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Generating extreme quantum scattering in graphene with machine learning

Chen-Di Han 1 and Ying-Cheng Lai 1,2,*

1School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
2Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

(Received 1 September 2022; revised 5 December 2022; accepted 7 December 2022; published 14 December 2022)

Graphene quantum dots provide a platform for manipulating electron behaviors in two-dimensional (2D)
Dirac materials. Most previous works were of the “forward” type in that the objective was to solve various
confinement, transport, and scattering problems with given structures that can be generated by, e.g., applying
an external electrical field. There are applications such as cloaking or superscattering where the challenging
problem of inverse design needs to be solved: Finding a quantum-dot structure according to certain desired
functional characteristics. A brute-force search of the system configuration based directly on the solutions
of the Dirac equation is computationally infeasible. We articulate a machine-learning approach to addressing
the inverse-design problem where artificial neural networks subject to physical constraints are exploited to
replace the rigorous Dirac equation solver. In particular, we focus on the problem of designing a quantum-dot
structure to generate both cloaking and superscattering in terms of the scattering efficiency as a function of the
energy. We construct a physical loss function that enables accurate prediction of the scattering characteristics.
We demonstrate that, in the regime of Klein tunneling, the scattering efficiency can be designed to vary over
two orders of magnitude, allowing any scattering curve to be generated from a proper combination of the
gate potentials. Our physics-based machine-learning approach can be a powerful design tool for 2D Dirac
material-based electronics.
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I. INTRODUCTION

Two-dimensional (2D) Dirac material systems such as
graphene, topological insulators, molybdenum disulfide, and
topological Dirac semimetals [1–5] constitute a research
frontier in condensed matter physics and materials science.
A common feature of these materials is that their energy
bands contain a Dirac cone structure that gives rise to a
linear energy-momentum relation (dispersion relation) for
low-energy excitations, which is characteristic of relativistic
quantum motions governed by the Dirac equation. The Dirac
cone structure can be exploited for storing and transferring
information with applications in Dirac material-based elec-
tronics and spintronics [6–9].

Given a 2D Dirac material, the system structure and the
applied gate potentials, a combination of these can generate
rich quantum behaviors. For example, in the field of rela-
tivistic quantum chaos [10–13], electrons can be confined
in a graphene sheet of certain geometric shape, generating
billiard systems that provide a platform to study the relativistic
quantum manifestations of different kinds of classical dynam-
ics. In scattering, a combination of gate potentials can be
applied to a graphene sheet to create a quantum-dot structure,
which can be experimentally realized through STM tips or
doping [14–19]. Graphene quantum dots are also a paradigm
to study various transport phenomena [20–22]. Given a scat-
tering structure, the tight-binding Hamiltonian or the Dirac
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equation can be solved to yield the scattering functions so that
the performance of the device can be assessed. A common
feature among the previous works is their “forward” nature:
Studying various quantum behaviors or performance of the
underlying system with a given structure.

Inverse design addresses the opposite problem: How to
design a Dirac material system to generate certain desired
functional characteristics. For example, suppose we wish to
design a graphene device to generate the desired scattering
functions by using a 2D multilayer structure of concentric
circular graphene ribbons, where the layers can have differ-
ent widths and each layer is made physically distinct from
the others through a vertical electric field (gate potential).
A brute-force approach to searching the optimal multilayer
structure to generate the desired scattering functions would
be to test a large number of combinations of the geometric
parameters of the various layers as well as the values of the
gate potentials. With luck, it may be possible to find a specific
structure and a set of gate potentials such that the resulting
scattering curves approximately match the desired functions.
However, such a brute-force approach is generally practically
infeasible because of the extremely large parameter space that
needs to be searched. There is in fact no guarantee that this ap-
proach would be successful, as the existence of a device with
the desired response is unknown a priori. Aside from quantum
scattering [23], inverse-design problems of this kind occur in
other fields such as quantum information [24], biology [25],
molecular design [26], and photonics [27].

Recently, machine learning has been introduced to in-
verse optical design where the goal is to find the best
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structure of a multilayer dielectric sphere to generate the de-
sired electromagnetic response by approximating the Maxwell
equations with a trained artificial neural network [28]. The
approximation can simplify the original optimization problem
without loss of details. Subsequently, the approach has been
extended to designing optical metasurfaces [29], metagrating
[30], and multifunctional devices [31,32]. Machine learn-
ing has thus offered a general solution to the inverse-design
problem.

This work concerns designing systems that can generate
extreme scattering characteristics. In particular, the perfor-
mance of any scattering system, optical or electronic, can be
conveniently characterized by the scattering cross section as a
function of a basic quantity such as the wavelength (in optics)
or the Fermi energy (in electronic systems). The two opposite
extremes correspond to a small and a large scattering cross
section, respectively, with the former representing cloaking
and the latter signifying superscattering. In optics, one ap-
proach to cloaking is through scattering cancellation [33]
based on the the idea that, in a multilayer structure, polariza-
tion from different layers can cancel each other to generate an
exceedingly small scattering cross section. Multilayer struc-
tures can also be exploited to produce superscattering [34].
There were experimental results on cloaking or superscatter-
ing in optics [34–36]. For those problems, a basic physical
constraint is that it is generally not possible to generate cloak-
ing or superscattering for all kinds of incident waves [37,38],
so these exotic phenomena can occur only for a certain type
of incident waves. In optics, both cloaking and superscattering
can occur in a multilayer structure of dielectric materials, so
it is possible to generate cloaking and superscattering in the
same device. For example, it has been recently demonstrated
that a single device based on Ag-semiconductor multilayer
sphere can produce large and small scattering cross sec-
tions [28,39]. Without changing the dimension of the device,
a superscattering-cloaking transition was reported in a two-
layer system where a significant change in the scattering cross
section can occur with respect to the incident angle [40]. One
optical material capable of such a transition is GeTe [41,42],
where, under different environmental conditions such as the
temperature [43], the material exhibits different physical prop-
erties. Related optical scattering problems were investigated
with graphene-coated nanosphere [44,45] and its design [46].
The analogy between matter and electromagnetic waves stim-
ulated the idea of generating electron cloaking through a
multilayer structure [47–49], which subsequently was ex-
tended to graphene for cloaking relativistic electrons [50–52].

Our study focuses on the following question: Is it possible
to generate the two extreme scattering behaviors, cloaking
and superscattering, in the same 2D Dirac material system?
Because of the relative easiness to experimentally tune the
gate potential through varying an applied electrical field [53],
graphene stands out as a viable candidate for generating super-
scattering and cloaking as well as a transition between them
in the same fixed structure. To be concrete, we consider a
multilayer scattering structure that consists of N concentric
circles, where a different gate potential is applied to each dis-
tinct circular layer. To reduce the dimension of the parameter
space so as to make the inverse-design problem feasible, we
fix the geometric structure of the scattering system and allow

the set of gate potentials to be tunable. We develop a class of
neural networks subject to physical constraints with the goal
to find a set of gate potentials to generate electronic cloaking
and another set to generate superscattering in the same device.
A key component of the inverse design is our articulation of
a physical loss function to significantly reduce the training
and testing errors and to eliminate nonphysical solutions. We
demonstrate that, even in the regime of Klein tunneling, the
scattering efficiency (to be defined in Sec. II A) can vary over
two orders of magnitude. Compared with the corresponding
optical system where the material for each layer is fixed and
the width for each shell can be changed, in our graphene
scattering system only the gate potential is changed with the
device structure intact, rendering it experimentally feasible.
Our physics-based machine-learning approach can be a pow-
erful design tool for graphene-based electronic devices and
is generalizable to solving inverse problems in other areas of
science.

