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Super skew scattering in two-dimensional Dirac material systems with a flat band
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The phenomenon of super scattering was previously found to arise in massless pseudospin-1 two-dimensional
Dirac material systems with a flat band. Here we report the phenomenon of super skew scattering of massive
pseudospin-1 quasiparticles, which does not arise in the corresponding massless system. In particular, the
scatterer is electrically generated with a certain geometric shape, and the mass is induced by gap opening between
the Dirac cones. Even for a circular scatterer, the occurrence of resonant states inside it can induce a sizable
anomalous Hall current, which is associated with the gap opening. The striking finding is that a significant
reduction in the scatterer size and/or the potential height does nothing to weaken the skew scattering and, for
certain resonant states, even tends to strengthen the scattering. This phenomenon of super skew scattering in
Dirac materials with a flat band is in stark contrast to the scattering of massive pseudospin- 1

2 quasiparticles from
the same configuration, where skew scattering is significantly weaker and a reduction in the scatterer strength
can quickly diminish it. The phenomenon is established analytically for the case of a circular scatterer in the
framework of continuum Hamiltonian, and is found to be robust for an elliptical scatterer, which is solved
numerically by adopting the multiple-multipole method to massive pseudospin-1 scattering. Calculations of the
electronic transport properties in the Lieb lattice system reveal the occurrence of a large anomalous Hall current
as well, paving the way for experimental observation and test of super skew scattering. Because of the “skew”
nature that is absent in massless pseudospin-1 systems, the phenomenon of super skew scattering in massive
systems can be exploited for applications in novel electronic or photonic Hall devices.
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I. INTRODUCTION

Two-dimensional (2D) Dirac materials with quasiparticles
whose motions are described by the laws of relativistic quan-
tum mechanics are at the frontier of condensed matter physics
and materials science. Such materials range from graphene
[1] to three-dimensional (3D) topological insulators [2,3] and
3D Dirac and Weyl semimetals [4,5], where the quasiparti-
cles are pseudospin- 1

2 Dirac fermions. Dirac materials hosting
pseudospin-1 quasiparticles have also been studied [6–33].
So far, pseudospin-1 materials uncovered include specially
engineered photonic crystals [12,15,16,18,21], optical dice or
Lieb lattices with loaded ultracold atoms [6–8,10,34], and cer-
tain electronic materials [13,14,19,20]. Distinct from massless
pseudospin- 1

2 Dirac material systems that exhibit “conven-
tional” relativistic quantum phenomena as stipulated by the
standard Dirac equation for spin- 1

2 particles, in pseudospin-1
systems unusual physical phenomena can arise such as su-
per Klein tunneling associated with one-dimensional barrier
transmission [7,9,21,35], diffraction-free wave propagation
and novel conical diffraction [12,15,16,18], flat-band induced
conductivity [36–38], unconventional Anderson localization
[26,39,40], peculiar Landau-Zener Bloch oscillations induced
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by the flat band [41], and strange topological phases under
external gauge fields or spin-orbit coupling [10,32,42–44].

Electronic transport and scattering in Dirac material sys-
tems have been extensively studied [45–55]. For example, a
study of the scattering of massless pseudospin- 1

2 Dirac elec-
trons by a circular potential barrier revealed [53] that, for a
scatterer of small radius, the scattering cross sections are dom-
inated by quantum resonances but, for a large scatterer, the
classical picture of reflection and refraction of rays applies,
leading to phenomena such as caustics, rainbow, and critical
scattering. In massless pseudospin-1 particle scattering from
a circular potential barrier, phenomena such as revival reso-
nances, perfect caustics as induced by super-Klein tunneling,
and universal low-energy isotropic transport can arise [23],
which do not occur in pseudospin- 1

2 scattering systems.
In pseudospin- 1

2 or pseudospin-1 materials, opening a gap
can lead to intriguing phenomena such as the anomalous Hall
effect (AHE), a fundamental transport behavior that occurs
in solids with a broken time-reversal symmetry in a ferro-
magnetic phase due to spin-orbit coupling [56]. For example,
QAHE (quantum anomalous Hall effect) in graphene was
predicted in the presence of Rashba spin-orbit coupling and an
exchange field generated by Fe absorbed on top of graphene
or by proximity coupling to an antiferromagnetic insulator
[57,58], where the exchange splitting is about 70 meV. AHE
in single-layer graphene exchange coupled to an atomically
flat yttrium iron garnet (YIG) ferromagnetic thin film or to a
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magnetic nanoparticle array was realized in experiments
[59,60]. Light-induced AHE in monolayer graphene driven
by ultrafast pulses of circularly polarized light was discov-
ered experimentally [61] and explained theoretically [62],
whose physical origin lies in light-induced topological non-
trivial Floquet-Bloch bands. In addition, there were studies
on the extrinsic spin Hall effect induced by resonant skew
scattering through spin-orbit coupling in graphene decorated
by adatoms [63]. For pseudospin-1 systems, there are mul-
tiple mechanisms to open a gap: added onsite energy [7],
introducing dimerization term [44,64], intrinsic spin-orbit
coupling [10,64], or staggered flux phases on the kagome
lattice [65]. The unconventional topological phases related
to the gap were also investigated [10,44,64], and anomalous
chiral edge states and in-gap edge states were discovered in
massive pseudospin-1 systems [30,31]. Bounded electronic
states were found in a gapped pseudospin-1 system with a
centrally symmetric potential well and a regularized Coulomb
potential induced by the charged impurities [66]. The phe-
nomenon of super-Klein tunneling can occur even for massive
pseudospin-1 particles [67]. Unconventional quantum Hall
effect was studied in gapped pseudospin-1 systems with an
infinite degeneracy of zero-energy Landau levels lifted into a
series of bands [68].

Notwithstanding the existing work, quantum transport and
scattering in massive pseudospin-1 systems have not been
systematically studied, especially with respect to skew scat-
tering as related to AHE. The purpose of this paper is to fill
this gap. In particular, we investigate massive pseudospin-
1 wave scattering from a finite-size electrostatic potential
barrier (realized by a proper gate voltage in experiments)
in the deep subwavelength regime where the scatterer size
is smaller than the wavelength. We find the occurrence of
resonant modes inside the potential domain, associated with
which is a quite appreciable skew scattering (Hall) current.
The peak Hall current value obeys a scaling law with the
potential properties. To test the robustness of the Hall cur-
rent, we numerically study an elliptic potential barrier and
find that the resonance-induced scattering peaks persist. In
fact, due to breaking of the rotational symmetry, two sets of
peaks emerge. For comparison, we also study the scattering
of massive pseudospin- 1

2 particles but find a vanishingly small
Hall current as the result of absence of any resonant states. To
test the feasibility of experimental observation of this “super-
skew-scattering” phenomenon uncovered using a continuum
Hamiltonian for pseudospin-1 wave scattering, we employ
a finite-size Lieb lattice device with a barrier generated by
a gate potential, where gap opening is induced through the
mechanisms of dimerization or spin-orbit coupling. We find
that the resonant states leading to a large Hall current peak
persist, which is particularly pronounced in the dimerization
case. These findings have potential applications in AHE based
devices.

