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Optical response of two-dimensional Dirac materials with a flat band
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Two-dimensional Dirac materials with a flat band have been demonstrated to possess a plethora of unusual
electronic properties, but the optical properties of these materials are less studied. Utilizing α-T3 lattice as a
prototypical system, where 0 � α � 1 is a tunable parameter and a flat band through the conic intersection of
two Dirac cones arises for α > 0, we investigate the conductivity of flat-band Dirac material systems analytically
and numerically. Motivated by the fact that the imaginary part of the optical conductivity can have significant
effects on the optical response and is an important factor of consideration for developing α-T3 lattice based
optical devices, we are led to derive a complete conductivity formula with both the real and imaginary parts.
Scrutinizing the formula, we uncover two phenomena. First, for the value of α in some range, two types of
optical transitions coexist: one between the two Dirac cones and another from the flat band to a cone, which
generate multifrequency transverse electrical propagating waves. Second, for α = 1 so the quasiparticles become
pseudospin-1, the flat-to-cone transition can result in resonant scattering. These results pave the way to exploiting
α-T3 lattice for optical device applications in the terahertz-frequency domain.
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I. INTRODUCTION

Quantum materials whose energy band consists of a pair
of Dirac cones and a topologically flat band, electronic or
optical, constitute a frontier area of research [1–28]. For
example, in a dielectric photonic crystal, Dirac cones can
be induced by accidental degeneracy occurring at the center
of the Brillouin zone, which effectively makes the crystal a
zero-refractive-index metamaterial at the Dirac point where
the Dirac cones intersect with another flat band [7–9,14,18].
Alternatively, configuring an array of evanescently coupled
optical waveguides into a Lieb lattice [11,15,16,19] can lead
to a gapless spectrum consisting of a pair of common Dirac
cones and a perfect flat middle band at the corner of the
Brillouin zone. Loading cold atoms into an optical Lieb lat-
tice provides another experimental realization of the gapless
three-band spectrum at a smaller scale with greater dynam-
ical controllability of the system parameters [17]. Dice or
T3 optical lattices also possess the Dirac cone and flat-band
structure [2,5,10,29–31]. Electronically, Dirac materials that
can generate a topologically flat band include transition-
metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures
[6], 2D carbon or MoS2 allotropes with a square symme-
try [32], as well as SrCu2(BO3)2 [12] and graphene-In2Te2

bilayer [13].
In two-dimensional (2D) Dirac materials with a flat

band, the quasiparticles are of the massless or massive
pseudospin-1 type. Comparing with the conventional Dirac
cone systems with massless pseudospin-1/2 quasiparticles
(e.g., graphene) [33,34], pseudospin-1 systems can exhibit
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quite unusual and unconventional physics such as super-
Klein tunneling for the two conical, linearly dispersive bands
[3,5,18,35,36], diffraction-free wave propagation and novel
conical diffraction [11,15,16,19], flat-band rendered diver-
gent DC conductivity with a tunable short-range disorder
[37], unconventional Anderson localization [38,39], flat-band
ferromagnetism [17,40,41], and peculiar topological phases
under external gauge fields or spin-orbit coupling [6,42–44].
In particular, topological phases arise due to the flat band
that permits a number of degenerate localized states with a
topological origin, i.e., “caging” of carriers [45]. Additional
phenomena include superscattering of pseudospin-1 waves in
the subwavelength regime [46], geometric valley Hall effect
and and valley filtering [47], chaos based Berry phase de-
tection [48], atomic collapse in pseudospin-1 systems [49],
anomalous chiral edge states in spin-1 Dirac-Weyl quantum
dots [50], anomalous in-gap edge states in two-dimensional
pseudospin-1 Dirac-Weyl insulators [51], and the analogy
between Klein scattering of spin-1 Dirac-Weyl wave and
localized surface plasmon [52]. There was also a study of
interplay between classical chaos and flat-band physics [53].
In the past few years, magic-angle twisted bilayer graphene,
a type of quantum materials hosting a flat band, has become
a forefront area of research. These materials can generate
surprising physical phenomena such as superconductivity
[54,55], orbital ferromagnetism [56,57], and the Chern insu-
lating behavior with topological edge states. Notwithstanding
the diversity and the broad scales to realize the band structure
that consists of two conical bands and a characteristic flat
band intersecting at a single point in different physical sys-
tems, theoretically a unified framework exists: the generalized
Dirac-Weyl equation for massless or massive spin-1 particles
[2,36].
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The optical properties of 2D Dirac materials without a
flat band have been extensively investigated, such as the
optical responses of graphene [58–61], its theoretically pre-
dicted frequency-dependent optical conductivity [62–67] and
experimental verification [68–70], suggesting the possibil-
ity of developing graphene-based tunable terahertz optical
devices. Such devices can have applications ranging from
light transform [58,71,72] and high-frequency communication
[73–75] to cloaking or superscattering [76,77]. In particu-
lar, the discovery of novel plasmon mode in graphene led
to the first experimental superscattering system at a macro-
scopic scale [78]. These efforts have given birth to new fields
such as topological photonics [79,80] and topological lasing
[81,82]. Besides single-layer graphene, the optical properties
of other 2D material have also been studied. For exam-
ple, surface plasmon has been uncovered and characterized
in hexagonal boron nitride (hBN) or graphene hBN hybrid
structures [83,84], in bilayer [65,85] and multilayer [86,87]
graphene, in twisted graphene bilayer [88–92], in silicene
[93], in graphene/α-RuCl3-RuCl3 heterostructures [94], and
hyperbolic materials [95,96]. Particularly worth mentioning is
the work on the conductivity for gapped Dirac fermions [97],
where the Kubo formula was used to calculate the contribu-
tion of the intraband transitions to the optical conductivity.
A central goal in these studies is to garner a strong optical
response at certain frequency or at multiple frequencies. In 2D
Dirac materials without a flat band, transverse magnetic (TM,
or p-polarized) and transverse electric (TE, or s-polarized)
polaritons have been found to emerge at different frequencies,
where the TE polarization can arise at high frequencies with a
low loss [66].

For Dirac materials with a flat band, most previous papers
focused on their electronic properties: their optical proper-
ties have been less studied. In this paper, we investigate the
“complete” optical responses of 2D Dirac materials with a flat
band, in the sense that both the real and imaginary parts of
the optical conductivity are derived, using the α-T3 lattice as
a paradigmatic model system of such materials. This lattice
is formed by adding an atom at the center of each unit cell
of the honeycomb graphene lattice [2], where the low-energy
excitations can be described by the pseudospin-1 Dirac-
Weyl equation. The parameter α characterizes the interaction
strength between the central atom and any of its nearest neigh-
bors, relative to that between two neighboring atoms at the
vertices of the hexagonal cell. For α = 0 there is no coupling
between the central atom and a vertex, so the lattice degen-
erates to graphene with pseudospin-1/2 quasiparticles. As the
value of α increases from zero to one, a flat band through the
conic interaction of the two Dirac cones emerges and its phys-
ical influences become progressively pronounced [10,98].
For α = 1, the lattice generates pseudospin-1 quasiparticles.
The flat band can lead to physical phenomena such as the
divergence of conductivity [37,49,99]. Under a continuous ap-
proximation, an α-T3 lattice can be treated as a thin layer with
certain surface conductivity. Unlike graphene, here the surface
conductivity is contributed to by three types of transitions be-
tween the bands: intraband transition, cone-to-cone transition,
and flat-band-to-cone transition. Previously, the optical con-
ductivity of α-T3 lattice was “partially” studied in the sense
that only the real part of the conductivity has been derived

[98,100–102]. Considering that the imaginary part can affect
the optical response significantly and is therefore important
for developing α-T3 lattice based optical devices, we are led
to derive a complete conductivity formula with both the real
and imaginary parts. The formula is verified through two in-
dependent approaches and leads to two previously uncovered
phenomena. First, while the intraband transition leads to TM
polarized waves at low frequencies (1–10 THz), TE polarized
waves can emerge at high frequencies (100–300 THz), due to
the two interband transitions. Second, the unique flat-band-
to-cone transition generates multifrequency TE propagating
waves for α ∈ (0.4, 0.6) and a strong optical response for
α = 1. These phenomena are confirmed through studying the
behaviors of propagating surface wave and scattering.