II. METHODS: MULTILAYER GRAPHENE QUANTUM
DOT, MACHINE LEARNING, AND INVERSE DESIGN

We first clarify the physical meanings of the terms “cloak-
ing” and “superscattering” adopted in this work. Our goal of
inverse design is to realize a structure that can generate these
two opposite extremes of quantum scattering. Ideal cloaking
is characterized by zero scattering cross section or efficiency.
Since near-zero scattering efficiency can trivially occur for a
scatterer of arbitrarily weak strength V̄ R̄ → 0, where V̄ and
R̄ are the average gate potential and the mean size of the
quantum dot, respectively, cloaking is meaningful only for
scatterers with a reasonably large scattering strength, e.g., the
quantum dot of size RB in Fig. 1(b). For this case to be qual-
ified as cloaking, the resulting scattering cross section should
be as small as that from a scatterer of much smaller size such
as the dot of radius RC in Fig. 1(b). In the opposite limit, strong
scattering can naturally occur if the scattering strength is high.
By superscattering we mean that, even when the scatterer is
relatively weak, the resulting scattering cross section can be
as large as that from a scatterer of much larger size, such as
the quantum dot of size RA in Fig. 1(b).

A. Graphene quantum dot

We consider a 2D circular graphene quantum dot of radius
RN subject to a gate potential profile V (r). The Hamiltonian
of the scattering system is

H = vgσ · p + V (r), (1)

where vg is the Fermi velocity and σ ≡ [σx, σy] is the vector
of Pauli matrices. For simplicity, we assume that the gate
potential has no angular dependence and write V (r) = V (r),
for 0 < r � RN . We further assume that V (r) is a piecewise
constant function with N distinct values, which experimen-
tally can be realized by STM tips or doping in the substrate
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FIG. 1. Illustration of a multilayer graphene quantum dot, scat-
tering efficiency, and the physics-constrained machine-learning
scheme. (a) A multilayer circular graphene quantum dot generated
by the gate potential profile V (r) in Eq. (2). (b) For the special
case of a single-layer quantum dot, scattering efficiency versus
the Fermi energy E for three different sizes of the quantum dot:
RA = 63 nm, RB = 30 nm, and Rc = 3 nm. Because of the simple
structure, the overall scattering efficiency increases as the dot be-
comes larger, as expected, indicating naturally that a single-layer
structure is not capable of generating extreme scattering behaviors.
(c) The neural-network architecture underlying our proposed scheme
of physics-constrained machine learning. The basic component of the
neural network is a multilayer perceptron, where the input is the set
of constant gate potential values (V1,V2, . . . ,VN ) and the output is the
properly discretized scattering efficiency function as exemplified in
(b). The function is defined in a fixed energy range and is uniformly
sampled with M discrete points, leading to an M-dimensional output
vector: Q ≡ (q1, q2, . . . , qM )T . The rightmost layer with the output
vector Q̂ ≡ (q̂1, q̂2, . . . , q̂M )T is introduced to ensure that the whole
neural-network architecture “respects” the basic physics of quantum
scattering (see text for details).

[14–19]. The potential profile is

V (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V1, r < R1

V2, R1 < r < R2

· · · · · ·
VN , RN−1 < r < RN

0, r > RN

(2)

leading to a multilayer scattering structure with N distinct
concentric circular layers, where the gate potential in each
layer is a constant, as schematically illustrated in Fig. 1(a).
An advantage of the multilayer structure is that the structural
parameters (R, V) ≡ ([R1, R2, . . . , RN ]T , [V1,V2, . . . ,VN ]T )
can be relatively readily adjusted in experiments. This should
be contrasted to a multilayer structure in optics [28–32],
where only the set of radii can be changed once the dielectric
materials are fixed.

Our goal is to design the potential profile V (r) to gen-
erate extreme scattering behaviors for a fixed set of radii
(R1, R2, . . . , RN ). To gain insights, we first consider the rela-
tively simple case of a single-layer scatterer: N = 1. Matching
the boundary condition at r = R1 and setting the Fermi veloc-
ity to be vg = 106 m/s, we obtain the solutions of the 2D Dirac
equation [54] in terms of the scattering spinor wave function
(Appendix A). The scattering behavior can be conveniently
characterized by the scattering efficiency defined as

Q = scattering cross section

geometric size
= 2

kR1

∞∑
l=−∞

|Al |2, (3)

where Al is the coefficient for scattering wave in the polar
coordinates associated with angular momentum l . Intuitively,
a large scattering efficiency indicates that the object is more
“visible.” Three examples of the scattering efficiency are
shown in Fig. 1(b) for V1 = 87.5 meV and for dot size RA =
63 nm, RB = 30 nm, and RC = 3 nm, corresponding to strong,
intermediate, and weak (all in the relative sense) scattering, re-
spectively. Note that the Q value for RB is approximately two
orders of magnitude larger than that for RC . Note also that the
incident energy is approximately one-quarter to three-quarter
of the potential height, so the particle is in the Klein tunneling
regime [55]. A recent work [56] indicated that, for a graphene
quantum dot, in the limit (kR1) → 0, for a fixed Fermi energy
the scattering efficiency scales with the size of the scat-
terer as Q ∝ (V R1)3. However, the scaling breaks down for
R1 ≈ 10 nm at which the scattering efficiency tends to saturate
and increases only slowly with further increase in R. Overall,
Fig. 1(b) indicates that, as the size of the scatterer increases,
scattering is enhanced, as can be intuitively anticipated. The
simple single-layer structure is thus not capable of generating
extreme scattering behaviors.

For a graphene multilayer circular quantum dot with given
parameters (R, V), the scattering problem can be solved
by the method of transfer matrix [57] through matching
the spinor wave functions at all the layer boundaries (Ap-
pendix A). After the spinor wave functions in all layers have
been obtained, we can calculate the scattering efficiency ac-
cording to

Q = 2

kN+1RN

∞∑
l=−∞

∣∣AN+1
l

∣∣2
, (4)

where kN ≡ |E |/vg. Given a scattering structure, it is thus
straightforward to calculate the scattering efficiency (the so-
lutions of the forward problem).