II. SCATTERING HAMILTONIAN AND ANALYTIC CROSS
SECTIONS FOR A CIRCULAR POTENTIAL

The 2D scattering system of massive pseudospin-1 quasi-
particle from a scalar potential barrier of a given geometric
shape is schematically illustrated in Fig. 1. The barrier shape

FIG. 1. Schematic illustration of massive pseudospin-1 particle
scattering. (a) The energy-momentum dispersion relations in distinct
spatial regions. (b) 2D scattering from a scatterer formed by a scalar
gate potential.

is defined by the potential function V (r), where r represents
the position in the plane. The continuum massive pseudospin-
1 Hamiltonian with a single Dirac point can be written as

H = h̄vF S · k + �Sz + V (r), (1)

where vF is the magnitude of the group velocity associated
with the Dirac cone, k = (kx, ky) denotes the wave vector, and
� is the size of the energy gap between the flat and upper
(lower) bands. The vector of matrices S = (Sx, Sy), along with
the third matrix Sz, forms a complete representation of spin-1
quasiparticles with the angular momentum commutation re-
lations: [Sl , Sm] = iεlmnSn. The free-space energy-momentum
dispersion relations in the presence of the energy gap � and a
constant scalar potential V are

E = V, (2)

E = ±
√

h̄2v2
F

(
k2

x + k2
y

) + �2 + V, (3)

as illustrated in Fig. 1(a).
The scattering process can be fully characterized by a

number of cross sections: the differential, total, transport, and
skew cross sections, denoted as dσ/dθ , σ , σtr , and σskew, re-
spectively. For the case of a circular, constant potential barrier,
these cross sections of pseudospin-1 system can be calculated
analytically. In particular, let V and R be the height and radius
of the 2D potential barrier, respectively. The potential function
is given by

V (r) = V �(R − r), (4)

where � is the Heaviside function. The generalized Pauli
matrices Sx, Sy, and Sz for spin-1 quasiparticles are

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠, (5)
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and

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (6)

The Hamiltonian matrix in the polar coordinates is

H = − h̄vF√
2

⎛
⎜⎜⎜⎝

−√
2(�+V )
h̄vF

e−iθ
(
i∂r + 1

r ∂θ

)
0

eiθ
(
i∂r − 1

r ∂θ

) −√
2V

h̄vF
e−iθ

(
i∂r + 1

r ∂θ

)
0 eiθ

(
i∂r − 1

r ∂θ

) −√
2(−�+V )

h̄vF

⎞
⎟⎟⎟⎠. (7)

Because of the circular geometry of the electric potential scatterer, the total angular momentum
l = −ih̄∂θ + h̄Sz(= 0,±1,±2, . . .)

is conserved. The partial wave component corresponding to l is

ψl (r) =
⎛
⎝u1ei(l−1)θ

u2ei jθ

u3ei(l+1)θ

⎞
⎠, (8)

which enables a reduction of the Dirac equation Hψ = Eψ to the following radial differential equation:

−h̄vF√
2

⎛
⎜⎜⎜⎝

−√
2(�+V −E )

h̄vF
i
(

∂
∂r + l

r

)
0

i
(

∂
∂r − l−1

r

) −√
2(V −E )
h̄vF

i
(

∂
∂r + l+1

r

)
0 i

(
∂
∂r − l

r

) −√
2(−�+V −E )

h̄vF

⎞
⎟⎟⎟⎠

⎛
⎝u1

u2

u3

⎞
⎠ = 0. (9)

The corresponding eigenfunction is

ψl = C

⎛
⎜⎝

sτ F τ
l−1(kτ r)e−iθ

i
√

2ντ F τ
l (kτ r)

tτ F τ
l+1(kτ r)eiθ

⎞
⎟⎠eilθ , (10)

where

kτ =
√

(E − Vτ )2 − �2/h̄vF , (11)

sτ = −(� − Vτ + E )h̄vF kτ , (12)

ντ = (� + Vτ − E )(� − Vτ + E ), (13)

tτ = −(� + Vτ − E )h̄vF kτ , (14)

with τ = I or II denoting the exterior or interiors regions of
the potential barrier, respectively. In the exterior region of the
potential barrier, F I

l (kI r) = Hl (kI r) is the Hankel function of
the first kind. In the potential region, F II

l (kII r) = Jl (kII r) is
the Bessel function. Employing the method of partial wave
decomposition, we can write the incident wave in the spinor
spherical wave basis based on the Jacobi-Anger identity as

�in = N√
2

∑
l

il−1

⎛
⎜⎝

sI Jl−1(kI r)e−iθ

i
√

2νI Jl (kI r)
tI Jl+1(kI r)eiθ

⎞
⎟⎠eilθ , (15)

and the reflected wave as

�ref = N√
2

∑
l

il−1Al

⎛
⎜⎝

sI Hl−1(kI r)e−iθ

i
√

2νI Hl (kI r)
tI Hl+1(kI r)eiθ

⎞
⎟⎠eilθ , (16)

with Jl (x) and Hl (x) being the Bessel and Hankel functions
of the first kind, respectively. The transmitted wave inside the
potential region is

�tr =

⎛
⎜⎝

ψ II
1

ψ II
2

ψ II
3

⎞
⎟⎠

= N√
2

∑
l

il−1Bl

⎛
⎜⎝

sII Jl−1(kII r)e−iθ

i
√

2νII Jl (kII r)

tII Jl+1(kII r)eiθ

⎞
⎟⎠eilθ . (17)

The total wave function outside the scattering region (r > R)
is given by

�I = �in + �ref =
⎛
⎝ψ I

1

ψ I
2

ψ I
3

⎞
⎠

= N√
2

∑
l

il−1

⎛
⎜⎝

sI [Jl−1(kI r) + AlHl−1(kI r)]e−iθ

i
√

2νI [Jl (kI r) + Al Hl (kI r)]
tI [Jl+1(kI r) + AlHl+1(kI r)]eiθ

⎞
⎟⎠eilθ .