We remark that a viable experimental way to realize
α-T3 lattice is through photonic crystals [27,29,103,104],
where the three nonequivalent atoms in a unit cell can be
simulated by using coupled waveguides generated by laser
inscription [104]. Electronic materials can also be exploited
to generate pseudospin-1 lattice systems such as transition-
metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures
[6], SrCu2(BO3)2 [12], or graphene-In2Te2 [13]. Recently,
materials with a flat band have been reported [105]. A re-
view of the experimentally realized dice-like system can be
found in Ref. [106]. The physics of certain solid-state ma-
terials is effectively that of an α-T3 lattice. For example, a
theoretical analysis and computations showed [107] that the
material Hg1−xCdxTe is equivalent to the α-T3 lattice with
α = 1/

√
3 ≈ 0.58. This material has been realized in exper-

iments [108–110]. For this reason, we emphasize the case of
α = 1/

√
3 ≈ 0.58 in this paper.

In Sec. II, we describe the optical conductivity for α-T3

lattice, which consists of three parts, and we use two different
methods to derive the conductivity. In Sec. III, we solve the
Maxwell’s equations for α-T3 lattice in a dielectric medium
and characterize the properties of the TM and TE polarized
waves using the loss and attenuation length. In Sec. IV, we
study optical scattering from a sphere coated with α-T3 lattice
and discuss potential optical device applications. Conclusions
and a discussion are offered in Sec. V.

II. OPTICAL CONDUCTIVITY OF α-T3 LATTICE

An α-T3 lattice is generated by placing an additional atom
at the center of each unit cell of the honeycomb lattice, where
there are three nonequivalent atoms, as shown in Fig. 1(a). The
range of the variation of the parameter α is [0,1], where the
quasiparticles are pseudospin-1/2 for α = 0 and pseudospin-1
for α = 1, and a flat band arises for 0 < α � 1. For conve-
nience, we say that the quasiparticles for 0 < α < 1 are of
the “hybrid” type. Under the tight-binding approximation, the
low-energy excitation Hamiltonian is given by [10,98]

Hα = vF h̄

⎛
⎝ 0 fk cos(φ) 0

f ∗
k cos(φ) 0 fk sin(φ)

0 f ∗
k sin(φ) 0

⎞
⎠, (1)

where fk = vkx − iky, α ≡ tan(φ), vF is the Fermi ve-
locity, and v = ±1 denotes the valley index. Solving the
eigenvalue problem associated with the tight-binding Hamil-
tonian matrix, we obtain three eigenfunctions, as detailed in
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FIG. 1. Illustration of an α-T3 lattice, its band structure, optical
transition, and a possible α-T3 lattice based optical devices. (a) An
α-T3 lattice, where A, B, and C are the three nonequivalent atoms.
The hopping energy between A and B is t (solid line) and that
between B and C is αt (dashed line). (b) Band transitions in the
α-T3 lattice, where the conduction, valence, and flat bands are shown.
For a positive chemical potential at zero temperature, states below
it are filled and states above are empty. The three arrows indicate
three band transitions, each contributing to the optical conductivity.
(c) TE mode in an α-T3 lattice placed between two infinite media
with dielectric constants ε1 and ε2, respectively. (d) A dielectric
sphere coated with multilayer α-T3 lattices. The sphere has dielectric
constant ε1 and radius r1. The multilayer system has depth r2 and N
layers of α-T3 lattice with the dielectric function εα,N .

Appendix A. There are three distinct energy bands: a pair of
Dirac cones and a flat band, as shown in Fig. 1(b).

The optical properties of the α-T3 lattice are largely con-
trolled by the surface conductivity σ , which is determined by
the expectation value of the current operator. In the x direction
as specified in Fig. 1(c), the current operator is jx = −evF Sx,
where

Sx =
⎛
⎝ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎞
⎠. (2)

Expanding the current vector in the three bands, we obtain the
matrix representation of jx, as described in Appendix A. For
weak electrical field, the conductivity is given by the standard
Kubo formula [63,67]

σxx(ω, φ) = h̄

2iπ2

∑
n,m

F (Em) − F (En)

En − Em

×
( 〈n| jx|m〉〈m| jx|n〉

En − Em − h̄ω
+ 〈m| jx|n〉〈n| jx|m〉

Em − En − h̄ω

)
,

(3)

where the subscript in σ indicates the direction of the current
and electric field, and ω is the frequency of the electromag-
netic wave. For a homogeneous material without a magnetic
field, we have σxx = σyy and σxy = σyx = 0. The summation
is over all states |n〉 = |k; ±, 0〉 and |m〉 = |k′; ±′, 0′〉 with

the respective energy En and Em. Evaluating the integral, the
nonzero terms appear only for [111] k = k′. The quantity F
in Eq. (3) stands for the Fermi-Dirac distribution. At zero
temperature, the only transitions allowed are those from the
filled to the unfilled bands, or vice versa.

To obtain the optical conductivity, it is necessary to evalu-
ate the summation in the Kubo formula Eq. (3). The details of
the derivation are presented in Appendix B 1. The validity of
the derivation and the result can be established by using the
Kramers-Kronig (KK) relation as described in Appendix B 2,
which gives the same results. Here we summarize our com-
plete conductivity formulas.

Physically, momentum conservation stipulates that the
summation for |n〉 and |m〉 can be regarded as corresponding
to band transition processes. In particular, the summation can
be divided into three parts, denoted as σ (1)(ω, φ), σ (2)(ω, φ),
and σ (3)(ω, φ), which correspond to the intraband, cone-
to-cone, and flat-band-to-cone transitions, respectively. The
conductivity due to the intraband transition is

σ (1)(ω, φ) = 4μσ0δ(h̄ω) + 4iμσ0

π h̄ω
, (4)

where σ0 = e2/(4h̄) and μ is the chemical potential. The
Drude peak is represented by a δ function with the coefficient
proportional to the chemical potential μ. The conductivity due
to the cone-to-cone transition is

σ (2)(ω, φ) = cos2(2φ)σ0

[
	(h̄ω − 2μ) − i

π
ln

∣∣∣∣ h̄ω + 2μ

h̄ω − 2μ

∣∣∣∣
]
,

(5)

where 	 is the Heaviside step function. The conductivity due
to the flat-band-to-cone transition is

σ (3)(ω, φ) = 2 sin2(2φ)σ0

[
	(h̄ω − μ) − i

π
ln

∣∣∣∣ h̄ω + μ

h̄ω − μ

∣∣∣∣
]
.

(6)

For convenience, we introduce a unit free conductivity and
divide it into real and imaginary parts

σ = σ ′ + iσ ′′ = σ0(σ̃ ′ + iσ̃ ′′). (7)

At finite temperatures, the Fermi-Dirac distribution is no
longer a step function and this will lead to a change in the
conductivity formula, as detailed in Appendix B 3.

We have also analyzed the effect of finite impurity scatter-
ing on the optical conductivity, as detailed in Appendix B 4.
The main result is that finite impurity scattering will change
the conductivity as in Eq. (4) for ω → 0.

For 2D Dirac materials such as graphene, the high-
frequency regime above 10 THz is physically important for
the optical conductivity. Nonetheless, the behavior of the
conductivity in the low-frequency regime can be analyzed
in terms of the product ωσ ′′ between the frequency and the
imaginary part of the conductivity (see Appendix B 5). This is
motivated by the fact that, in the study of optical conductivity
of superconducting materials, the quantity ωσ ′′ is often used
to characterize the penetration depth [112–114]. We also study
the effects of varying α on the optical conductivity and find
that the flat band does not play a significant role in the con-
ductivity in the low-frequency regime. However, decreasing
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the Fermi energy or increasing the temperature can make the
flat-band contribution more pronounced. The different relax-
ation time for different values of α can also impact the optical
conductivity.

For α = 0 (or equivalently, φ = 0), our conductivity for-
mula reduces to the one for graphene [62–67], which was
experimentally verified [68–70]. For α �= 0, the real part of
the conductivity is consistent with the previous result [98].
The imaginary part of the conductivity is the contribution of
our present paper.

Features of the derived conductivity formulas Eqs. (4)–(6)
are as follows. First, the conductivity does not depend on the
detailed lattice structure, insofar as there are a pair of Dirac
cones and a flat band. In fact, the conductivity is determined
by the linear dispersion relationship and the flat band. Our
derivation thus holds for different types of lattices described
by the effective Hamiltonian in (1). Second, the formulas hold
only for a reasonable range in ω or μ. If the value of ω is
small, impurity scattering will be important and, in this case,
it is necessary to make the change ω → ω + iτ−1, where τ is
the relaxation time. This change will smooth out the δ function
in the intraband conductivity formula.