To generate extreme scattering behaviors, i.e., cloaking or
superscattering, it is necessary to define the input properly by
specifying a range for the gate potentials because, if the po-
tentials are too weak, the scattering efficiency will be trivially
near zero and this does not lead to cloaking. Likewise, unrea-
sonably large potential values can lead to strong scattering, but
this is not superscattering. Making use of the scaling relation
for the scattering efficiency for weak scatterers [56],

Q ∝
[∑

|Vi|(Ri+1 − Ri )
]3

,

we have Q ∝ (〈|V|〉RB)3 because Ri = iRN/N . It is thus rea-
sonable to choose the gate potentials such that 〈|V|〉 ≈ V0,
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where 〈|V|〉 is the average gate potential applied to the multi-
layer structure and V0 is the potential applied to a single-layer
structure of the same size.

For a single-layer scatterer, the problem of finding a
scattering configuration to generate the desired scattering
efficiency Qdesired can be formulated as the following opti-
mization problem:

min
V

∥∥∥∥Q(V) − Qdesired

Qdesired

∥∥∥∥
2

, (5)

where ‖ · ‖2 denotes the mean-square error (MSE). Because of
the simple geometry, it is only necessary to optimize a small
number of parameters, making it relatively straightforward to
obtain the solutions of the optimization problem. In particular,
it is only necessary to discretize each parameter dimension
and perform a grid search. Difficulties arise when the scatterer
has many layers, making the function Q(V) highly nonlinear
with many parameters that need to be optimized. For exam-
ple, for a multilayer sphere of 10 layers, even if only four
parameters need to be determined for each layer, the number
of parameter combinations will be larger than 410 ∼ 106. This
issue of computational complexity motivated us to exploit
machine learning to solve the optimization problem.

B. Physics-constrained machine learning

Machine learning provides an effective platform to approx-
imate mathematical functions arising from physics [58]. For
example, in photonic design, neural networks can be used
to approximately represent the scattering cross section from
a variety of devices [28,29]. To exploit machine learning to
generate extreme scattering behaviors in a graphene quantum
dot, an essential step is to train a multilayer perceptron such
that it mimics the scattering process. To achieve this, we
introduce a physics-constrained neural network architecture,
as illustrated in Fig. 1(c). The concrete design of the archi-
tecture is as follows. The input vector has the dimension N ,
a set of constant gate potential values V ≡ (V1,V2, . . . ,VN )T .
The output is the scattering efficiency function as exempli-
fied in Fig. 1(b), which is defined in a given energy range
and is uniformly sampled with M discrete points, leading to
an M-dimensional output vector: Q ≡ (q1, q2, . . . , qM )T . In
this work, we use M = 200 (a rather arbitrary choice). Aside
from the input and output layers, the neural network has four
hidden layers, each containing 200 neurons. There are thus
five layer-to-layer transforms from the input to the output.
The activation for the first four transforms is set to be the
standard rectified linear unit (ReLU) and there is no activation
from the fourth hidden layer to the output layer (a simple
linear transform). Note that, before any activation, the neural
network uses a linear transformation between two adjacent
layers, which has approximately 4 × 104 parameters. Thus,
the number of training parameters in the architecture from the
input vector V to the output vector Q is approximately 105.

To train the neural network, a certain amount of ground
truth data from the graphene scattering system is required.
To generate the data, it is necessary to determine the range
of the input, which in our case is the range of the externally
applied gate potential. To be concrete, we assume that the
mean value of the gate potential in the whole quantum-dot

scattering region is 〈V (r)〉 ≈ V0, where V0 = 87.5 meV, so
we choose |Vi| ∈ (75 and 100 meV). The training data are
generated by randomly select Vi in this range, where Vi can be
either positive or negative, i.e., −100 meV < Vi < −75 meV
or 75 meV < Vi < 100 meV. For a larger number N of layers,
the multilayer quantum-dot structure is geometrically more
sophisticated, thereby requiring more training data. Empir-
ically, we choose the number of training data points to be
103N . Say the scattering structure has 10 circular layers: N =
10. Compared with a brute-force grid search in 10 dimensions,
our choice of 104 data points corresponds to search in a
parameter space of a significantly reduced dimension: About
three. Our machine-learning approach thus requires far less
data amount than a brute-force search would.

The training process is rather standard and is briefly de-
scribed, as follows. The training data sets are generated by
directly simulating quantum scattering based on the solutions
of the Dirac equation in the setting of a multilayer quan-
tum dot. Training is conducted by employing the standard
stochastic gradient descent algorithm with batch size 128.
The method of adaptive momentum (Adam) is used to min-
imize the loss function to find the parameters. The whole
process from network construction and training to predicting
the scattering-efficiency function is accomplished by using the
open source package TENSORFLOW and KERAS [59,60].

A key to the success of a machine-learning architecture is
the training loss. A commonly used loss function is the mean-
square error (MSE)

LMSE = ‖Qpred − Qtrue‖2, (6)

which typically works well when the data values are within
the same order of magnitude. For the multilayer percep-
tron in Fig. 1(c), the weights and biases can be solved by
the optimization algorithm based on the loss function. The
structure from the input vector V to the output vector Q is
mathematically designed without taking into account physical
constraints of the underlying quantum scattering system. As
a result, even with extensive training, nonphysical results can
arise, which are in fact not uncommon. For example, to realize
cloaking requires that the scattering efficiency has near zero
values, but some components of the output vector Q can be
negative, which is not physical, as illustrated in Fig. 2(a)
and the inset for a graphene quantum dot that has N = 9
layers. This problem cannot be fixed through training. It is
thus necessary to take physical constraints into account in the
design of the neural-network architecture.

Incorporating physical principles and constraints into de-
signing neural networks has become a recent subarea of
research in machine learning. For example, the Hamiltonian
structure has been built into the neural-network architectures
to predict the dynamical behaviors of classical mechanical
systems [61–69]. Physics-based neural networks have also
been extended to other fields such as fluid dynamics [70,71]
and metasurface design in optical [72] or quantum systems
[73,74]. For our quantum scattering system, a basic require-
ment is that the scattering cross sections or efficiency not
be negative. We address the issue of physical constraints by
incorporating an additional output layer: The rightmost layer
in Fig. 1(c) with the output vector Q̂ ≡ (q̂1, q̂2, . . . , q̂M )T .
More specifically, the additional output layer takes the vector
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FIG. 2. The advantages of invoking a physics-constrained loss
function. The performance of a given loss function can be con-
veniently visualized by the plot of the neural-network predicted
values of the scattering efficiency function versus the true value.
(a) The plot based on the mathematical loss function (6) (without
physical considerations). There is a relatively wide spread of the
predicted values about the true values and some predicted values
of the scattering efficiency are negative (nonphysical). (b) With the
physics-constrained loss function (7), the predicted values are all
positive and are closer to the true values. (c) Relative prediction error
versus the number of layers in the scattering structure. Compared
with the case of loss function (6), the relative error associated with
the physics-constrained loss function (7) is markedly reduced (by
about 50%).