(18)

Utilizing the boundary conditions

ψ I
2 (R, θ ) = ψ II

2 (R, θ ), (19)

ψ I
1 (R, θ )eiθ + ψ I

3 (R, θ )e−iθ = ψ II
1 (R, θ )eiθ + ψ II

3 (R, θ )e−iθ ,

(20)

we can obtain the coefficients Al and Bl with the formula given
in Appendix A.
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In the far field, i.e., r � R, the spinor wave function can be
written as

�I = N

⎛
⎝− sI√

2
−νI

tI√
2

⎞
⎠eikr cos θ + N

⎛
⎝− sI√

2
e−iθ

−νI
tI√

2
eiθ

⎞
⎠ f (θ )√

r
eikr . (21)

The reflected wave can be simplified as

�ref = N
∑

l

−ilAl

√
2

πkI r
ei(kI r− lπ

2 − π
4 )

⎛
⎝− sI√

2
e−iθ

−νI
tI√

2
eiθ ,

⎞
⎠eilθ ,

(22)

where we have used the approximate formula for the Hankel
function of the first kind for x � 1:

Hν (x) ≈
√

2

πx
ei(x− νπ

2 − π
4 ). (23)

This way, we obtain an explicit form for the function f (θ ) as

f (θ ) = − e−iπ/4

√
2πk

∞∑
l=−∞

2Al e
ilθ . (24)

The differential, total, transport, and skew cross sections are
given by

dσ

dθ
= | f (θ )|2 = 2

πk

∣∣∣∣∣
∑

l

Ale
ilθ

∣∣∣∣∣
2

, (25)

σ =
∫ 2π

0
| f (θ )|2dθ = 4

k

∑
l

|Al |2, (26)

σtr =
∫ 2π

0
| f (θ )|2(1 − cos θ )

= σ − 4

k

∑
l

Re[AlA
∗
l+1], (27)

σskew =
∫ 2π

0
dθ | f (θ )|2 sin θ

= 4

k

∑
l

Im[A∗
l Al+1], (28)

respectively, with k = √
E2 − �2/h̄vF .

III. EMERGENCE OF SUPER SKEW SCATTERING

A. Circular scatterer

1. Far-field behavior

We first study a circular scatterer whose scalar potential
barrier is defined by Eq. (4). As shown in Sec. II, due to
the circular symmetry, the Dirac-Weyl equation can be ana-
lytically solved to yield the various scattering cross sections.
For example, the skew scattering cross section is given by
Eq. (28), which is determined by the coefficients Al in the
partial wave expansion. The formulas for these coefficients
are quite sophisticated, posing an obstacle to understand the
basic scattering physics.

To gain insights, we focus on the weak scattering regime
where the size of the scatterer is smaller than the electron
wavelength: kI R � 1, V R/h̄vF � 1, and kII R � 1. In this
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FIG. 2. Contrasting behaviors arising from the scattering of mas-
sive pseudospin-1 and that of pseudospin- 1

2 quasiparticles from a
circular gate potential scatterer in the Klein tunneling regime where
the particle energy is about half of the potential height. The mass of
the quasiparticles is � = 0.064 and the gate potential is V = 0.256.
(a) Skew scattering cross section σskew for massive pseudospin-1
quasiparticles versus incident energy, where resonant peaks arise.
(b) The corresponding plot for pseudospin- 1

2 scattering, where no
resonant peaks occur and the values of σskew are much smaller than
those in (a) in the entire energy range. (c) Magnification of the first
resonant peak in (a), where the red solid and blue dashed curves are
the numerical and analytic results, respectively. (d) The correspond-
ing magnification for pseudospin- 1

2 scattering with the same legends
as in (c). (e) Magnification of the second resonant peak in (a). (f) The
corresponding magnification for pseudospin- 1

2 scattering.

regime, the formulas for Al and then for σskew can be sim-
plified. Figure 2(a) shows σskew versus the incident electron
energy for V R = 0.256 (with radius R = 1) and normalized
mass R� = 0.064. The choice of the value of V R can be
arbitrary in a wide range to give qualitatively similar results.
We set R� = V R/4 for convenience. It can be seen that σskew

exhibits three resonant peaks, one wide but relatively low
and the two others narrow but high, for energy about V0/2,
indicating strong skew scattering near this energy value. The
occurrence of skew scattering is indicative of the emergence
of AHE for massive pseudospin-1 electrons scattered by an
electric gate potential. In contrast, for pseudospin- 1

2 scattering
from the same configuration, no such resonant peaks in σskew

arise and its overall values are much smaller than those for
pseudospin-1 scattering in the entire energy interval, as shown
in Fig. 2(b).

Associated with the wider resonant peak in Fig. 2(a), the
skew scattering is mainly contributed to by the interference
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between the l = 0 and 1 states. Focusing on the corresponding
terms in Eq. (28), we get

σskew ≈ 4

k
Im[A0A∗

1] ≈ πkR2 V 2

E2

(V − E )(E − �) + 2�E

V (E + �)
,

(29)

which is plotted as the dashed curve in Fig. 2(c), where the
peak value is over 0.6. This analytic prediction agrees reason-
ably well with the numerical curve. The second (narrow and
higher) peak in Fig. 2(a) is due to the interference between
the l = 1 and 2 states. Focusing on this particular interference
channel, we get

σskew ≈ 4

k
Im[A1A∗

2] ≈ − 4

π

V − E + �

V

ln γ kR
2

k
, (30)

with ln γ ≈ 0.577 being the Euler’s constant, which is plotted
as the blue dashed curve in Fig. 2(e). In comparison with the
numerical curve (red solid), we observe a close resemblance
between them, with a small difference in the peak position.
In this case, the peak value of σskew is quite large, which is
strong evidence for the emergence of super skew scattering.
The details of the derivation and approximation of the analytic
scattering formulas are given in Appendix A.

For scattering of massive pseudospin- 1
2 quasiparticles, the

analytic formula for the skew scattering cross section is
(details in Appendix B)

σskew = 4

k

∑
l

Im[AlA
∗
l+1]

≈ 4

k
Im[A0A∗

1] = −π2

8

V 3�

k
(E2 − �2), (31)

which agrees well with the numerical result, as shown in
Figs. 2(d) and 2(f) for the same energy intervals as in
Figs. 2(c) and 2(e), respectively. In stark contrast to the scat-
tering of pseudospin-1 quasiparticles, there are no resonant
peaks and the value of σskew is about 4×10−4, which is over
three orders of magnitude smaller than those of the former.