For the α-T3 model, the value of the relaxation time has
not been available yet, but insights can be gained by con-
sidering graphene, where the experimentally measured [115]
relaxation time is about 10−13 s. Since the optical response
of graphene is appreciable at high frequencies above 10 THz,
a relaxation time on the order of 10−13s means that the
direction of the field changes much faster than that in the
scattering caused by impurity. In this case, impurity scattering
can be ignored [116]. If the value of ω approaches zero,
the conductivity in Eq. (4) will diverge, which is related to
the minimal conductivity problem in graphene that remains
unresolved [117]. If the value of ω or μ is too large, another
difficulty arises for the effectively Hamiltonian. For graphene
in the regime of visible light, it was shown [118] that the
next-nearest-neighbor hopping leads to only small corrections
to the Dirac cone, due to the fact that the nearest hopping
energy in graphene is high (t ≈ 2.7 eV), which corresponds
to a photon of frequency of several hundred terahertz. For the
pseudospin-1 Lieb lattice, experiments showed that the near-
est neighbor hopping energy is smaller than that in graphene
[27], but for the dice lattice there has been no experimental
result.

Figure 2 shows the optical conductivity for different values
of α at a finite temperature. The real part of the conduc-
tivity is exemplified in Figs. 2(a), 2(c), and 2(e), to which
the intraband process contribute a singularity. There are two
interband transition points, one is the cone-to-cone transition
that occurs for h̄ω/μ > 2 and another is the flat-band-to-cone
transition that occurs for h̄ω/μ > 1. (Note that, for α = 0,
there is no flat band, so the latter transition does not exist.)
For α = 1, only the flat-band-to-cone transition exists and
its magnitude is twice of that of the cone-to-cone transition
for α = 0. For the hybrid lattice, both types of transitions
coexist. A finite temperature tends to smooth the transitions.
Figures 2(b), 2(d), and 2(f) show the imaginary part of the
conductivity, where the intraband process gives a singularity
at ω → 0, and each interband transition leads to a dip for Im
(σ ) < 0, which is smoothed at finite temperatures. A previous
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FIG. 2. Real and imaginary parts of the optical conductivity of
the α-T3 lattice derived from the Kubo formula in the absence of
any impurity scattering. [(a),(c),(e)] Real part of the optical conduc-
tivity for α = 0 (graphene), α = 1/

√
3, and α = 1 (pseudospin-1),

respectively. In the zero temperature limit T → 0, the conductivity is
nonzero for h̄ω/μ > 2. An interband transition leads to a dip in the
conductivity plot. The step-function type of transition is smoothed
out by finite temperatures. [(b),(d),(f)] Imaginary part of the optical
conductivity for α = 0, 1/

√
3, and 1, respectively.

study for graphene demonstrated that, when the imaginary
part of the conductivity becomes negative, a new TE mode can
emerge [66]. Physically, it would be interesting to investigate
the significance of a negative imaginary part of the optical
conductivity for the α-T3 lattice.

III. INTRINSIC PLASMON MODES IN α-T3 LATTICE

An important manifestation of the electromagnetic re-
sponse of 2D Dirac materials is the intrinsic plasmon modes.
Specifically, for 2D materials on a dielectric substrate, the
Maxwell’s equations can be solved analytically, where the
propagating modes follow certain dispersion relationship,
which depends on the polarization. A solution method was
developed earlier [119,120] and later adopted to graphene
[66,67]. The propagating modes determine the electromag-
netic response of the 2D material and they are also termed
“intrinsic plasmon modes” [59]. Recently, the study of the
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plasmon modes has been extended to other kinds of materials
such as bilayer graphene [85], twisted bilayer graphene [88],
silicene [93], and hBN [84].

Here we study the intrinsic plasmon modes for α-T3 lattice.
Suppose we embed the lattice in-between two materials with
dielectric constants ε1 and ε2, respectively, as illustrated in
Fig. 1(c). The wave vector q is in the (x, y) plane and decays
along the z direction. Neglecting the thickness of the lattice,
matching the boundary conditions at z = 0 and assuming
ε1 = ε2 = 1, we obtain the polarization-dependent (e.g., TM
or TE) dispersion relation [67,93]. In particular, for the TM
polarization, we have

1 + 2π iσ (ω, φ)
√

q2 − ω2/c2

ω
= 0, (8)

where ω is the frequency of the incident field and c is the
speed of light. The solution exists for Im(σ ) > 0. For 2D
materials, the conductivity for small incident frequency is
described by the Drude model [119,120]. For TE polarization,
the dispersion relation is

1 − 2π iωσ (ω, φ)

c2
√

q2 − ω2/c2
= 0, (9)

where the solution exists for Im(σ ) < 0. As revealed by
previous paper on graphene [66], novel TE polarization can
arise for 1.667 < h̄ω/μ < 2. This can be seen from Fig. 2(b),
where the interband transition leads to nonzero negative imag-
inary conductivity.

TE polarization is a unique feature originated from the
linear dispersion relationship, which arises for relatively high
frequencies. Previous work revealed that the TE transition can
be exploited to develop graphene-based polarizer in the visible
light regime [71] and high-frequency optical switches [72].
The negative imaginary conductivity leading to TE polariza-
tion was exploited to construct a superscattering system with
a curved copper-coated cylinder [78], where a large scattering
cross section was obtained even when the dimension of the
scatterer is much smaller than the wavelength.

The solution of Eqs. (8) and (9) exist for nonzero imaginary
conductivity, but not all the solutions correspond to propagat-
ing modes. To characterize wave propagation in the lattice,
we use the loss and attenuation length. In particular, the loss
is defined as

Loss ≡ Im(q)

Re(q)
, (10)

which determines the average propagation length in the 2D
lattice (a small loss leads to longer propagation). The attenua-
tion length or skin depth is defined as [67]

ξ = k

2πkz
= λz

2πλ
= ω/c

2πRe(
√

q2 − (ω/c)2)
, (11)

where kz is a wave vector measuring the confinement in the
z direction perpendicular to the lattice plane. The strength of
the wave in the z direction is proportional to exp(−kz|z|) and

λz = 2π/kz = Re(2π/
√

q2 − (ω/c)2).

A small value of λz corresponds to strong decay in the z
direction so the wave is well localized in the lattice plane. It

is often desired to have a small loss and strong confinement at
the same time, but there is a trade off. In general, TM waves
tend to have strong confinement with a large loss, but TE
waves have a small loss with weak confinement [67].

We calculate the loss and confinement properties for elec-
tromagnetic wave propagation in the α-T3 lattice and compare
with those of graphene. We consider a finite temperature (e.g.,
kBT/μ = 0.01 or kBT/μ = 0.05) and make the conductivity
dimensionless through σ̃ = σ/σ0, where σ̃ is decomposed
into a real and an imaginary parts: σ̃ = σ̃ ′ + iσ̃ ′′. For the TM
wave, inserting the conductivity formula into Eq. (8), we get

qTM = ω

c

√
1 −

(
2

πα0σ̃

)2

, (12)

where α0 ≈ 1/137 is the fine structure constant. The small
denominator in the second term leads to a large imaginary
value of qTM, so the loss is large for TM waves. For TE waves,
we have

qTE =ω

c

√
1 −

(πα0

2
σ̃
)2

≈ω

c

[
1 − i

(πα0

2

)2
σ̃ ′(−σ̃ ′′)

]
,

(13)

where σ̃ is dimensionless and α0 is small so the Taylor ex-
pansion has been used for the square root. Since the loss is
proportional to α2

0 , it is small for TE waves.
The attenuation lengths for the TM and TE waves are

ξTM = α0

4

|σ̃ |2
σ̃ ′′ and ξTE = 1

π2α0σ̃ ′′ . (14)

We first study TM wave propagation in α-T3 lattice for differ-
ent α values. Since TM polarization occurs only for Im(σ ) >

0, the underlying waves arise for small ω values for which
the intraband transition dominates. Figures 3(a), 3(c), and 3(e)
show the loss versus the incident frequency for three different
α values, respectively, from Eqs. (10) and (12). The loss is
small when there is strong intraband transition (ω → 0). The
loss becomes large when interband transition is about to hap-
pen. As the temperature increases, the loss become larger but
this effect is insignificant. Figures 3(b), 3(d), and 3(f) display
the attenuation length for TM waves. From Eq. (14), we have
that, if the conductivity is purely imaginary, the attenuation
length is proportional to σ̃ ′′. As a result, for ω → 0 the atten-
uation length is large. As the temperature increases, the sharp
dips in the attenuation length are smoothed out. As the value
of α increases, the flat-band-to-cone transition begins to dom-
inate, making the imaginary part of the conductivity negative
for small ω, so the viable region for TM wave propagation
becomes smaller.