Q as input and performs an exponential operation on each
component of Q to generate the vector Q̂. Mathematically, the
operation can be represented as R−1(·) ≡ exp(·), which maps
Q to a strictly positive function Q̂. The consideration has led
us to introduce the following two-component loss function:

Lphysical Loss = ‖Qpred − R(Qtrue)‖2 + ‖Q̂pred − Qtrue‖2, (7)

where Qpred is the scattering efficiency calculated from the
vector Q and Q̂pred = R−1(Qpred). Note that the squared dif-
ference between the true Q function and the transformed
function Q̂ is the conventional loss function. The idea to
enforce the physical rule of the non-negativeness of the scat-
tering cross section is to supply an additional term: The
squared difference between the transformed true output func-
tion R(Qtrue ) and the original output function Q. From the
point of view of optimization, this loss function works as
follows. If Qtrue is close to zero, the operation R will return
a relatively large value. When Qtrue is large, the second term
in the loss function will dominate. For small and large values
of Qtrue, the predicted values of the scattering efficiency will
be positive.

The performance of the physics-constrained loss function
is illustrated in Fig. 2(b), where various values of the pre-
dicted scattering efficiency function are plotted against the
corresponding true values. Compared with Fig. 2(a) based on
the mathematical loss function in Eq. (6), we see that the
predicted values are all positive (as they should be) and are
closer to the true values. The prediction performance can be
characterized by the following relative error:

Relative error =
∣∣∣∣Qtrue − Qpred

Qtrue

∣∣∣∣. (8)

Figure 2(c) shows the error versus the number of layers in
the graphene quantum-dot structure, where each data point
is generated from an ensemble average of 100 independent
neural-network realizations and, for each realization, the test-
ing data set contains 1000 points. Two sets of results are
shown: One according to the physics-constrained loss func-
tion (7) (blue points) and another based on the loss function
(6) (red). We see that, as the number of layers in the quan-
tum dot increases, the architecture becomes more complex,
leading to some increase in the relative error. However, the
relative error can be markedly reduced by employing the
physics-based loss function (7).

C. Principle of inverse design

The physics-constrained neural network as shown in
Fig. 1(c), once trained, takes an input vector V of the gate
potentials to generate an output vector Q̂ representing the scat-
tering efficiency that is the solution of the 2D Dirac equation.
A well-trained neural network thus effectively functions as a
Dirac equation solver. The main advantage of this substitution
lies in the computational efficiency, as what it takes for the
well-trained neural network to generate the solutions of the
Dirac equation is simply matrix multiplications through a
gradient descent. More specifically, let Qdesired be the desired
function of the scattering efficiency in the same energy range
as the training data sets, represented as a vector. The objective
is to solve the following optimization problem:

min
V

∥∥∥∥∥
Q̂(V) − Qdesired

Qdesired

∥∥∥∥∥
2

, (9)

where Q̂ is the output vector from the neural network and
Qdesired is normalized to accommodate the behavior of the
scattering efficiency on multiple energy scales. The error in
(9) to be minimized measures the functional distance between
neural-network generated scattering efficiency and the desired
one. In general, there is no guarantee that a particular scatter-
ing configuration can be found to yield the desired function
Qdesired, so the error can be large. The goal is to find the
optimal input vector V to minimize the error in (9). As we will
describe below, this can be done in a computationally efficient
manner. Note that the error in (9) is different from the training
error in Eq. (8), which measures the difference between the
neural-network output to the ground truth, i.e., the scattering
efficiency function from a given set of input gate potentials.

To better describe the solutions of the optimization prob-
lem, we employ a concrete parameter setting. To generate
either cloaking or superscattering, we use a small or a large
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FIG. 3. Flow chart of machine-learning-based solution to the inverse-design problem of quantum scattering. A multilayer neural network is
first trained using a number of functions Q(E ) of the scattering efficiency versus the electron energy for scattering from a multilayer graphene
quantum dot subject to externally applied gate potentials, one to each graphene layer. For any given set of gate potentials, the corresponding
function of the scattering efficiency is obtained from the exact solutions of the Dirac equation. A well-trained neural network will generate
solutions of the Dirac equation. Solving the inverse-design problem requires the following steps: (1) choosing a random initial set of gate
potentials as the input to the neural network to obtain the Q function, (2) calculating the difference between this and the desired Q function, (3)
if the difference is sufficiently small (e.g., less than a predefined threshold), then a solution is deemed to be found, (4) otherwise calculating a
change in each gate potential through the standard gradient approach applied to the neural network to yield a new set of input variables, and
(5) repeat steps (3) and (4) until a solution is found.

quantum dot, respectively, as a reference to obtain the de-
sired function Qdesired, subject to the average gate potential
87.5 meV. Initially, the various gate potentials are chosen
randomly from the two symmetric intervals defined by |Vi| ∈
[75, 100] meV. Let the desired energy region be from 25 to
70 meV, which is discretized into 200 points, on which both
the Qdesired and Q̂(V) functions are evaluated. The number N
of layers in the graphene quantum dot depends on the design
imperative, i.e., whether cloaking or superscattering is to be
realized. Given a task, once N has been determined, it is fixed
so that training and inverse design are carried out on the same
neural-network architecture. After training, the error function
in (9) is a deterministic function, whose global minimum can
be found by using, e.g., the standard interior point method
[75,76]. We incorporate a gradient descent procedure into the
interior point method as it was established previously that this
can significantly improve the computation speed [28].

A detailed description of the steps involved in finding an
optimal solution to the inverse-design problem is presented in
Fig. 3.

Four remarks are in order. First, using the trained neural
network in Fig. 3 as a Dirac-equation solver has the advantage
of being extremely computational efficient. If the original
Dirac equation were used for calculating the scattering-
efficiency Q function and for finding the optimal set of gate
potentials, a vast number of combinations of the potentials
would typically be needed and, for each combination, the
calculation of the Q involves calculating a large number of so-
phisticated mathematical functions. With the neural network,

the standard gradient-descent method can be invoked to find
the changes in the gate potentials, quickly yielding the optimal
solution. For each given set of input variables, all needed for
the neural network is matrix multiplications, which can be
done extremely efficiently using well-developed packages.

Second, compared with designing a multilayer spherical
scattering structure in optics where the input vector is
chosen from a single interval of the physical parameter (e.g.,
dielectric constant), for graphene the input gate potentials
are chosen from two symmetric intervals: One negative
and another positive. There is then a gap in the input
parameter space. To our knowledge, this type of inverse
design has not been studied. Our solution is to test all possible
combinations for Vi ∈ [−100,−75] ∪ [75, 100] meV.
For each Vi, there are two possibilities: Positive or
negative. For an N-layer circular quantum dot, altogether
we have 2N possible combinations. Take N = 2 as an
example. If we wish to find the best V(1,2) such that
|V(1,2)| ∈ [75, 100] meV, there are four combinations: V1 ∈
[75, 100] meV ∩ V2 ∈ [75, 100] meV, V1 ∈ [75, 100] meV
∩ V2 ∈ [−100,−75] meV, V1 ∈ [−100,−75] meV ∩
V2 ∈ [75, 100] meV, and V1 ∈ [−100,−75] meV ∩
V2 ∈ [−100,−75] meV. For each combination, an optimal
solution can be found using one or two optimization steps.
We find that, for a larger value of N , the best scattering
structure can be found with one or two optimization steps
for each combination of the gate potentials. As a result,
for any reasonable value of N (e.g., N = 10), the required
computational complexity is well manageable.
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Third, to find the global minimum in (9), including
derivatives can increase the computational efficiency [28]. In
particular, to optimize V from (9), we calculate the derivative
∂ Loss/∂V. Since Qdesired is fixed, it is only necessary to eval-
uate the derivative of Q̂(V) with respect to V. Once the neural
network has been trained, such derivative can be evaluated
through back propagation.