2. Near-field scattering behavior

To reveal the near-field behavior, we calculate the prob-
ability and current distributions of the states corresponding
to the first (wide) and second (narrow) resonant peaks in
Fig. 2(a). The probability distribution can be written as P =
�†�, where � = (ψ1, ψ2, ψ3)T is the wave function for
points inside and outside the potential area, respectively, as
given by Eqs. (17) and (18). The probability current operator
is Ĵ = ∇pH = vF (Sx, Sy), so the probability current density
can be obtained as

J = (Jx, Jy )

= vF

√
2[Re(ψ∗

1 ψ2 + ψ∗
2 ψ3), Im(ψ∗

1 ψ2 + ψ∗
2 ψ3)]. (32)

The probability density distribution of the spin-z component
is given by

〈σz〉 = |ψ1|2 − |ψ3|2. (33)

The results for the first peak are shown in Figs. 3(a) and
3(b) for the peak in Fig. 2(c) for energy E = 0.1234. It can

FIG. 3. Resonant state and current distribution for massive
pseudospin-1 scattering from a circular potential barrier. (a) Proba-
bility density distribution of the first pseudospin-1 resonant state for
E = 0.1234, and (b) the current density and spin-z density distribu-
tions, where the in-plane current is labeled by the white arrows and
the out-of-plane pseudospin-z component is represented by the color
map. (c) Probability density distribution for the second resonant state
for E = 0.1276. (d) The corresponding current density and spin-z
density distributions, with the same legends as in (b). (e) Probability
density distribution of pseudospin- 1

2 system for energy E = 0.128,
and (f) the corresponding current and spin-z density distributions.

be seen that the quasiparticles are mainly confined inside
the potential area with a clockwise current, and the spin-z
component is positive inside and negative outside. By further
investigating the wave-function form in Eqs. (17) and (18),
we find that the main contribution to this probability distri-
bution is the partial component of the angular momentum
channel l = 1. As a result, the probability distribution is ap-
proximately circularly symmetric. The corresponding results
for the second peak are shown in Figs. 3(c) and 3(d) for
E = 0.1276. This resonance state is mostly confined about the
edge area of the potential with a clockwise current inside and
a counterclockwise current outside, and the spin-z component
has different signs inside and outside the barrier. Moreover,
the electron density is much larger than that associated with
the first resonant state. We find that the main contribution
to this state comes from the partial component of l = 2. In
contrast, for pseudospin- 1

2 quasiparticles, there is neither con-
centration of the probability density in the potential region nor
that for the current, as shown in Figs. 3(e) and 3(f), indicating
an absolute absence of any resonant scattering behavior. This
lack of resonance is further confirmed by checking the partial
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FIG. 4. Scaling of the resonant skew scattering cross-section
peak value with the strength of the circular scatterer. The red circles
and green diamonds represent the numerical results for the first and
second resonances of pseudospin-1 scattering, and the blue triangles
are the corresponding results for pseudospin- 1

2 scattering. The lines
of the same colors are the theoretical predictions (not fittings). As
the strength of the scatterer is weakened, the maximum value of the
skew cross section decreases fast for pseudospin- 1

2 scattering, but not
so for pseudospin-1 scattering. In fact, for the second resonance peak
in pseudospin-1 scattering (green), the skew scattering tends to inten-
sify slightly as the scatterer becomes weaker. This scaling behavior
signifies the emergence of super skew scattering of pseudospin-1
quasiparticles.

component contributions, where a number of low angular mo-
mentum states contribute to this probability distribution. That
is, pseudospin- 1

2 quasiparticles effectively “see” no potential
with near-zero scattering.

3. Emergence of super skew scattering: Scaling of skew cross
section with scatterer strength

The analytical formulas for the skew scattering cross
section for pseudospin-1 and pseudospin- 1

2 quasiparticles
[Eqs. (29)–(31)], together with the numerical support in Fig. 2,
suggest certain scaling relationship between the cross sec-
tion and the strength parameter V R of the scatterer. Figure 4
shows, on a log-log plot, the peak value of the effective skew
scattering cross section σskew/R versus V0R for three cases:
pseudospin- 1

2 scattering (blue) and resonant scattering asso-
ciated with the first (red) and second (green) resonances in
pseudospin-1 scattering [in Figs. 2(c) and 2(e), respectively].
Note that there are no peaks in the skew scattering cross
section for pseudospin- 1

2 particle, so we choose the energy
to be E = V/2. In all three cases, there is a reasonably good
agreement between the analytic predictions and the numeri-
cal results. For pseudospin- 1

2 scattering (blue), the maximum
value of σskew/R decreases rapidly as the strength of the
scatterer is reduced: σskew/R ∼ (V R)5, which is characteristic
of conventional quantum or light scattering. However, cor-
responding to the first resonance of pseudospin-1 scattering
(red), the decrease in the value of the skew cross section is
much slower with σskew/R ∼ V R, indicating persistent super

skew scattering when the scatterer is continuously weakened.
The surprising phenomenon occurs for the second resonance
of pseudospin-1 scattering (green), where skew scattering
tends to intensify even as the scatterer strength is reduced,
implying the presence of a large anomalous Hall current. A
summary of the scaling of the peak value of skew and trans-
port scattering cross section with the scatterer strength V R is
given in Table I of Appendix C.

B. Elliptic scatterer

To test the robustness of resonant skew scattering for
pseudospin-1 quasiparticles against geometric deformations,
we consider an elliptical potential barrier. In this case, the
scattering cross sections cannot be obtained analytically, and
we use the multiple-multipole method developed for treating
the scattering of spin-1 and spin- 1

2 particles from scatterers of
an arbitrary geometric shape [30,55].

Far-field behavior. For comparison, we use the same val-
ues of the potential and mass as for the case of a circular
scatterer: V = 0.256 and � = 0.064, and set the area of the
ellipse to be identical to that of the circle. Here, the ratio
of the semiminor axis b to the semimajor axis a is set to
0.6. The incident plane wave comes from the left to the right
along the major axis of the ellipse. As shown in Fig. 5(a), for
pseudospin-1 scattering, four resonant peaks arise in the per-
tinent energy interval: two wide and two narrow peaks, where
one pair of wide-narrow peaks have their energy less than V/2
and the other pair larger than V/2. This should be compared
with the case of a circular scatterer where the pair of resonant
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FIG. 5. Skew cross section versus energy E for scattering of
massive Dirac quasiparticles from an elliptic gate potential barrier:
(a) pseudospin 1 and (b) pseudospin 1

2 . The uniform mass value is
� = 0.064 and the gate potential is V = 0.256 inside the elliptic
barrier.
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FIG. 6. Resonant state and current distribution for massive
pseudospin-1 scattering from an elliptical potential barrier. (a), (c),
(e), (g) Probability density distribution for the pseudospin-1 resonant
state for E = 0.094, 0.1198, 0.1357, and 0.1569, respectively. (b),
(d), (f), (h) The corresponding current density and spin-z density dis-
tributions, where the in-plane current is labeled with the arrows and
the out-of-plane z component of the pseudospin is color represented.
(i) Probability density distribution for pseudospin- 1

2 scattering from
an elliptical scatterer for E = 0.128 and (j) the corresponding current
and pseudospin-z distributions.

peaks have their energies approximately equal to V/2. The
difference in the locations of the resonances notwithstanding,
the occurrence of skew resonant scattering is robust against
geometric deformations of the scatterer.

For pseudospin- 1
2 scattering, no resonant peak exists in the

skew scattering cross section, as shown in Fig. 5(b), which is
similar to the case of a circular scatterer.