Next we study TE wave propagation in the α-T3 lattice
according to Eqs. (10) and (13). Figures 4(a), 4(c), and 4(e)
show the loss versus the incident frequency for three different
values of α, respectively, and the corresponding results for the
attenuation length are shown in Figs. 4(b), 4(d), and 4(f). The
loss is smaller than 10−4 due to the small imaginary part. After
interband transition arises, the loss increases due to the finite
positive real value of the conductivity. From Eq. (14), we see
that the attenuation length is inversely proportional to σ̃ ′′, so at
the transition point the wave is maximally localized. Note that,
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FIG. 3. Loss and attenuation length for TM wave propagation in
the α-T3 lattice. [(a),(c),(e)] Loss vs normalized frequency for α = 0,
1/

√
3, and 1, respectively. [(b),(d),(f)] The respective attenuation

length vs normalized frequency. In each panel, the two curves cor-
respond to two different temperatures: T/μ = 0.01 or T/μ = 0.05,
respectively.

as h̄ω → ∞, even when the loss decreases, the attenuation
length increases, inhibiting the propagating wave. In each
panel of Fig. 4, the shaded regions represent those with rela-
tively low loss and small attenuation length. For example, for
α = 0, this occurs before the cone-to-cone transition, i.e., for
h̄ω/μ ∈ (1.67, 2), which agrees with the previous result for
graphene [66]. For α = 1/

√
3, there are two shaded regions

due to the coexistence of two transitions. For α = 1, there is
one shaded region due to the flat-band-to-cone transition. A
higher temperature can lead to an increase in both the loss and
attenuation length.

To summarize these results briefly, we have that, for TM
waves, the loss is high—typically about 0.1 to 1 but the atten-
uation length is small, so the TM waves are highly localized
with high loss. Because of the positive imaginary part of the
conductivity σ (ω, φ), as α increases the propagation region
shrinks. For TE waves, the loss is low—typically less than
10−4 but the attenuation length is large, so the waves are
weakly localized. As α increases from zero, the bandwidth
for propagation first increases due to the coexistence of multi-
interband processes. For α = 1, the flat-band-to-cone transi-
tion has a large magnitude and is the only process present.

0 1 2 3
0

2

4

6

8
10-5

(a)

0 1 2 3

102

104(b)

0 1 2 3
0

2

4

6

8
10-5

(c)

0 1 2 3

102

104(d)

0 1 2 3
0

2

4

6

8
10-5

(e)

0 1 2 3

102

104(f)

FIG. 4. Loss and attenuation length for TE wave propagation in
α-T3 lattice. [(a),(c),(e)] Loss vs normalized frequency for α = 0,
1/

√
3, and 1, respectively. [(b),(d),(f)] The respective attenuation

length vs the normalized frequency. In each panel, the two curves
correspond to two different temperatures: T/μ = 0.01 or T/μ =
0.05, respectively. The shaded regions indicate the possible windows
for TE wave propagation. For α = 0 [(a),(b)], the region is h̄ω/μ ∈
(1.67, 2). For α = 1/

√
3 [(c),(d)], the region is h̄ω/μ ∈ (0.9, 1.1) ∩

(1.67, 2). For α = 1 [(e),(f)], the region is h̄ω/μ ∈ (0.85, 1).

There are two unique features of electromagnetic wave
propagation in the α-T3 lattice. First, comparing panels (a)
and (b) with (e) and (f) in Fig. 4, we have that the TE waves
for pseudospin-1 lattice have a narrow frequency width and a
small attenuation length, indicating that the intrinsic plasmon
mode is strongly localized, which is due to the transition
from the flat-band to the linear band. Second, Figs. 4(c) and
4(d) indicate that multiple frequency TE polarization waves
can arise: one is the same as graphene at h̄ω/μ ≈ 2 due to
the cone-to-cone transition and another occurs at h̄ω/μ ≈ 1,
which is due to the flat-band-to-cone transition. For μ =
0.5 eV, the linear dispersion relation holds, so the regions that
can support TE wave propagation correspond to 110–125 THz
and 190–240 THz at the room temperature (kBT/μ = 0.05—
about 300 K).

We have studied the effect of impurity scattering on the
optical conductivity. Figures 5(a) and 5(b) display the con-
ductivity curve in the frequency range [0,300] THz in the
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FIG. 5. Emergence of TE polarization waves in α-T3 materials.
[(a),(b)] Real and imaginary parts of the optical conductivity, respec-
tively, for α = 0 (graphene), α = 1/

√
3, and α = 1 (pseudospin-1).

The parameters are μ = 0.5 eV, T = 300 K and τ = 6.4 × 10−13.
In the low-frequency regime ω → 0, intraband transitions dominate
so the conductivity for different values of α converges. [(c),(d)]
Imaginary part of the optical conductivity for the hybrid case (α �= 0)
at two temperatures (T = 60 K and T = 300 K, respectively) for
μ = 0.5 eV. The two local minima are associated with two different
interband transitions, which broaden as the temperature increases.

presence of finite impurity scattering. The value of the relax-
ation time is taken to be that of graphene (α = 0) [116], as
the experimental value of this time for α �= 0 has not been
available yet. It can be seen that finite impurity scattering can
change the real part of the intraband conductivity and smooth
out the δ function. However, the change mainly occurs for
frequencies below 10 THz and is generally insignificant. In
fact, for frequencies above 100 THz, finite impurity scattering
has little effect on the optical conductivity. Our formula of
the intraband conductivity also suggests that it depends on the
relaxation time but not on the value of α. We note that a similar
observation was made earlier [98].

The interval in α in which the two TE polarization waves
arise can be seen from Figs. 5(c) and 5(d). At low tem-
peratures, there are two distinct local minima generated by
interband transitions for α ∈ [0.4, 0.6]. When the tempera-
ture increases to kBT/μ = 0.05, the interval shrinks. This

phenomenon can be understood, as follows. According to
Eqs. (5) and (6), the strength of the cone-to-cone transition
is proportional to cos2(2φ) and that of the flat-band-to-cone
transition is proportional to 2 sin2(2φ), where α ≡ tan(φ).
Without taking into consideration intraband transitions, the
two types of interband transition would have the same magni-
tude for 2 sin2(2φ) = cos2(2φ), which correspond to α ≈ 0.3.
From Eq. (4), intraband transitions give a positive imagi-
nary value in the conductivity and the interband transitions
generate a negative imaginary value. Since the strength of
intraband transitions is inversely proportional to ω, the effec-
tive strength of the flat-band-to-cone transition is reduced. To
have approximately the same strength for the cone-to-cone
and flat-band-to-cone transitions, it is necessary to increase
the value of α to facilitate the flat-band-to-cone transition.
Numerically, the optimal α interval in which the two types of
interband transition are approximately equal can be obtained
by monitoring the respective local minima in the conductivity
generated by the transitions and examining when the two local
minima reach a similar magnitude. From response Figs. 5(c)
and 5(d), we note that the two local minima are similar for
α ∈ (0.4, 0.6). At finite temperatures, the local minima will
be smoothed out, so the interval shrinks as the temperature
increases.

IV. RESONANT SCATTERING FROM AN α-T3 LATTICE
COATED DIELECTRIC SPHERE

In electromagnetics, for applications such as optical sens-
ing, imaging, tagging and spectroscopy [121–123], enhanced
scattering is desired. There are also applications where re-
duced scattering is sought, such as cloaking [124,125], which
can be realized through the technique of scattering cancel-
lation. In particular, by coating an additional material layer
outside the original scatterer [126], destructive interference
can be induced between the scattering waves from the two
structures. Not only is the method of coating capable of
inducing cloaking, but it can also enhance scattering [127]
with proper coating materials and design. For example, a
dielectric structure coated with graphene can lead to cloaking
at some wavelength [76,128–130], but at other wavelength
optical scattering can be enhanced [77]. These behaviors can
be controlled by tuning the chemical potential.

