(2)

m (R1), respectively. We have

Am = sIH (2)
m (kIR1) + sIH (1)

m (kIR1)Smm

sIIH
(2)
m (kIIR1) + sIIH

(1)
m (kIIR1)Scd

mm

, (D3)

Bm = Am
sIIH (2)

m (kIIR2) + sIIH (1)
m (kIIR2)Scd

mm

sIIIJm(kIIIR2)
. (D4)
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The scattering matrix is given by

Smm = − sIymH (2)
m (kIR1) − sIIxm

[
H (2)

m−1(kIR1) − H (2)
m+1(kIR1)

]
sIymH (1)

m (kIR1) − sIIxm
[
H (1)

m−1(kIR1) − H (1)
m+1(kIR1)

] , (D5)

where

xm = H (2)
m (kIIR1) + H (1)

m (kIIR1)Scd
mm,

ym = [
H (2)

m−1(kIIR1) − H (2)
m+1(kIIR1)

]
+ [

H (1)
m−1(kIIR1) − H (1)

m+1(kIIR1)
]
Scd

mm.

For the eccentric circular cavity, the scattering matrix can
be determined by Eq. (A12). We can reduce the eccentric
cavity to an annular cavity by taking the limit ξ → 0. In
that case, the off-diagonal scattering matrix will reduce to the
diagonal matrix: Sod

l j → Scd
ll δ jl and Smm′ → Smmδmm′ . We have

that Eq. (A12) reduces to the same form of Eq. (D5) as

Smm = −Z (2)
m − Y (2)

m − sIsIIX (2)
m Tm

Z (1)
m − Y (1)

m − sIsIIX
(1)
m Tm

, (D6)

with Tm = ym/xm. We find that, numerically, the difference
between the scattering matrix in Eq. (D6) and that in Eq. (D5)
is on the order of computer round-off error (about 10−15). The
excellent agreement between the analytic S matrix for ξ = 0
and the numerically calculated matrix in the limit ξ → 0 val-
idates the S-matrix approach manifested through Eq. (A12).

Figure 9(a) shows the convergence of the S matrix in a large
angular momentum range. For large angular momenta, the
S-matrix elements are negligibly small, suggesting that these
angular-momentum channels contribute little to the scattering
process. More specifically, Fig. 9(a) is the color map of the S-
matrix elements in the angular momentum representation. The
near-zero components in the high angular momentum basis
mean convergence. Note that the diagonal term in Fig. 9(a)
will be removed in the transmission matrix T = S − I , which
determines the scattering cross sections.

2. Mirror symmetry

An eccentric circular cavity possesses the mirror (parity)
symmetry. The parity operator for pseudospin-1/2 quasipar-
ticles is given by [4] Px = iσxRy, where Ry denotes the
mirror transform in the position space [e.g., x → x (kx → kx),
y → −y (ky → −ky), and θ → −θ ], and iσx arises from
the −π rotation in the counterclockwise direction about the
x axis in the spin space, i.e., eiπσx/2, which is equivalent
to the mirror-transform operation in the three-dimensional
space. For pseudospin-1 Dirac-Weyl quasiparticles, using
Rodrigues’s rotation formula [76], we obtain the rotation op-
erator as

eiθ (n̂·J) = I3 + i(n̂ · J) sin θ + (n̂ · J)2(cos θ − 1), (D7)

where J denotes the total angular momentum, n̂ specifies the
rotation axis and θ is the rotation angle in the clockwise di-
rection around n̂. Consider the rotation operation with θ = π

around x axis, we have S̃x ≡ eiπSx = I3 − 2S2
x , so

S̃x = −
⎛⎝0 0 1

0 1 0
1 0 0

⎞⎠,

where S̃2
x = I3 and S̃−1

x = S̃x. The parity operator is given by
Px = S̃xRy with PxP−1

x = I3. The Hamiltonian Eq. (A2) is
invariant under this parity operation:

PxĤsP−1
x = vFPxS · p̂P−1

x + Vgate(x,−y) − sM(x,−y)

= vF (Sx p̂x + Sy p̂y) + Vgate(x,−y) − sM(x,−y).

where

PxSxP−1
x Px p̂xP−1

x = Sx p̂x,

PxSyP−1
x Px p̂yP−1

x = (−Sy)(−p̂y) = Sy p̂y. (D8)

FIG. 9. Validation of the S-matrix approach. (a) Distribution of
the elements of |S|1/4 in a large angular momentum interval. Since
the matrix elements in the S matrix are between zero and one,
the elements of |S|1/4 are used for better visualization. (b) Mirror
symmetry constraint of the real (red) and imaginary (blue) parts of
the S-matrix elements for ξ = 0.165. Other parameters are poten-
tials V1 = −10 − 2μ, V2 = 40 − 2μ, with μ = 20 for the spin-up
electrons. The angular momentum range is L = −35 : 1 : 35 and the
Fermi energy range is E = 14.5 : (10−3/2) : 15.3.
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Finally, using

Vgate(x,−y) = Vgate(x, y),

M(x,−y) = M(x, y),

we obtain PxĤsP−1
x = Ĥs. As a result, the parity operation on the wave function is also a solution of the system. The cylindrical

spinor basis under the parity transform has the form

Px
kh(1,2)

m = (−1)m+1 1√
2

⎛⎜⎜⎝
H (1,2)

−m−1(kr)e−iθ

is
√

2H (1,2)
−m (kr)

−H (1,2)
−m+1(kr)eiθ

⎞⎟⎟⎠e−imθ = (−1)m+1 kh(1,2)
−m . (D9)

The wave function in region I in the eccentric circular cavity is

Px�
I =

+∞∑
m=−∞

PxaI
mP−1

x

⎡⎣Px
kI h(2)

m +
+∞∑

m′=−∞
PxSmm′P−1

x Px
kI h(1)

m′

⎤⎦
=

+∞∑
m=−∞

PxaI
mP−1

x (−1)m+1

⎡⎣kI h(2)
−m +

+∞∑
m′=−∞

PxSmm′P−1
x (−1)m′−m kI h(1)

−m′

⎤⎦
=

+∞∑
n=−∞

Ã I
n

⎡⎣kI h(2)
n +

+∞∑
n′=−∞

Snn′ kI h(1)
n′

⎤⎦, (D10)

with n ≡ −m, n′ ≡ −m′ and Ã I
n ≡ PxaI

−nP−1
x (−1)−n+1. We have

Snn′ ≡ S−m,−m′ = PxSmm′P−1
x (−1)m′−m = (−1)m′−mSmm′ .

For m = m′, we get Sm,m = S−m,−m. Thus, the real and imaginary parts of the S matrix obey this relation, as shown in Fig. 9(b).
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