Near-field behavior. Figure 6 shows the distributions of
the probability, current, and the out-of-plane component of the
pseudospin for the four resonant states in Fig. 5(a) and for the
corresponding pseudospin- 1

2 scattering. The probability distri-
bution for the first, wide resonant state is shown in Fig. 6(a),
where the electron is uniformly distributed inside the potential
region. Figure 6(b) shows that the current exhibits a vortex
structure and is in the counterclockwise direction along the
right and left edges of the barrier. It is this unidirectional cur-
rent distribution that leads to the AHE. Figure 6(b) also shows
that the z component of the pseudospin is positive inside the
barrier and negative outside. The probability distribution of
the fourth wide resonant state is similar to that of the first

10-1

VR

10-5
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Circle Spin-1 theory (1st)
Circle Spin-1/2 theory
Ellipse Spin-1 data (1st)
Ellipse Spin-1 data (2nd)
Ellipse Spin-1 data (3rd)
Ellipse Spin-1 data (4th)
Ellipse Spin-1/2 data

FIG. 7. Scaling of the peak value of skew scattering cross section
with the strength of an elliptical electrical potential scatterer. The
cross section is normalized by R, the radius of the circle with the
same area as the ellipse, and the scatterer strength is V R (R = 1).
The blue up triangles, red circles, orange down triangles, and green
squares are the data points associated with the four skew scattering
resonances in Fig. 5(a), respectively, from small to large energies.
The red, green, and blue lines are the theoretical results for circular
scatterer, which serve as a reference. For pseudospin-1 quasiparti-
cles, for all four resonant states, as the scatterer strength is reduced,
the maximum value of the skew cross section decreases little, sig-
nifying super skew scattering. For pseudospin- 1

2 quasiparticles (blue
diamonds and dashed line), the maximum decreases rapidly and alge-
braically with the scatterer strength, which is typical of conventional
quantum or light scattering.

state, as shown in Fig. 6(g), where the quasiparticles concen-
trate inside the barrier. The current is still counterclockwise,
which forms vortices around the up and down parts of the
barrier, as shown in Fig. 6(h). In addition, the z component
of pseudospin is negative inside the barrier region, in contrast
to that associated with the first resonance. The corresponding
results for the second and the third narrow resonance peaks are
shown in Figs. 6(c)–6(f), where the directions of the current
for the two cases are the same. For the second peak, the current
vortices occur at the four edges of the barrier (up, down, left,
and right), while for the third peak, the vortices are in the
up-left/right and down-left/right corners. The pseudospin-z
directions are opposite for the two narrow resonance states.
For pseudospin- 1

2 scattering, no resonant states occur, nor do
current vortices, as shown in Figs. 6(i) and 6(j), leading to
near-zero values of the skew scattering cross section.

Persistence of super skew scattering. Figure 7 shows the
peak values of the four skew scattering resonances in Fig. 5(a)
versus the scatterer strength. The data points from the four
resonant states are nearly identical and, as the scatterer is
weakened (by reducing the barrier height or its size, or both),
the decrease in the peak cross-section values roughly follow
the scaling of σskew/R ∼ V R, similar to the behavior of the
first peak in the circular-potential case, which is indicative
of super skew scattering that persists even when the circular
potential barrier is deformed. In contrast, for pseudospin- 1

2
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quasiparticles, the maximum value of the skew cross section
is small and decreases rapidly with the scatterer strength, as
for the case of a circular barrier in Fig. 4. It is worth noting
that skew scattering is robust against not only deformations of
the scatterer shape, but also variations in the incident angles
due to the resonant vortices formed about the potential area.
(Further evidence is provided in Appendix D.)

IV. SKEW RESONANT SCATTERING AND ANOMALOUS
HALL EFFECT IN EXPERIMENTAL MASSIVE

PSEUDOSPIN-1 LATTICE SYSTEMS

The results in Secs. II and III are from the effective, con-
tinuum Hamiltonian model for pseudospin-1 scattering where
the system size is infinite. In experiments, pseudospin-1 sys-
tems are typically realized through lattices, e.g., photonic,
electronic, or cold-atom lattices of finite size. To anticipate
the theoretical and numerical results in Secs. II and III to
occur in real physical systems, a prerequisite is to study if
resonant skew scattering can arise in a finite lattice system.
To be concrete, herein we study massive pseudospin-1 trans-
port in a paradigmatic flat-band system: the Lieb lattice, as
shown in Fig. 8(a). The relation between the single Dirac-cone
Hamiltonian of a Lieb lattice and that of a dice lattice can be
found in Appendix E.

For an idealized Lieb lattice, the energy bands consist of a
pair of vertex-touching Dirac cones and a flat band through
the touching point, so the quasiparticles are of the mass-
less pseudospin-1 type. When a gap opens between the two
Dirac cones, the quasiparticles become massive. There are two
methods to open up such a gap. The first one is through dimer-
ization, which staggers different hopping amplitudes along
the a-b and a-c directions, as shown in Fig. 8(b). The differ-
ence in the coupling strength breaks the C4 symmetry of the
lattice, leading to a gap opening. This is the 2D Su-Schrieffer-
Heeger (SSH) model [44,64] with the following tight-binding
Hamiltonian:

H =
∑
n,m

ta+
n,mbn,m + t ′a+

n,mbn−1,m + ta+
n,mcn,m

+ t ′a+
n,mcn,m−1 + H.c., (34)

where t and t ′ are the nearest-neighbor coupling energies,
{a+

n,m, b+
n,m, c+

n,m} and {an,m, bn,m, cn,m} are the creation and
annihilation operators for the localized states |an,m〉, |bn,m〉,
|cn,m〉 of each atom, with n, m being the cell indices. In the
momentum representation, the Hamiltonian is described by
the following 3×3 matrix:

H=

⎛
⎜⎝ 0 tei kx a

2 + t ′e−i kx a
2 tei

kya
2 + t ′e−i

kya
2

te−i kx a
2 + t ′ei kx a

2 0 0

te−i
kya

2 + t ′ei
kya

2 0 0

⎞
⎟⎠.

(35)

The corresponding energy-momentum dispersion relation is

E±(k) = ±
√

4tt ′ cos2
kxa

2
+ 4tt ′ cos2

kya

2
+ 2(t − t ′)2,

(36)

E0(k) = 0, (37)

FIG. 8. Schematic illustration of an experimentally feasible,
finite-size lattice system for massive pseudospin-1 scattering.
(a) General Lieb lattice structure. (b), (c) Two mechanisms to
generate massive pseudospin-1 quasiparticles: (b) dimerization and
(c) imaginary next-nearest-neighbor interaction. (d), (e) Band struc-
tures for the dimerized and imaginary next-nearest-neighbor hopping
Lieb lattices, respectively.

where E± are the energies of the upper and lower bands,
respectively, E0 is the flat-band energy of the Lieb lattice,
and a is lattice constant. Near the Dirac point k = ( π

a , π
a ),

the gap is the smallest with � = √
2|t − t ′|. In the vicinity

of the gap, the quasiparticles are described by the generalized,
spin-1 Dirac-Weyl equation. The band structure is illustrated
in Fig. 8(d).