Fourth, there is no guarantee that the “best” scattering
configuration can be found to make the scattering efficiency
function match the desired function. Empirically, we find that
increasing the number N of graphene layers typically results
in a smaller optimization loss. This issue will be addressed in
detail in Sec. IV.

III. RESULTS

A. Cloaking

The goal of designing a graphene-based cloaking system
is to generate near-zero scattering cross section or efficiency
from a relatively large quantum-dot structure. Since a small
structure tends to generate minuscule scattering efficiency,
the desired vector Qdesired can be found by solving the rela-
tivistic quantum scattering problem over a small single-layer
structure, e.g., a circular cavity of radius RC = 3 nm sub-
ject to a gate potential of V = 87.5 meV, which produces
near-zero scattering efficiency, as shown in Fig. 1(b). Now
consider a nine-layer (N = 9) structure of size 10 times larger:
RN = 30 nm. The question can be stated as follows: Is it
possible to find a set of suitable gate potentials represented
by input vector V such that the resulting scattering efficiency
function is arbitrarily close to Qdesired, subject to the constraint∑ |Vi|/N ≈ 87.5 meV?

Figure 4(a) presents three curves of the resulting scattering
efficiency function: The desired function (dashed blue), the
function from the optimal multilayer graphene structure found
by our physics-constrained neural network (solid blue curve),
and a training curve that is the nearest to the target curve
from the training data set (dotted orange curve). The optimal
physical structure of the multilayer graphene quantum dot
found by our physics-constrained neural network is shown
in the lower right inset, where the gate potential values ap-
plied to different layers are specified by the color bar with∑ |Vi|/N = 85.7 meV. We see that the optimal structure pro-
duces a scattering efficiency function that well approximates
the desired function. The purpose of the dotted orange curve
is to demonstrate that the optimal structure is not a trivial
interpolation of some of the structures in the training data
set. Apparently, this “best” training function deviates from the
desired function as the energy increases. The structure found
by the neural network is thus one that produces real cloaking
in that the scattering efficiency is as small as that produced by
a structure of 10 times smaller in the entire energy range of
interest.

Intuitively, the emergence of cloaking from a large scatter-
ing structure requires destructive quantum interference. If the
gate potentials applied to nearby layers have the same sign, it
will be difficult to produce such interference. However, alter-
nating signs of the gate potentials between neighboring layers
can facilitate the occurrence of destructive interference. The

FIG. 4. Optimal multilayer graphene structure exhibiting cloak-
ing found by machine learning. The parameter requirements of
inverse design are RN = 30 nm and

∑ |Vi|/N ≈ 87.5 meV. (a) Com-
parison of three curves of scattering efficiency: The desired function
from a single-layer scatterer of 10 times smaller (dashed blue curve),
the function underlying cloaking from the neural network (solid blue
curve), and a curve closest to the target curve from the training data
set (dotted orange curve). The inset illustrates the optimal quantum-
dot structure predicted by machine learning. That the two blue curves
stay close to each other in the entire energy range is indicative of
cloaking, due to the much larger size of the neural-network produced
multilayer structure. (b) Spatial patterns of the spinor wave function
and the local currents associated with cloaking, with the quantum-dot
structure at the center and an incident plane wave from the left.
The wave-function intensity is nearly constant (unity) in the relevant
spatial domain and the current vectors hardly change their direc-
tions, signifying cloaking. (c) Conventional scattering patterns from
a single-layer quantum dot of the same size. There is no cloaking due
to the significant changes in both the wave-function intensity and the
current direction across the domain.

pattern of gate potentials of the optimal multilayer structure
predicted by the neural network indeed has this feature, as
demonstrated in Fig. 4(a).

To visualize the cloaking phenomenon, we show the spatial
distribution of the scattering wave function. In particular, we
compare two cases: The optimal nine-layer structure found
by the neural network and a single-layer quantum dot of
the same size (R = 30 nm), in terms of the wave-function
intensity defined as |ψ1|2 + |ψ2|2, where ψ1 and ψ2 are the
two spinor components and the directions of the local current
vectors are given by [〈σx〉, 〈σy〉]. For a planar incident wave
of unit intensity from the left, if cloaking has indeed oc-
curred, the wave-function intensity should be nearly constant
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in the spatial domain of interest and the current vectors should
not change their directions, i.e., to maintain their horizontal
directions. Such behaviors characteristic of cloaking are ex-
emplified in Fig. 4(b) for the optimal multilayer structure.
In contrast, for the single-layer structure where no cloaking
occurs, the wave-function intensity varies across the domain
and there are significant changes in the directions of the local
current vectors, as shown in Fig. 4(c).

For a graphene quantum-dot scatter with a weak scattering
strength as measured by V̄ R, where V̄ is the average potential
and R is the dot size, the scattering efficiency with the strength
exhibits the following scaling relation [56]: Q ∼ (V̄ R)3. The
target quantum dot used for generating the cloaking behav-
ior has the size of 3 nm. According to this scaling law, the
scattering efficiency should be quite small. For a relatively
large circular structure of size, e.g., 10 nm, the scattering
efficiency saturates and the scaling law no longer holds, but
it can still be used to obtain an order-of-magnitude estimate
of the scattering efficiency. We find that for a conventional
structure of size 30 nm without cloaking, the scattering effi-
ciency is typically two orders of magnitude larger than that
from a structure of size 10 times smaller. It is remarkable that
our physics-constrained machine-learning approach is able
to predict a large quantum-dot structure but with scattering
efficiency two orders of magnitude smaller than it “should be”
in the conventional sense, effectively realizing cloaking.