For scattering from a graphene coated structure, the surface
conductivity will generate certain polarization. The change
in the scattering cross section is strongly related to the
intrinsic plasmon modes. For plasmon modes with TM po-
larization, superscattering or cloaking typically arise in the
1–10 THz range due to intraband transitions [76,128,129]. For
TE waves, the frequency is higher and is strongly modulated
by the temperature [77]. Due to the small imaginary part
of the conductivity, scattering is typically weak. Multilayer
structures can be used to enhance the polarization [71,84,96].
A previous experiment demonstrated that, for graphene, scat-
tering structures with up to five layers can be designed, with
scattering loss comparable to that with the monolayer struc-
ture [71].

Here we study optical scattering from a dielectric sphere
coated by multiple layers of α-T3 lattice. For a multilayer
lattice, the dielectric constant (relative permittivity) is defined
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as [71,129]

εα,N = 1 + i
Nσ (ω, φ)

r2ε0ω
, (15)

where N is the number of layers, ε0 is vacuum permittivity,
and r2 is the total depth of the coating structure whose value is
usually chosen to be much smaller than the device dimension
to reduce the finite-depth effect [129]. We choose a dielectric
sphere of radius r1 = 100 nm with dielectric constant ε1 =
2.1, corresponding to materials such as Polytetrafluoroethy-
lene (PTFE) [131], and set r2 = 1 nm � r1. Computationally,
the multilayer lattice structure can be treated as a single layer,
as all that is required for calculating the electromagnetic scat-
tering cross section is the conductivity of the α-T3 lattice.
Once the dimension and frequency dependent dielectric con-
stant εα,N is given, the scattering system can be analytically
solved with proper solutions of the Maxwell’s equations.

The incident wave is chosen to propagate in the z direction
and polarized along the x direction, and the scattering wave
is calculated by using the transfer matrix method [132,133].
After decomposing the scattering wave into a series of spheri-
cal Bessel functions, the coefficient for each basis is obtained.
The scattering cross section is given by

σsc =
∑

i

(2i + 1)
(∣∣cTM

i

∣∣2 + ∣∣cTE
i

∣∣2)
(16)

where cTM
i and cTE

i are the coefficients for scattering wave
with the corresponding polarization. (The calculation details
are presented in Appendix C.) To characterize the change
in the scattering cross section before and after coating, we
define the normalized scattering cross section as the ratio be-
tween the cross sections with and without the coated structure:

NSCS = σsc coated

σsc uncoated
. (17)

Figure 6 shows NSCS versus frequency for different scatter-
ing structures. For a meaningful comparison, we choose the
number of layers to be N = 5 and set the temperature to be
T = 300 K for all structures. Without coating, the value of
NSCS is one. For α = 0 (graphene), when the chemical poten-
tial of 0.25 eV is applied, there is a resonance at f ≈ 130 THz,
which is approximately h̄ω ≈ 2μ and corresponds to a TE
intrinsic plasmon mode in graphene. For α = 1/

√
3, two reso-

nance peaks arise but their strength is weak, which correspond
to the two different band transition processes. Similar to the
multiple frequency phenomenon associated with propagating
wave, the resonances are temperature-dependent. For α = 1,
we double the chemical potential for comparing with the
case of graphene, which results in a resonance at the same
frequency. The resonance for α = 1 can be attributed to the
flat-band-to-cone transition, which is strong due to the large
imaginary part of the conductivity.

Figure 7 shows the scattering field for f = 127 THz, cor-
responding to the left resonant peak in Fig. 6, for three cases:
without coating, graphene coating, and pseudospin-1 lattice
coating. Without coating, as shown in Figs. 7(a) and 7(b),
the scattering field is weak because the wavelength is much
larger than the dimension of the scatterer. Figures 7(c) and
7(d) are for α = 0 with the same parameter setting as in Fig. 6.

100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

FIG. 6. Scattering cross section from a dielectric sphere coated
with multiple layers of α-T3 lattice. Shown is the ratio between
the scattering cross sections with and without coating (σsc coated and
σsc uncoated, respectively) vs frequency. For α = 0 there is only one
resonance peak at f ≈ 130 THz. For α = 1/

√
3, there are two peaks

at f ≈ 130 and f ≈ 260, respectively. For α = 1 there is only one
peak at f ≈ 130 and the value of NSCS nearly doubles as compared
with the case of graphene coating.

The scattering field for α = 1 is shown in Figs. 7(e) and 7(f),
demonstrating that the field is enhanced as compared with the
case of graphene and greatly enhanced as compared with the
case without coating.

V. DISCUSSION

Two-dimensional Dirac materials with a flat band have
become an active frontier in condensed matter physics and
materials science, and it is of interest to understand the optical
responses of these materials. In this regard, the basic physical
quantity is the optical conductivity. Previous studies focused
on the real part of the conductivity. Utilizing α-T3 lattice as
a vehicle, we have derived a complete formula for the opti-
cal conductivity, which includes both the real and imaginary
parts. The base of our derivation is the Kubo formula and we
have also exploited the Kramers-Kronig relation to provide an
alternative derivation that leads to the same conductivity for-
mula. Physically, the presence of a flat band, together with the
Dirac cone pairs, gives rise to richer transitions as compared
with Dirac materials without a flat band, such as graphene.
We have demonstrated that the conductivity of α-T3 lattice
has three components, each contributed to by a distinct op-
tical transition. Specifically, the contribution from intraband
transitions is similar to that for Dirac materials without a flat
band. While the cone-to-cone transition is pronounced for
α = 0 (graphene), it weakens as α increases towards one. For
α > 0, the flat-band-to-cone transition is dominant. For α = 1
where the influences of the flat band are the strongest possible,
the contribution to the conductivity from the cone-to-cone
transition becomes negligible as compared with that from the
flat-band-to-cone transition.
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FIG. 7. Examples of scattering wave function. Shown are the real
(left column) and imaginary (right column) parts of the scattering
field for three cases: [(a),(b)] without coating where the horizontal
line segment has the length λ/10 and indicates that the wavelength
is much larger than the size of the scatterer, [(c),(d)] graphene coat-
ing, and [(e),(f)] pseudospin-1 lattice coating. The scattering field is
relatively strong with the pseudospin-1 lattice coating.

With the derived frequency-dependent conductivity for-
mula for α-T3 lattice, we have investigated two problems that
are fundamental for developing α-T3 based optical devices.
The first is electromagnetic wave propagation, which results
in intrinsic plasmon modes in the α-T3 lattice, whose physical
properties depend on the polarization. Our calculations have
revealed that TM polarized waves are the result of intraband
transitions, which occur in the frequency range 1–10 THz.
These waves also arise in other 2D Dirac materials such as
graphene. In contrast, TE polarized waves are generated by
interband transitions, which arise in a higher frequency range:
100–300 THz. For 0 < α < 1, two interband transitions oc-
cur simultaneously, which generate two TE surface waves
at h̄ω/μ ≈ 1, 2, respectively. This is verified by calculating
the loss and attenuation length that are minimized in the
frequency region. The second problem is scattering from a
dielectric sphere coated with multiple layers of α-T3 material.
The finding is that, due to a reduction in the imaginary part of
the optical conductivity at finite temperatures, the scattering
of TE polarized waves is weaker than that of TM waves. The

multilayer scattering structure can then be used to enhance
certain polarization [71,84,96].

For 2D Dirac materials, an approach to generating scat-
tering or transport behaviors at multiple frequencies is to use
some structure with a special band, such as bilayer graphene
with four bands [85]. For a proper choice of the chemical
potential, the phenomenon of frequency doubling can occur.
In materials similar to graphene such as silicene [93], the sub-
lattice and valley symmetries are broken, thereby generating
multiple energy bands. For these materials, the electromag-
netic property depends on the chemical potential, so the
intrinsic plasmon modes depend on the chemical potential as
well. The frequency tunability of these materials is typically
weaker than that of α-T3 materials for α � 1. Recently there is
a growing interest in hexagonal boron nitride (hBN) materials
[96] whose hyperbolic permittivity can lead to a multifre-
quency resonant scattering. However, for the TE polarization
in this material, the resonant frequency is fixed. In contrast,
our study here has demonstrated that, for the α-T3 lattice,
insofar as the linear dispersion holds, TE polarized waves can
be tuned by adjusting the chemical potential,

A general result is that the optical responses of α-T3 ma-
terials for α � 1 are in general more pronounced than those
for α � 0, e.g., graphene, as the conductivity due to the
flat-band-to-cone transition is twice of that due to the cone-
to-cone transition. For the same frequency, this means that for
pseudospin-1 materials, the chemical potential is effectively
doubled, making the optical responses twice as strong as those
for graphene. A physical reason for this enhancement is that
the plane wave in the pseudospin-1 lattice has a smaller at-
tenuation length due to the large imaginary part of the optical
conductivity as compared to that in graphene. From the point
of view of resonant scattering, at the same frequency, a larger
scattering cross section can arise in pseudospin-1 materials in
comparison with graphene. We note that hBN materials can
also generate stronger surface plasmon waves than graphene
[83,84].