The second method to open up a gap for the Lieb lattice is
to introduce a purely imaginary next-nearest-neighbor (NNN)
hopping term [10,64] between atoms b and c with coupling
strength λ, as shown in Fig. 8(c). Such interactions can be cre-
ated via a magnetic flux [65] or spin-orbit coupling with only
one spin component [10,69]. The tight-binding Hamiltonian
is

H =
∑
n,m

ta+
n,mbn,m + ta+

n,mbn−1,m + ta+
n,mcn,m

+ ta+
n,mcn,m−1 − iλc+

n,mbn,m − iλb+
n−1,mcn,m

− iλc+
n,m−1bn−1,m − iλb+

n,mcn,m−1 + H.c., (38)
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and the momentum-space Hamiltonian is

H =

⎛
⎜⎜⎝

0 2t cos kxa
2 2t cos kya

2

2t cos kxa
2 0 −i4λ sin kxa

2 sin kya
2

2t cos kya
2 i4λ sin kxa

2 sin kya
2 0

⎞
⎟⎟⎠, (39)

with the energy-momentum dispersion relation given by

E±(k) = ±
√

4t2

[
cos2

kxa

2
+ cos2

kya

2

]
+ 16λ2 sin2 kxa

2
sin2 kya

2
, (40)

E0(k) = 0. (41)

At the Dirac point, the gap size is � = 4λ and the correspond-
ing band structure is schematically shown in Fig. 8(e).

We employ the KWANT package [70] to calculate the trans-
port properties of massive pseudospin-1 particles on a finite
Lieb lattice. We set the device length (in the horizontal direc-
tion) to be 80 lattice units and width (in the vertical direction)
to be 40 units. The left and right leads have the same width as
the device. To measure the Hall current, we set up two leads
(up and down) with the width of two units. A circular gate
potential is applied to the top of the device, whose radius is
10 units, with the potential height V = 0.01. The gap size is
� = 0.0025. The incident electron energy (normalized by the
hopping energy t) varies from 0.0026 to 0.0099. The electrons
come from the left lead, scatter from the device defined by the
potential step, and leave the device through the right lead.

Figures 9(a) and 9(b) show, for the dimer structure Lieb
lattice, the Hall and longitudinal voltages versus the incident
electron energy. The Hall voltage exhibits a large number
of wide and narrow peaks, indicating the occurrence of Hall
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FIG. 9. Hall and longitudinal voltages of massive pseudospin-1
particles through a finite Lieb lattice device defined by an ex-
ternally applied electrical potential. (a), (b) Hall and longitudinal
voltages versus the incoming electron energy for the dimerization
gap-opening mechanism, respectively. (c), (d) The corresponding
results for the imaginary NNN hopping gap-opening mechanism.

current (the Hall effect is anomalous because of the absence of
any external magnetic field). The corresponding results for the
imaginary NNN hopping Lieb lattice are shown in Figs. 9(c)
and 9(d), where there are valleys below the constant Hall volt-
age, resulting from breaking of the time-reversal symmetry
and the finite-size effect.

We calculate the probability density and current distribu-
tion associated with the peak resonant state for incidence en-
ergy of E = 0.00406 (dimerization lattice) and E = 0.00404
(imaginary NNN hopping lattice). For the dimerized lattice
scattering system, there is a concentration of pseudospin-1
electrons about the edge of the potential region, as shown in
Fig. 10(a). Associated with the resonant state, there are current
vortices around the top and bottom edges of the potential,
as shown in Fig. 10(b), where the currents in the top and
bottom vortices have opposite directions, signifying conser-
vation of time-reversal symmetry. The corresponding results
for the imaginary NNN hopping Lieb lattice are shown in
Figs. 10(c) and 10(d). In this case, the currents associated with
the top and bottom vortices have the same direction, as shown
in Fig. 10(d), which is indicative of a broken time-reversal
symmetry.

The results in Figs. 9 and 10 affirm that skew reso-
nant scattering leading to anomalous Hall current can arise
in experimentally realizable lattice systems hosting massive
pseudospin-1 quasiparticles.

(b)

(c) (d)

(a)

xx

y

y

FIG. 10. Density and current distribution associated with reso-
nant states. (a), (b) Dimerization Lieb lattice with incident electron
energy E = 0.00406. (c), (d) Imaginary NNN hopping Lieb lattice
with incident energy E = 0.00404.
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V. DISCUSSION

The phenomenon of superscattering in Dirac material sys-
tems has been theoretically predicted [25]. Specifically, in
the subwavelength regime where the size of the scatterer is
smaller than the wavelength, extraordinarily large values of
the scattering cross section can arise even when the scatterer
strength as measured by the product of its size with the poten-
tial height becomes arbitrarily small. This phenomenon occurs
in two-dimensional Dirac material systems in which the quasi-
particles are of the massless pseudospin-1 type, defying the
conventional wisdom that wave scattering as characterized by
the cross section should weaken continuously as the scatterer
strength is reduced. The physical mechanism underlying su-
perscattering was found [25] to be the emergence of a class
of localized resonant modes inside the scatterer [23]. The
energy band structure of the Dirac materials that host mass-
less pseudospin-1 quasiparticles consists of a pair of Dirac
cones with a flat band through the conical connecting point,
the Dirac point, without gap opening. In experiments or real
applications, various perturbations can be present which open
a gap at the Dirac point, rendering massive the quasiparticles.
The questions are whether the phenomenon of superscattering
can persist and whether there are features that do not occur in
the massless case.

Our study of massive pseudospin-1 scattering from an
electrostatic potential barrier reveals the phenomenon of su-
per skew scattering. Our method consists of two steps. First,
for theoretical interest, we consider an effective continuum
Hamiltonian system, in which an externally applied electri-
cal field generates a potential barrier of either a circular or
a deformed shape. In the former case, the wave functions
and the relevant scattering cross sections can be solved an-
alytically from the generalized spin-1 Dirac-Weyl equation
through the approach of partial wave decomposition. Analytic
and numerical results provide evidence for the occurrence
of skew resonant scattering. The remarkable finding is the
phenomenon of super skew scattering in which a decrease in
the size and/or potential height of the scatterer does not lead
to a reduction in the skew scattering cross section. When the
circular scatterer is deformed so that the cross sections can be
calculated only numerically, we find that the phenomenon of
super skew scattering persists. We emphasize that skew scat-
tering resonances and super scattering belong to the type of
exotic physics unique to pseudospin-1 Dirac material systems
with a flat band. In fact, we have demonstrated that such be-
haviors do not arise in pseudospin- 1

2 systems (e.g., graphene).
Skew scattering is synonymous with AHE. In experiments,

massive pseudospin-1 Dirac material systems are realized by
finite-size lattices and the Hall current is usually measured.
We have thus studied a Lieb lattice system incorporating two
distinct mechanisms to induce a band gap so that quasiparti-
cles are of the pseudospin-1 type with a finite mass. We find
that skew resonant scattering and anomalous Hall current can
arise in the lattice systems, paving the way for experimentally

observing and characterizing these phenomena. It should be
noted the band topology can affect the transport behavior in a
finite lattice system (Appendix F).