B. Superscattering

We now address the opposite (to cloaking) problem:
Is it possible to design a multilayer scattering structure
of certain size to generate scattering efficiency that con-
ventionally would be achieved only with a much larger
scatterer? To be concrete, we use a nine-layer structure of size
RN = 30 nm with gate potentials subject to

∑ |Vi|/N ≈
87.5 meV and generate the target scattering efficiency func-
tion Qdesired using a single-layer scatterer of size RA = 63
nm, as illustrated in Fig. 1(b). The actual curve of Qdesired
is shown by the dashed blue curve in Fig. 5(a), where a
scattering resonance arises at energy about E = 30 meV. Ap-
plying our machine-learning-based inverse-design algorithm,
we obtain the quantum-dot structure as illustrated in the upper
right corner of Fig. 5(a) with

∑ |Vi|/N = 89.8 meV, where
the resulting scattering efficiency function is represented by
the solid blue curve that stays near the target curve in the
entire energy range. This means that the optimal structure of
size 30 nm is able to produce scattering efficiency as large as
that from a structure of much larger size. For reference, the
“best” scattering efficiency function from the training data set
is shown (the dotted orange curve). The optimal quantum-dot
structure discovered by the neural network for superscattering
requires a negative gate potential for majority of the layers.
The spatial distribution of the wave-function intensity and
the local current vectors associated with superscattering are
shown in Fig. 5(b), and the same quantities from a single-layer
scatterer of the same size are shown in Fig. 5(c). It can be
seen that scattering from the optimal multilayer structure is
markedly enhanced. An advantage of our machine-learning
design is that no additional training of the neural network
is required here, insofar as it has been trained for cloaking

FIG. 5. Optimal multilayer graphene structure exhibiting super-
scattering produced by machine learning. As for the case of cloaking
in Fig. 4, the structure has the size RN = 30 nm and the gate po-
tentials satisfy the constraint

∑ |Vi|/N ≈ 87.5 meV. (a) Comparison
of three curves of scattering efficiency: The desired function from
a single-layer scatterer of twice larger size (dashed blue curve),
the function associated with superscattering from machine learning
(solid blue curve), and a training curve closest to the target curve
from the training data set (dotted orange curve). The upper right
inset illustrates the optimal quantum-dot structure predicted by the
neural network. (b) Spatial patterns of the spinor wave function
and the local currents associated with superscattering at the energy
E = 30 meV, with the quantum-dot structure at the center and an
incident plane wave from the left. There are significant variations
in the wave-function intensity and in the directions of the local
current vectors across the spatial domain of interest. (c) Conventional
scattering patterns from a single-layer quantum dot of the same size.

with a predefined set of scattering configurations, each with
a distinct scattering efficiency curve. That is, the same neural
network used to realize cloaking can be used to find a system
that exhibits superscattering.

Comparing Fig. 5 with Fig. 4, we see that the effect of
scattering enhancement is not as pronounced as that asso-
ciated with scattering suppression in cloaking. The physical
reason is Klein tunneling. In particular, the median Fermi
energy is about half of the maximum gate potential: E ≈
|V |/2, for which Klein tunneling is significant in graphene
[55]. As a result, a spinor wave tends to change little in its
wave vector after entering the scattering region. To generate
strong cloaking in graphene is thus much more likely than
to produce superscattering. We note that Klein tunneling is
a unique feature of Dirac waves.
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FIG. 6. Effect of the number of quantum-dot layers on training
and inverse-design errors. (a) For designing a cloaking device, the
errors versus N , where the shaded region indicates the normalized
mean-square error from the training data set and the solid blue curve
represents the error between the scattering function from the optimal
structure and the desired function. As the number of quantum-dot
layers increases, the errors decrease. (b) Similar behaviors arise when
designing a superscattering device.

IV. ISSUES PERTINENT TO INVERSE DESIGN

A. Effect of the number of quantum-dot layers

Physically, the objective of machine-learning-based in-
verse design is to find a multilayer quantum-dot structure
to generate cloaking or superscattering by tuning a set of
experimentally feasible, external parameters. From a math-
ematical point of view, the task is to find a complicated
multilayer scattering structure to achieve a desired function.
While increasing the number of layers in general allows more
complicated scattering functions, the computational complex-
ity increases as well. From the point of view of machine
learning, a more sophisticated scattering structure requires
more training data.

Figure 6(a) shows, when designing a cloaking device, the
relative training and inverse-design errors versus N , where the
shaded area denotes all possible error values from training,
with the solid orange curve denoting the minimally possible
training error. Physically, a circular quantum dot of too few
layers is unable to lead to cloaking, so the errors are large
for small-N values. As N increases, it is more likely to gen-
erate destructive interference to realize cloaking, leading to
a decrease in the errors. The solid blue curve in Fig. 6(a)

represents the error in the scattering function from the optimal
dot structure found by inverse design, which is below the
minimum training-error curve. That is, the neural network is
able to find a quantum-dot structure whose scattering function
is closer to the desired one than any function in the training
data set. A similar behavior arises for the task of generating
superscattering, as shown in Fig. 6(b).

The results in Fig. 6 indicate that there is no guarantee that
an increase in the number of layers can lead to better inverse
design. In our work, the set of radii of the graphene quantum
dot is fixed to be Ri = iRN/N . Suppose N is increased by some
integer factor. The resulting quantum dot would lead to a bet-
ter chance of realizing scattering possibilities but the structure
becomes more sophisticated. In general, the performance of
the new structure should be improved, but empirically this is
true only when the numbers of layers of the two structures
are commensurate. From another angle, a perturbation on the
gate potential of a graphene layer will affect the resulting
error in the scattering efficiency but, as will be shown below
in Fig. 7, and modifying the gate potential of an outer layer
has a stronger effect on augmenting the error than disturb-
ing the potential of an inner layer. This suggests that the
nonmonotonous behavior in the error be an intrinsic physical
property of the scattering system that has little dependence on
the machine-learning procedure.

Due to the physical nature of the error behavior, choosing
the “best” number of graphene layers is difficult. In fact, the
same problem arises in optical inverse-design problems. For
example, in Refs. [28,39], it was necessary to preassign the
number of neural-network layers. A mathematical difficulty is
that this number is not a continuous variable. In Refs. [77,78],
reinforcement learning was used to find the best device whose
dimension is only allowed to take on some discrete value.
Another difficulty is that the multilayer perceptron employed
in our work is suitable for inputs with a fixed dimension. In
the field of computer vision, a method called spatial pyramid
pooling [79] was proposed to address this difficulty. The idea
was extended to adaptive pooling layers in PYTORCH [80].
While for our quantum-dot inverse-design problem, increas-
ing the number of layers can lead to better performance in
most cases, to the best of our knowledge to predetermine the
optimal number of layers before training remains to be an
open problem.

B. Robustness of inverse design

The main idea underlying machine-learning-based inverse
design is that a properly trained neural network is able to gen-
erate an approximation of a desired mathematical function.
In general, the optimal physical structure found by machine
learning is close to but not necessarily the global minimum
of the loss function (9). It is useful to examine how “far
away” the loss associated with the optimal structure is from
the global minimum. Consider the “best” quantum-dot struc-
tures for cloaking and superscattering design, as shown in
Figs. 4 and 5, respectively, where the structure contains nine
layers so the loss function depends on nine gate-potential
variables and is thus nine dimensional. Suppose the optimal
structure is described by the following set of N potential
values: [V1,V2, . . . ,VN ]. We apply a small perturbation, e.g.,
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FIG. 7. Accuracy and robustness of inverse design. (a) For a
graphene quantum dot of N = 9 layers to realize cloaking, nor-
malized mean-square error in the machine-generated scattering
efficiency function versus the perturbation parameter δ in the gate
potential as applied to different layers of the graphene quantum dot,
where δ = 1 corresponds to zero perturbation. The error is calculated
from the exact solution of the Dirac equation. The ideal global min-
imum of the loss function should occur at δ = 1. The actual minima
are quite close to δ = 1. (b) Histogram of the relative error in the
machine-generated scattering efficiency function from an ensemble
of 104 combinations of the input parameters. More than 80% of
times, the global minima are within 3% of δ = 1, indicating robust-
ness of the inverse-design scheme. The inset shows two examples of
the scattering efficiency function from the machine-predicted opti-
mal dot structure, with the relative error of 3% and 5%, respectively,
where the desired function is indicated by the dashed curve.