When performing the scattering calculation for a mul-
tilayer α-T3 structure, we ignored the effect of interlayer
coupling. This approximation can be justified, as follows. In a
study of the optical conductivity in monolayer and double-
layer α-T3 lattice [134], it was observed that the coupling
decays exponentially with the interlayer spacing. The results
on the plasmon density indicate that only for small layer
spacing will the original peak split into two distinct peaks. For
reasonably large spacing, e.g., d = 5k−1

F , the layer coupling
effect can be neglected.

An extensively studied case is graphene, where monolayer
graphene has two linear bands. The bilayer graphene system
studied in Refs. [65,85] has four bands due to interlayer cou-
pling and, as a result, there is splitting in the plasmon peaks.
However, when the interlayer distance is large, the coupling
effect becomes negligible. For vF = 106 and μ = 1 eV, this
critical spacing is about d = 3.3 nm. In experiments, stack-
ing geometry is often used to generate multilayer graphene
system, where the interlayer coupling effect is insignificant
and the electronic structure of the system is similar to that of
monolayer graphene [71].

We remark on the possible many-body effects. In graphene,
the long-range Coulomb interaction can lead to a renormal-
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ized Fermi velocity for μ = 0 and T = 0. In Ref. [135], a
Hartree-Fock theory was developed with no fitting parameters
but with a topological invariant. A theoretical calculation of
the Fermi velocity renormalization agreed with the experi-
mental data. While the renormalization can change the optical
conductivity, the effect is small.

In Ref. [136], a similar renormalization effect was ob-
served in lattices with a flat band. For μ = 0 and a partially
filled flat band, the Drude weight has several zeros depending
on the inverse ratio of the band filling. Since the intraband
conductivity is proportional to the Drude weight, such a
change may also lead to conductivity oscillations for μ = 0
and small ω. Our paper focuses on the case of a positive chem-
ical potential μ, where the renormalization effect is small.

Can the flat band contribute to the intraband conductivity?
In a previous paper [137], the authors considered a lattice
model with a flat band in the presence of correlated disorders
that provide coupling between the flat-band and dispersion
band states. For a finite lattice and an initial Gaussian wave
packet in the real space, some states in the flat band are
unoccupied, giving rise to intraband transitions within the flat
band. In our study, correlated disorders were assumed to be
absent and the Fermi energy is positive so that the flat band
is fully occupied for T → 0. Since only the states near the
Fermi surface are excited, the flat band gives no contribution
to the intraband conductivity. The same observation was made
in another previous study [100], where the real part of the
conductivity was derived with the finding that the intraband
conductivity does not depend on α.

With regard to impurity scattering, previously the imag-
inary part of conductivity was studied in the low-frequency
regime [112–114]. It was found that the relaxation time τ has
a significant effect on the convergence of the conductivity. For
a small impurity scattering rate, the imaginary part tends to
diverge for near zero frequency. The values of the relaxation
time for flat-band Dirac materials are not known at the present.
However, our study focuses on the physically more relevant
high-frequency regime.

To summarize, the analysis of our complete formula of the
optical conductivity for α-T3 suggest a number of phenomena
that can be useful for designing optical devices based on
this type of generalized 2D Dirac materials. For example, for
α ∈ (0.4, 0.6), because of the coexistence of cone-to-cone and
flat-band-to-cone transitions, the corresponding lattice can be
exploited for TE wave based broad-band devices. Another
phenomenon is that the magnitude of the optical conductivity
of pseudospin-1 materials is twice as large as that of graphene
due to a reduction in the energy required for a flat-band-
to-cone transition. A strong TE wave can then be generated
and sustain at h̄ω/μ ≈ 1, giving the possibility to design
optical devices using α-T3 ribbon or other coupling structures
[74,128,138]. Recent work in quantum plasmonics has sug-
gested that edge states in graphene can lead to a blue shift in
the plasmon modes [139]. It would be interesting to exploit
α-T3 materials for applications in quantum plasmonics.
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APPENDIX A: OPTICAL MATRIX FOR α-T3 LATTICE

In the tight-binding framework, the low-energy excitations
in the α-T3 lattice are described by the Hamiltonian (1). As-
sociated with the first valley (v = 1), there are three bands:
0,±1, corresponding to the flat band, conduction and valence
bands, respectively. The eigenfunctions are

|ψ±1〉 = 1√
2

⎛
⎝cos φeiθk

±1
sin φe−θk

⎞
⎠ (A1)

and

|ψ0〉 =
⎛
⎝ sin φeiθk

0
− cos φe−iθk

⎞
⎠, (A2)

where fk = | fk|eiθk and θk is the angle of k in the polar coor-
dinates. For the second valley, we have fk,v=−1 = − f ∗

k,v=1, so
the solutions can be obtained from a sign change: θk = −θk.
Because of the mirror symmetry in the integration with respect
to k, the minus sign will not change the results.

The optical matrix elements associated with the current
operator in the x direction are given by

|〈k,±| jx|k,±〉|2 = e2v2
F cos2 θk

|〈k,±| jx|k,∓〉|2 = e2v2
F sin2 θk cos2(2φ)

|〈k, 0| jx|k,±〉|2 = |〈k,±| jx|k, 0〉|2

= e2v2
F

2
sin2 θk sin2(2φ). (A3)

APPENDIX B: OPTICAL CONDUCTIVITY OF α-T3

LATTICE

1. Derivation based on the Kubo formula

With the Kubo formula (3), the summation over different
states can be simplified to the summation from k = k′, which
corresponds to the direct optical transition. There are three
types of band transitions.

a. Intraband transition.

The transition is from the conduction band to itself with
En − Em → 0 and En ≈ Em ≈ μ. Under the approximations,
the Fermi-Dirac distribution can be written as

F (Em) − F (En)

En − Em
= − ∂F

∂ε

∣∣∣∣
ε=μ

= δ(ε − μ). (B1)

Equation (3) then becomes

σ (1)(ω, φ) = h̄

iπ2

∫∫
dkxdky

∂F

∂ε

j2
nm

h̄ω
. (B2)

Inserting the optical matrix elements into Eq. (A3) and using
the linear dispersion relationship E = h̄vF |k|, in the polar
coordinates we have∫∫

dkxdky j2
nm = e2

h̄2

∫ ∞

0
εdε

∫ 2π

0
cos2 θkdθk. (B3)
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Equation (B2) becomes

σ (1)(ω, φ) = e2

iπ h̄2ω

∫
ε[−δ(ε − μ)]dε = ie2μ

π h̄2ω
. (B4)

Introducing σ0 = e2/(4h̄), we obtain the intraband conductiv-
ity as

σ (1)(ω, φ) = 4iμσ0

π h̄ω
. (B5)

b. Cone-to-cone transition.

This transition occurs from |−〉 to |+〉 and vice visa. Due
to the involvement of two different bands, an additional factor
of 2 arises in the summation;

σ (2)(ω, φ) = h̄

iπ2

∑
n,m

F (Em) − F (En)

En − Em

× j2
nm(−2h̄ω)

(h̄ω) − (En − Em)2
. (B6)

Since k = k′ and because En and Em belong to different bands,
we can write En = ε and Em = −ε. Using the integral in
Eq. (B3) and the optical matrix elements Eq. (A3), we get

σ (2)(ω, φ)= cos2(2φ)
e2

iπ h̄

∫
[F (−ε)−F (ε)]

h̄ω

4ε2−(h̄ω)
dε.