The phenomenon of resonant skew scattering in massive
pseudospin-1 systems can be exploited for applications in Hall
devices. For example, the skew scattering direction (or the di-
rection of the anomalous Hall current) depends on the polarity
of the applied electrical potential: by switching its polarity,
the Hall current will be reversed. This may find applications
in quantum sensing. Further, our work has revealed that, when
the geometric shape of the scattering region is deformed from
a perfect circle, a pair of wide resonant peaks with opposite z
component of the pseudospin can arise for different incident
energy. Tuning the incident energy can thus be used to control
the direction of pseudospin.

We remark that, while adding mass to spin-1 fermions
does not suppress the Klein tunneling effect, our work has
revealed a key difference between the massless and massive
cases: there is superscattering in the former but there is super
skew scattering in the latter as induced by the gap opening.
The main contribution of our work is an understanding of
the skew scattering cross-section resonances as a function of
the incident energy through uncovering a scaling law charac-
teristic of super skew scattering. The physical origin of the
skew scattering resonances has also been elucidated in terms
of certain angular momentum channels. Beyond the previ-
ously published massless, circular-scatterer case, this work
extends the study of massive spin-1 skew scattering to an
elliptic shaped scatterer, a numerically challenging feat that
we achieve by generalizing the multiple-multipole method
to massive spin-1 scattering. This is evidence that the phe-
nomenon of super skew scattering is robust against geometric
deformation of the scatterer. Another feature going beyond
the previous work on massless spin-1 scattering is that, in
this work, electron transport in a finite Lieb lattice device
has been studied to confirm that the phenomenon of super
skew scattering can arise in experimentally feasible systems.
Taken together, the results of this paper provide new insights
into the relativistic quantum scattering of spin-1 particles with
potential applications to anomalous Hall devices.
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APPENDIX A: SIMPLIFICATION OF PSEUDOSPIN-1
SKEW SCATTERING FORMULA

Using the partial wave decomposition method, we get the
coefficients Al and Bl for the scattering wave as

Al = − νI Jl (kI R)[sIIJl−1(kII R) + tII Jl+1(kII R)] − νII Jl (kII R)[sIJl−1(kI R) + tI Jl+1(kI R)]

νI Hl (kI R)[sIIJl−1(kII R) + tII Jl+1(kII R)] − νII Jl (kII R)[sIHl−1(kI R) + tI Hl+1(kI R)]
, (A1)

Bl = νI Hl (kI R)[sI Jl−1(kI R) + tI Jl+1(kI R)] − νI Jl (kI R)[sIHl−1(kI R) + tI Hl+1(kI R)]

νI Hl (kI R)[sIIJl−1(kIIR) + tII Jl+1(kII R)] − νII Jl (kII R)[sIHl−1(kI R) + tI Hl+1(kI R)]
, (A2)
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where

sτ = h̄vF kτ (Vτ − � − E ), tτ = −h̄vF kτ (Vτ + � − E ), ντ = −(Vτ + � − E )(Vτ − � − E ), kτ =
√

(E − Vτ )2 − �2

h̄2v2
F

, (A3)

with τ = I or II, corresponding to the region outside or inside the scatterer, respectively. For simplicity, we denote x1 = kI R and
x2 = kII R. The weak scattering regime can then be characterized by x1 � 1 and x2 � 1. For angular momentum l = 0, we have

A0 = − νI J0(x1)[sIIJ−1(x2) + tII J1(x2)] − νII J0(x2)[sIJ−1(x1) + tI J1(x1)]

νI H0(x1)[sIIJ−1(x2) + tII J1(x2)] − νII J0(x2)[sI H−1(x1) + tI H1(x1)]

≈ − νI
[
sII

(− x2
2

) + tII
x2
2

] − νII
[
sI

(− x1
2

) + tI
x1
2

]
νI

[
1 + i 2

π
ln γ x1

2

][
sII

(− x2
2

) + tII
x2
2

] − νII
[
sI

(− x1
2 + i 2

π
1
x1

) + tI
( x1

2 − i 2
π

1
x1

)]

= −
νI
2 x2(tII − sII ) − νII

2 x1(tI − sI )
νI
2 x2(tII − sII )

[
1 + i 2

π
ln γ x1

2

] − νII
2 x1(tI − sI )

[
1 − i 4

π
1
x2

1

]
≈ − πx2

1

πx2
1 − i 4E

V + i2V −E
V x2

1 ln γ x1

2

, (A4)

where Eq. (A3) has been used in Eq. (A4) to yield the final approximate results.
For angular momentum l = 1 with the corresponding coefficient A1, we have

A1 = − νI J1(x1)[sIIJ0(x2) + tII J2(x2)] − νII J1(x2)[sIJ0(x1) + tI J2(x1)]

νI H1(x1)[sII J0(x2) + tII J2(x2)] − νII J1(x2)[sI H0(x1) + tI H2(x1)]

≈ −
νI x1

2

[
sII + tII

x2
2
8

] − νII x2
2

[
sI + tI

x2
1
8

]
νI

[ x1
2 − i 2

π
1
x1

][
sII + tII

x2
2
8

] − νII x2
2

[
sI

(
1 + i 2

π
ln γ x1

2

) + tI
( x2

1
8 − i 4

π
1
x2

1

)]
≈ − πx2

1

πx2
1 + i

[
4 E−�

E+�
V −2E

V + 2V +�−E
V x2

1 ln γ x1

2

] . (A5)

For A−1 with angular momentum l = −1, we have

A−1 = − νI J−1(x1)[sIIJ−2(x2) + tII J0(x2)] − νII J−1(x2)[sIJ−2(x1) + tI J0(x1)]

νI H−1(x1)[sIIJ−2(x2) + tII J0(x2)] − νII J−1(x2)[sIH−2(x1) + tI H0(x1)]

≈ −
νI x1

2

[
tII + sII

x2
2
8

] − νII x2
2

[
tI + sI

x2
1
8

]
νI

[ x1
2 − i 2

π
1
x1

][
tII + sII

x2
2
8

] − νII x2
2

[
tI
(
1 + i 2

π
ln γ x1

2

) + sI
( x2

1
8 − i 4

π
1
x2

1

)]
≈ − πx2

1

πx2
1 + i

[
4 E+�

E−�
V −2E

V + 2 (V −�−E )
V x2

1 ln γ x1

2

] . (A6)

For A2 corresponding to the angular momentum l = 2, we have

A2 = − νI J2(x1)[sIIJ1(x2) + tII J3(x2)] − νII J2(x2)[sIJ1(x1) + tI J3(x1)]