V1, which leads to a new set of potentials: [V1δ,V2, . . . ,VN ],
and examine the dependence of the loss function on δ. If the
original solution [V1,V2, . . . ,VN ] corresponds to the global
minimum, the loss function versus δ should exhibit a min-
imum at δ = 1. Figure 7(a) shows the loss L(i) versus δ

for different layer index i. The functions are approximately
parabolic with its minimum close to δ = 1 but not exactly at
δ = 1, because both the neural network and the optimization
algorithm are approximate solvers and the resulting scattering
structure is not the absolute best. When the potential change
occurs on one of the innermost layers (corresponding to small
layer indices), the parabolic functions are rather shallow, but
they are steep for large layer indices, indicating that modifying
the gate potential of an outer layer has a stronger effect on aug-
menting the error. A plausible reason is that an outer layer has
a larger area than that of an inner layer for a fixed layer width.
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FIG. 8. Computational time required for training and conver-
gence. The data points associated with the left and right y axis
represent, respectively, the average time (with variance) of the train-
ing time and the number of iterations required for the neural network
to converge as the number of layers constituting the quantum-dot
structure increases from 4 to 10. The training time increases linearly
with N but the number of iterations changes little due to the fact
that the number of parameters in the neural network is approximately
invariant as N increases in this range.

As discussed in Sec. II C, in comparison with the inverse
problem of electromagnetic wave scattering, a difficulty in
solving the inverse problem of quantum scattering in graphene
is that the input parameters can be selected from a positive
and a negative interval, leading to a gap in-between the two
allowed parameter intervals. Implementing an optimization
algorithm, e.g., the interior point method, requires examin-
ing a large number of parameter combinations from the two
intervals. For an N-layer graphene quantum dot, the optimiza-
tion needs to be done 2N times, requiring that the algorithm
be computationally efficient. In general, even based on a
fixed nonlinear function, the optimization result would depend
on the initial condition. Figure 7(b) shows, for N = 9 and
cloaking design, the statistical distribution of the relative error
of the optimization algorithm from 104 different initial con-
ditions. It can be seen that for more than 80% of the initial
conditions, the optimization errors are about 3%, indicating
the robustness of our machine-learning-based inverse-design
scheme.

C. Computational time required for training and convergence

Two main factors determine the time required for training:
The amount of training data and the number of training param-
eters. Empirically, the amount of training data is proportional
to the number N of the layers constituting the quantum-dot
structure. With regard to the training parameters, our neu-
ral network contains four hidden layers. For different values
of N , the number of neural-network parameters remains ap-
proximately constant. Figure 8 exemplifies how the average
training time and variance depend on N . With CPU i7-6850k
without GPU acceleration, the average training time ranges
from 100 to 400 s as the number of layers of the scattering
structure increases from 4 to 10.
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About the convergence of the training process, we observe
that the training error depends on the initial condition for
the neural network and data sampling, as demonstrated in
Fig. 2(c). However, the variance in the error is small, indi-
cating that convergence is always granted for training.

The computational speed for the inverse design depends
on two factors: Strong the number of iterations required
to achieve convergence and the time cost of each iteration.
Because the number of parameters involved in the neural net-
work does not change significantly with N , for each iteration
approximately a similar amount of time is required for calcu-
lating the gradient for different values of N . As N increases,
while more iterations are needed for optimizing the neural
network, we find that the required increase in the number of
iterations is insignificant. For example, as N increases from
4 to 10, the average number of iterations required increases
only from about 21 to about 23, as shown in Fig. 8 as well
as in Fig. 7(b) where more than 80% of the initial conditions
lead to satisfactory convergence.

V. DISCUSSION

To develop quantum systems to realize drastically dis-
tinct functions under a different set of externally imposed
parameter values is a challenging problem. For example, for a
multilayer graphene quantum-dot system in which each layer
is subject to a gate potential, one may wish to make the system
“invisible” by generating cloaking with weak scattering under
one set of gate potentials, but as the environment changes
the opposite extreme may be desired: Strong scattering (or
superscattering defined in a broad sense). Would it be possible
to simply change the set of external gate potentials, while
keeping the physical structure of the system intact, so as to
induce a metamorphic transition in the quantum scattering dy-
namics from one extreme to the opposite extreme? In optics, if
the goal is to realize one of the two extremes, then the method
of scattering cancellation can be effective [33,34,36,46]. The
challenge is whether it is possible to create a system that is
capable of the two extremes of scattering, superscattering and
cloaking, in certain energy range by tuning a set of exper-
imentally adjustable parameters. In principle, by exploiting
a multilayer scattering structure to induce unusually strong
destructive or constructive quantum interference, it should be
possible to meet the challenge. However, the computational
complexity associated with a brute-force search of the param-
eter space, aided by the exact solution of the Dirac equation,
tends to grow exponentially with the number of layers consti-
tuting the scatterer, making the problem NP hard.

The main idea underlying this work is that machine
learning provides an effective and computationally efficient
approach to solving the challenging inverse-design problem,
i.e., to generate the two opposite extremes of quantum scatter-
ing by tuning a set of experimentally accessible parameters.
For the concrete setting of a multiple-ring graphene quantum-
dot structure, the basic component of the machine-learning
architecture is a conventional multilayer, feed-forward neural
network that takes a set of gate potentials (one applied to
each ring layer of the quantum dot) as input and generates
the scattering cross section or efficiency versus the Fermi
energy (scattering function) as the output. Straightforwardly

training this baseline neural-network architecture using an ad-
equate number of predetermined scattering functions obtained
from directly solving the Dirac equation reveals that a non-
negligible fraction of the output functions can be nonphysical
in that they contain negative values of the scattering efficiency.
Imposing the physical constraint that the scattering efficiency
must be positive through an additional output layer leads to
a class of physics-constrained neural networks. The main ac-
complishment of this paper is a successful demonstration that
physics-constrained machine learning can effectively solve
the inverse design problem of generating quantum scattering
dynamics at the opposite extremes in the same system.