(B7)
The difference in the Fermi-Dirac distribution from the case of
intraband transition implies that a nonzero value occurs only
for ε > μ or ε < −μ, so in the polar coordinates only the first
term is meaningful. We obtain

σ (2)(ω, φ) = cos2(2φ)
e2

iπ h̄

∫ ∞

μ

h̄ω

4ε2 − (h̄ω)2
dε. (B8)

This integral has a singularity for 2h̄ω > μ. Using the residue
theorem, we get

σ (2)(ω, φ) = cos2(2φ)σ0

[
	(h̄ω − 2μ) − i

π
ln

∣∣∣∣ h̄ω + 2μ

h̄ω − 2μ

∣∣∣∣
]
,

(B9)

where 	 is the Heaviside step function. It can be verified
that, for φ = 0, Eq. (B9) reduces to the formula for graphene.
For φ = π/4, the integral is zero, indicating that for the
pseudospin-1 lattice, the cone-to-cone transition has no con-
tribution to the optical conductivity.

c. Flat-band-to-cone transition.

The derivation of the contribution to the optical conductiv-
ity by the flat-band-to-cone transition is similar to that with the
cone-to-cone transition. In particular, for the flat-band-to-cone
transition, we have En = 0 and Em = ε, so

σ (3)(ω, φ) = sin2(2φ)
e2

iπ h̄

∫ ∞

μ

h̄ω

ε2 − (h̄ω)2
dε. (B10)

The singularity now occurs at h̄ω = ε with the weight
sin2(2φ). Evaluating this integral, we get

σ (3)(ω, φ) = 2 sin2(2φ)σ0

[
	(h̄ω − μ) − i

π
ln

∣∣∣∣ h̄ω + μ

h̄ω − μ

∣∣∣∣
]
.

(B11)

2. Derivation based on Kramers-Kronig formula

As proposed in Ref. [88], a different approach to deriving
the optical conductivity is to calculate the real part first and
then use the Kramers-Kronig formula to obtain the imaginary
part. We express the conductivity as the sum of a “normal”
term and a term containing a δ-singularity

σ (ω, φ)tot = σ (ω, φ) + πDδ(h̄ω), (B12)

where D is the Drude weight (or charge stiffness, to be defined
below). To obtain the real part of the “normal” term, we use

Re[σ (ω, φ)] = 1

2πω

∫∫
dkxdky

∑
n,m

× [F (Em) − F (En)] j2
nmδ[h̄ω − (En − Em)]. (B13)

First, we consider the cone-to-cone transition where En = ε,
Em = −ε, and the band degeneracy is two. We have

Re[σ (2)(ω, φ)] = cos2(2φ)
e2

πωh̄2

∫ 2π

0
cos2 θkdθk

×
∫ ∞

0
ε[F (−ε) − F (ε)]δ(h̄ω − 2ε)dε.

(B14)

The difference in the Fermi-Dirac functions is one only for
ε > μ, and the δ function is contained in the integration region
for 2h̄ω > μ. We thus have a step transition at μ = 2h̄ω:

Re[σ (2)(ω, φ)] = cos2(2φ)σ0	(h̄ω − 2μ). (B15)

Similarly, we obtain, for the flat-band-to-cone transition, the
real part of the conductivity:

Re[σ (3)(ω, φ)] = sin2(2φ)
e2

2πωh̄2

∫ 2π

0
sin2 θk

×
∫ ∞

0
ε[ f (0) − f (ε)]δ(h̄ω − ε)dε

= 2 sin2(2φ)σ0	(h̄ω − μ), (B16)

which is consistent with the result in Ref. [98].
To calculate the imaginary part of the conductivity, we use

the Kramers-Kronig (KK) formula [140], which connects the
real and imaginary parts of the response function. There is
an additional term in the integral, which is determined by
a cutoff in the case of twisted bilayer graphene [88]. The
method consists of three steps.

Step 1: Calculate the maximum of Re (σ ) for ω → ∞:

σm(φ) = lim
ω→∞ Re[σ (ω, φ)]. (B17)

Step 2: Define the Drude weight (or charge stiffness) as

D = lim
�→∞

2

π

(
σm(φ)� −

∫ �

0
Re[σ (ν, φ)]dν

)
. (B18)

Step 3: Use the Kramers-Kronig relation to write the imag-
inary part of the conductivity as

Im[σ (ω, φ)] = D

h̄ω
+ 2h̄ω

π
P

∫ ∞

0

Re[σ (ν, φ)] − σm(φ)

(h̄ω)2 − ν2
dν.

(B19)
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For the α-T3 lattice, we have

σm(φ) = σ0[2 sin2(2φ) + cos2(2φ)],

so the Drude weight is

D = 4σ0μ

π
, (B20)

and the Kramers-Kronig relation becomes

Im[σ (ω, φ)] = 4σ0μ

π h̄ω
+ 2h̄ω

π
P

∫ ∞

0

Re[σ (ν, φ)] − σm(φ)

(h̄ω)2 − ν2
dν

= 4σ0μ

π h̄ω
− cos2(2φ)

σ0

π
ln

∣∣∣∣ h̄ω + 2μ

h̄ω − 2μ

∣∣∣∣
− sin2(2φ)

2σ0

π
ln

∣∣∣∣ h̄ω + μ

h̄ω − μ

∣∣∣∣. (B21)

Together with the real part in Eqs. (B15) and (B16) as well
as the imaginary part Eq. (B21), we obtain the same conduc-
tivity formulas as these derived based on the Kubo formula
[Eqs. (B5), (B9), and (B11)].

3. Effects of finite temperatures on optical conductivity
in the α-T3 lattice

Consider graphene at a finite temperature, where the
Fermi-Dirac distribution can no longer be treated as a step
function. Previous study [141] gives

	(h̄ω − 2μ) →1

2
+ 1

π
arctan

[
h̄ω − 2μ

2kBT

]
,

|h̄ω − 2μ| →
√

(h̄ω − 2μ)2 + 2(kBT )2.

(B22)

Comparing Eqs. (B9) and (B11) as well as the Fermi-Dirac
distribution, we can eliminate the factor of 2 in Eq. (B22) and
study the effects of finite temperature on the flat-band-to-cone
transition through the transformations:

	(h̄ω − μ) →1

2
+ 1

π
arctan

[
h̄ω − μ

kBT

]
,

|h̄ω − μ| →
√

(h̄ω − μ)2 + (kBT )2.

(B23)

Substituting Eqs. (B22) and (B23) into Eqs. (4)–(6) gives
the complete optical conductivity of α-T3 lattice at a finite
temperature.

4. Effects of impurity scattering on optical conductivity
in the α-T3 lattice

When impurity scattering occurs, a Drude peak will arise in
the intra-band component of the conductivity. For graphene,
a previous paper [64] revealed that the Drude peak gives a
singularity at ω → 0 of the form μδ(h̄ω). Here we derive the
corresponding formula for α-T3 lattice.

Considering the intraband conductivity as given by
Eq. (B5) and making the change ω → ω + iτ−1 with τ being
the relaxation time, we get

σ (1)(ω, φ) = 4iμσ0

π h̄(ω + iτ−1)
. (B24)

Introducing � = h̄τ−1, we have

σ (1)(ω, φ) = 4μσ0

π

i(h̄ω − i�)

(h̄ω)2 + �2
. (B25)

Taking two successive limits: first h̄ω → 0 and then � → 0,
leads to the Drude peak

σ (1)(ω, φ)) = 4μσ0δ(h̄ω). (B26)

Together with Eq. (B5), we get Eq. (4) in the main text.
This result can be verified by inserting the Drude weight into
Eq. (B12).

The above derivation can be justified, as follows. First, the
result depends strongly on the order of limit taking. Note that
the Drude singularity is represented by a δ-function with a
coefficient proportional to the chemical potential μ. However,
the function is not properly defined for μ → 0. For graphene
in the continuum limit, we have ω → 0 and μ → 0, where
the conductivity reaches minimum at the Dirac point but
the minimal value remains unresolved [117]. Taking the two
limits in the opposite order will generate a different result.
Nevertheless, for optical waves in graphene, because of their
high frequency, a positive Fermi energy is required.

Second, the Drude singularity does not depend on α, which
is consistent with the result in Ref. [98]. That is, for different
values of α, the intraband conductivity is invariant. Note that,
however, the experimental value of the relaxation time for the
α-T3 lattice is currently unavailable.