The key advantage and appealing feature of our machine-
learning approach to the extreme inverse-design problem can
be appreciated using the paradigmatic multilayer graphene
quantum-dot structure studied in this paper. Given a desired
scattering function, the starting point is a random set of
gate potentials. It is practically impossible for this initial set
of input parameter values to produce a scattering function
close to the desired one, so adjustments to the inputs are
necessary. Solving the Dirac equation for random parameter
perturbations is computationally infeasible not only because
the solutions of the Dirac equation require evaluating a large
number of sophisticated mathematical functions but, more
importantly, because of the NP-hard nature of the search
problem. These fundamental difficulties can be overcome by
exploiting machine learning for the following reasons: (1) all
mathematical operations needed is matrix multiplication that
can be done extremely efficiently and (2) the standard gradient
descent can guild the solution in the input-parameter space
to approach the optimal one in only a few steps. We have
demonstrated that, typically, the optimal solution is close to
the global minimum of the physics-constrained loss function.

In this work, we have studied quantum-dot systems in the
weak scattering regime, where the wave vector inside the
cavity has the same order of magnitude as the wave vector
outside the cavity. In this case, the scattering efficiency does
not exhibit sharp resonant peaks, in contrast to the case of
strong resonances where the wave vector inside the cavity is
much larger than the wave vector outside [81]. Empirically, a
change in the potential profile requires that the neural network
be retrained.

In general, inverse problems in physical sciences are chal-
lenging, but to design a system that can generate physical
behaviors of two opposite extremes is even harder. We em-
phasize that no feasible conventional methods exist which can
be used to solve this type of extreme inverse problems due to
the following difficulties: The need to search through a high-
dimensional parameter space, the complex relation between
the system structure and functions, and the uncertainty about
the existence of a configuration that can deliver the desired
system functions. Our machine-learning-based solution rep-
resents a step forward in this area.
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APPENDIX: SCATTERING CROSS SECTION FOR
CIRCULAR GRAPHENE QUANTUM DOT

1. Single-layer circular graphene quantum dot

Consider a single-layer graphene quantum dot of radius
R1, subject to gate potential V1, where the circular boundary
separates the whole space into two regions: Inside (r < R1)
and outside (r > R1) the dot, denoted as regions 1 and 2, re-
spectively. The energies inside and outside the dot are E − V
and E , respectively, giving the corresponding wave vectors as
k1 = |E − V |/vg and k2 = |E |/vg. For convenience, we define
two sign quantities: τ1 ≡ Sign(E − V ) and τ2 ≡ Sign(E ).

The incident wave is

ψin(r) = 1√
2

(
1

τ2

)
eik2x. (A1)

Using the Jacobi-Anger identity

eiz cos θ ≡
∞∑

l=−∞
il Jl (z)eilθ , (A2)

we expand the incident wave in the polar coordinates as

ψin(r) =
∞∑

l=−∞

il

√
2

(
Jl (k2r)

iτ2Jl+1(k2r)

)
eilθ . (A3)

Inside the quantum dot, we have

ψ1(r) =
∞∑

l=−∞
A(1)

l

(
Jl (k1r)

iτ1Jl+1(k1r)

)
eilθ , (A4)

and the wave function outside the dot is given by

ψ2(r) = ψin +
∞∑

l=−∞
A(2)

l

(
H (1)

l (k2r)

iτ2H (1)
l+1(k2r)

)
eilθ . (A5)

Matching the boundary conditions for each angular momen-
tum l , we get[

Jl (k1R1) −H (1)
l (k2R1)

τ1Jl+1(k1R1) −τ2H (1)
l+1(k2R1)

](
A(1)

l
A(2)

l

)

= 1√
2

(
il Jl (k2R2)

τ2il Jl+1(k2R2)

)
. (A6)

2. Multilayer circular graphene quantum dot

Consider an N-layer circular graphene quantum dot, where
all the layers are concentric and have radii R1, R2, . . . , and
RN with the respective gate potentials V1, V2, . . . , and VN . Let
ki = |E − Vi|/vg and τi ≡ Sign (E − Vi ). In region 2, we have
kN+1 = |E |/vg and τN+1 = Sign(E ). To represent the wave
function in each region, we use A(1) for r < R1 and

ψ1(r) =
∞∑

l=−∞
A(1)

l

(
Jl (k1r)

iτ1Jl+1(k1r)

)
eilθ , (A7)

where r < R1. For Ri < r < Ri+1 we have

ψi+1(r) =
∞∑

l=−∞
A(i+1)

l

(
H (1)

l (ki+1r)

iτi+1H (1)
l+1(ki+1r)

)
eilθ

+
∞∑

l=−∞
B(i+1)

l

(
H (2)

l (ki+1r)

iτi+1H (2)
l+1(ki+1r)

)
eilθ . (A8)

For r > RN we have

ψN+1(r) =
∞∑

l=−∞

il

√
2

(
Jl (kN+1r)

iτN+1Jl+1(kN+1r)

)
eilθ

+
∞∑

l=−∞
A(N+1)

l

(
H (1)

l (kN+1r)

iτN+1H (1)
l+1(kN+1r)

)
eilθ . (A9)

The unknown coefficients are A(1)
l , A(2)

l , . . . , AN
l and A(N+1)

l as
well as B(2)

l , B(3)
l , . . . , and B(N )

l . Altogether, there are 2N un-
known parameters to be determined. We use the N boundary
conditions to generate 2N equations, as follows.

For the boundary at r = R1, we have

A(1)
l Jl (k1R1) − A(2)

l H (1)
l (k2R1) − B(2)

l H (2)
l (k2R1) = 0,

A(1)
l τ1Jl+1(k1R1) − A(2)

l τ2H (1)
l+1(k2R1) − B(2)

l τ2H (2)
l+1(k2R1) = 0. (A10)

For the boundary at r = Ri, where 1 < i < N , we have

A(i)
l H (1)

l (kiRi ) + B(i)
l H (2)

l (kiRi ) − A(i+1)
l H (1)

l (ki+1Ri ) − B(i+1)
l H (2)

l (ki+1Ri ) = 0,

A(i)
l τiH

(1)
l+1(kiRi ) + B(i)

l τiH
(2)
l+1(kiRi ) − A(i+1)

l τi+1H (1)
l+1(ki+1Ri ) − B(i+1)

l τi+1H (2)
l+1(ki+1Ri ) = 0. (A11)

For the boundary at r = RN , we have

A(N )
l H (1)

l (kN RN ) + B(N )
l H (2)

l (kN RN ) − A(N+1)
l H (1)

l (kN+1RN ) = il

√
2

Jl (kN+1RN ),

A(N )
l τN H (1)

l+1(kN RN ) + B(N )
l τN H (2)

l+1(kN RN ) − A(N+1)
l τN+1H (1)

l+1(kN+1RN ) = il

√
2
τN+1Jl+1(kN+1RN ). (A12)
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Solving this set of linear equations, we get the coefficients A(N+1). The scattering efficiency is given by

Q = 2

kN+1RN

∞∑
l=−∞

(
A(N+1)

l

)2
. (A13)

In numerical computations, we truncate the summation at max |l| = 7 to achieve the desired accuracy.
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