Third, for finite impurity scattering, the following substitu-
tion holds:

δ(h̄ω) → 1

π

�

(h̄ω)2 + �2
. (B27)

About the choice of τ , in Ref. [116], the authors suggested
τ = 6.4 × 10−13s. The corresponding conductivity is plotted
in Figs. 5(a) and 5(b), which reveal that the effect of the
impurity on the conductivity arises only at low frequencies.
Heuristically, this is because, in graphene, τ is of the mag-
nitude 10−13s (corresponding approximately to 10THz), but
optical processes in graphene typically occur in the frequency
regime above this value. As a result, taking into account im-
purity scattering will not change our result appreciably.

We note that an alternative approach to obtaining the Drude
singularity was provided in Ref. [88], in which the authors
separated the conductivity into two components: a regular
component and a term containing a δ-singularity:

σ (ω, φ)tot = σ (ω, φ) + πDδ(h̄ω), (B28)

where σ has been derived in Appendix B2 and D is the Drude
weight. Substituting the formula of D derived in Appendix B2
into the equation leads to the same result.

5. Imaginary part of the optical conductivity in the low
frequency regime and the effects of impurity scattering

We study the optical conductivity of the α-T3 lattice in
the small frequency regime. To this end, an earlier paper
considered the imaginary part of the optical conductivity
in superconducting materials in the zero-frequency limit
[112,113], where the results were presented in terms of the
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product of the frequency and the imaginary part of the conduc-
tivity, which is related to the inverse square of the penetrate
depth [112–114] as

lim
ω→0

ωImσ ∝ 1/λ2
L.

The results indicated that, for a low impurity scattering rate,
the quantity ωImσ can maintain a finite value for a larger
frequency interval near zero. As the impurity scattering rate
decreases, the imaginary part of the conductivity diverges.
Physically, this means that the superconducting materials
could have a divergent imaginary part of the conductivity.
On the contrary, for normal states, the quantity ωImσ decays
quickly to zero and thus converges.

For an α-T3 lattice, the two interband transitions as de-
scribed by Eqs. (B9) and (B11) vanish at the low-frequency
limit, since a low energy photon is not able to induce an inter-
band transition. For a finite Fermi energy, impurity scattering
does not change this picture. For the intraband transition in
the presence of an impurity, roughly there are two regimes
in Eq. (B24). In the first regime, decreasing the frequency
ω will increase the driving period but it is still smaller than
the relaxation time associated with impurity scattering. In this
case, it can be seen from Eq. (B24) that the product ωImσ

converges to a quantity proportional to the chemical potential.
The second regime is where the frequency decreases further so
that the driving period is longer than the impurity scattering
relaxation time. In this case, impurity scattering dominates
and the imaginary part of the optical conductivity approaches
zero.

Figure 8(a) shows h̄ωImσ/σ0 versus the frequency f for
α = 0, 1/

√
3 and 1, where the temperature is T = 300 K

and the chemical potential is μ = 0.5 eV. In this frequency
range, the corresponding photon energy lies in the interval
as indicated by the shaded region in the inset. We see that
the functional behavior of h̄ωImσ/σ0 versus f is similar for
the three different values of α. Since the imaginary part of
the optical conductivity plays an important role in surface
wave prorogation and scattering, the physical significance
is that the flat band has little effect on these processes. In
this case, the flat band (E = 0) states are full, but any photon
energy in the shaded region in Fig. 8(a) is not sufficient to
generate an interband transition. Since the flat band plays no
rule in the optical transitions, different values of α will lead to
the same optical conductivity.

As the Fermi energy is reduced to, e.g., 0.2 eV, differences
in the functional behavior of h̄ωImσ/σ0 versus f begin to
emerge, as shown in Fig. 8(b). From the Fermi-Dirac dis-
tribution in the inset, we see that the photon energy is now
sufficient to generate interband transitions. In this case, the
flat band will affect the behavior of h̄ωImσ/σ0, but the effect
is reduced for small frequencies. Increasing the temperature
will result in a similar effect.

Figure 8(c) shows h̄ωImσ/σ0 versus f for three values
of the relaxation time τ of impurity scattering. For relatively
large values of τ (e.g., τ = 6 × 10−12 s or τ = 6 × 10−13 s),
the quantity h̄ωImσ/σ0 approximately attains the value of
the chemical potential in the low-frequency regime before
decreasing to zero as the frequency increases. As the value
of τ decreases (e.g., to τ = 6 × 10−14 s), impurity scattering
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FIG. 8. Effect of impurity scattering on the optical conductivity
of α-T3 lattices in the low-frequency regime. Shown is the quantity
h̄ωImσ/σ0 (the product between the imaginary part of the conduc-
tivity and the frequency in units of 4 eV/π ) vs the optical frequency
f for different values of the material parameter α. In (a), the Fermi
energy is 0.5 eV. In this case, the range of the photon energy (the
vertical shaded region in the inset) is far below the Fermi energy
and the flat band states are fully occupied. Interband transitions are
unlikely, so the flat band plays essentially no role in the optical
conductivity. In (b), the Fermi energy is reduced to 0.2 eV. In this
case, the photon energies as indicated by the shaded region in the
inset are likely to induce interband transitions. The flat band will af-
fect the optical conductivity, as the conductivity curves are markedly
different for different values of α. The effect of impurity scattering is
demonstrated in (c), where the conductivity curves for three values of
the scattering relaxation time τ are shown for α = 1. Strong impurity
scattering as characterized by a relatively small value of τ can lead
to a significant deviation of the conductivity curve from the cases of
weaker scattering.

begins to dominate, leading to an appreciable change in the
functional behavior of h̄ωImσ/σ0 versus f . We note that this
effect of impurity scattering on the optical conductivity was
previously observed [112].

The results in Fig. 8 can be concisely summarized, as
follows:

(i) For fixed impurity scattering rate and Fermi energy,
as ω decreases, the product ωImσ first reaches some value
proportional to the chemical potential μ and then attains a
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different (but convergent) value after impurity scattering dom-
inates.

(ii) For fixed impurity scattering rate and frequency ω, the
value of ωImσ depends on α for a small Fermi energy due to
the enhanced interband transition.

(iii) For fixed value of α and Fermi energy, a small impu-
rity scattering rate (equivalently, a large relaxation time) will
lead to divergence of ωImσ . However, for some time τ that
satisfies ω < τ−1, the impurity scattering dominates. In this
case, the conductivity is convergent.

APPENDIX C: SCATTERING CROSS SECTION FROM A
MULTILAYER SPHERE

To numerically calculate the scattering cross section, we
use the iterative method in Ref. [133]. Here we present the
key formulas.

Consider a spherical structure of L layers, where the core is
labeled as i = 1 and the region outside the structure is denoted
as i = L + 1. In each layer, the radius is ri and the refractive
index is mi. Define

ψn(ρ) = ρ jn(ρ), ξn(ρ) = ρh(1)
n (ρ), (C1)

where jn and h(1)
n are the spherical Bessel functions of the

first and third kind, respectively. Consider the following

quantities

Dn(ρ) = ψ ′
n(ρ)

ψn(ρ)
, Gn(ρ) = ξ ′

n(ρ)

ξn(ρ)
, Rn(ρ) = ψn(ρ)

ξn(ρ)
,

Un(ri ) = mi
Rn(mikri )Dn(mikri ) + a(i)

n Gn(mikri )

Rn(mikri ) + a(i)
n

,

Vn(ri ) = 1

mi

Rn(mikri )Dn(mikri ) + b(i)
n Gn(mikri )

Rn(mikri ) + b(i)
n

,

where the coefficients a(i)
n and b(i)

n are to be calculated.
Matching the boundary conditions for each layer leads to the
following iterative equations:

a(i+1)
n = −Rn(mi+1kri )

Un(ri) − mi+1Dn(mi+1kri )

Un(ri) − mi+1Gn(mi+1kri )
,

b(i+1)
n = −Rn(mi+1kri )

mi+1Vn(ri ) − Dn(mi+1kri )

mi+1Vn(ri ) − Gn(mi+1kri )
.

We start from a(1)
n = b(1)

n = 0 and iterate the above equa-
tions until the final layer is reached. In our computation, the
parameter values are m1 = √

ε1 and r1 = 100 nm for PTFE,
m2 = √

εα,N and r2 = 101 nm for α-T3 lattice, and m3 = 1
for free space. The scattering cross section is given by

σsc =
∑

n

2π

k2
(2n + 1)

(∣∣a(3)
n

∣∣2 + ∣∣b(3)
n

∣∣2)
. (C2)
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