νI H2(x1)[sIIJ1(x2) + tII J3(x2)] − νII J2(x2)[sIH1(x1) + tI H3(x1)]

≈ −
νI x2

1
8

[
sII

x2
2 + tII

x3
2

48

] − νII x2
2

8

[
sI

x1
2 + tI

x3
1

48

]
νI

x2
1
8

[
sII

x2
2 + tII

x3
2

48

] − νII x2
2

8

[
sI

x1
2 + tI

x3
1

48

] − i 4
π

νI

x2
1

[
sII

x2
2 + tII

x3
2

48

] + i νII x2
2

8

[
2
π

sI
x1

+ 16
π

tI
x3

1

]

≈ − πx4
1

πx4
1 + i

[
32 E−�

E+�
V −2E

V − 4x2
1

V −E+�
V

(
1 − 1

3
V −E+�

E+�

)] . (A7)

For A−2, we have

A−2 = − νI J−2(x1)[sIIJ−3(x2) + tII J−1(x2)] − νII J−2(x2)[sIJ−3(x1) + tI J−1(x1)]

νI H−2(x1)[sIIJ−3(x2) + tII J−1(x2)] − νII J−2(x2)[sIH−3(x1) + tI H−1(x1)]

≈ − πx4
1

πx4
1 + i

[
32 E+�

E−�
V −2E

V − 4x2
1

V −E−�
V

(
1 − 1

3
V −E−�

E−�

)] . (A8)
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The reflection amplitude can be obtained as

f (θ ) = −e−iπ/4

√
2

πk

∞∑
l=−∞

Al e
ilθ . (A9)

The differential cross section is given by

dσ

dθ
= | f (θ )|2 = 2

πk

∣∣∣∣∣
∞∑

l=−∞
Ale

ilθ

∣∣∣∣∣
2

. (A10)

The transport cross section is

σtr =
∫ 2π

0
dθ | f (θ )|2(1 − cos θ )

= 4

k

∑
l

[|Al |2 − Re(AlA
∗
l+1)]. (A11)

The skew scattering cross section has the form

σskew =
∫ 2π

0
dθ | f (θ )|2 sin θ = 4

k
Im

[∑
l

A∗
l Al−1

]
. (A12)

For the first resonant state in Fig. 2, the probability density
distribution is confined inside the circular potential region.
The transport cross section is dominated by the l = 1 term

σtr ≈ 4

k
|A1|2 ≈ 4

k
= 4√

E2 − �2
, (A13)

and skew scattering is the result of interference between the
l = 0 and 1 states. We have

σskew ≈ 4

k
Im[A0A∗

1] ≈ πk
V 2

E2

(V − E )(E − �) + 2�E

V (E + �)
.

(A14)

For the second resonant state in Fig. 2, the l = ±1 and 2 states
contribute to the transport cross section. We have

σtr = 4

k
[|A−1|2 + |A1|2 + |A2|2] ≈ 8

k
. (A15)

In this case, skew scattering is due to the interference between
the l = 1 and 2 states. We have

σskew ≈ 4

k
Im[A1A∗

2] ≈ − 4

π

V − E + �

V

ln γ k
2

k
. (A16)

APPENDIX B: MASSIVE PSEUDOSPIN- 1
2 SCATTERING

FROM A CIRCULAR POTENTIAL SCATTERER

For massive pseudospin- 1
2 scattering [55], the reflection

coefficient is

Al = − τ1Jl (x1)Jl−1(x2) − τ2Jl−1(x1)Jl (x2)

τ1Hl (x1)Jl−1(x2) − τ2Hl−1(x1)Jl (x2)
, (B1)

where l = j + 1
2 , with j = ± 1

2 ,± 3
2 , . . ., x1 = k1R, x2 = k2R,

and

τ1 = − h̄vF k1

E − �
, τ2 = − h̄vF k2

E − V − �
,

k1 =
√

E2 − �2

h̄2v2
F

, k2 =
√

(E − V )2 − �2

h̄2v2
F

,

with (x1, τ1, k1) and (x2, τ2, k2) being quantities corresponding
to the area outside and inside the circular potential scatterer,
respectively. In the weak scattering regime (x1�1 and x2�1),
we have A0 for j = − 1

2 as

A0 = − τ1J0(x1)J−1(x2) − τ2J−1(x1)J0(x2)

τ1H0(x1)J−1(x2) − τ2H−1(x1)J0(x2)

≈ − −πτ1x1x2 + πτ2x2
1

−πτ1x1x2 + πτ2x2
1 − i

[
4τ2 + 2τ1x2x1 ln γ x1

2

]

= −
πV (E + �)

√
V −E−�
V −E+�

πV (E + �)
√

V −E−�
V −E+�

− i
[
4
√

V −E−�
V −E+�

− 2
√

E+�
E−�

√
(V − E )2 − �2x1 ln γ x1

2

] . (B2)

Similarly, for j = 1
2 , we have

A1 = − τ1J1(x1)J0(x2) − τ2J0(x1)J1(x2)

τ1H1(x1)J0(x2) − τ2H0(x1)J1(x2)

≈ − −πτ2x1x2 + πτ1x2
1

−πτ2x1x2 + πτ1x2
1 − i

[
4τ1 + 2τ2x2x1 ln γ x1

2

]
= − πV

√
E2 − �2

πV
√

E2 − �2 + i
[−4

√
E+�
E−�

+ 2(V − E − �)x1 ln γ x1

2

] . (B3)
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The relevant coefficient-dependent quantities can be ap-
proximated as

|A0|2 ≈ π2V 2

16
(E + �)2,

|A1|2 ≈ π2V 2

16
(E + �)2,

Re[A0A∗
1] ≈ π2V 2

16
(E2 − �2),

Im[A0A∗
1] ≈ −π3V 3�

32
(E2 − �2).

The transport cross section is

σtr = 4

k

∑
l

[|A0|2 + |A1|2 − Re(AlA
∗
l+1)]

≈ 4

k
[|A0|2 + |A1|2 − Re(A0A∗

1 )]

= π2

4

V 2

k
[E2 + 3�2]. (B4)

The skew scattering cross section has the form

σskew = 4

k

∑
l

Im[AlA
∗
l+1]

≈ 4

k
Im[A0A∗

1] = −π2

8

V 3�

k
(E2 − �2). (B5)

APPENDIX C: TRANSPORT CROSS SECTIONS

The results in the main text are for the skew cross sections.
Here we present results for the transport cross sections in vari-
ous cases. Figure 11 shows the behavior of the transport cross
section for the same setting as in Fig. 2, and also shows the
scaling of the peak transport cross section with the scatterer
strength. It can be seen that there are super scatterings associ-
ated with electron transport, similar to the massless case [25].
The scaling behavior of skew and transport cross sections with
respect to circular scatterer strength is summarized in Table I.
The results are based on Eqs. (A13), (A14), (A15), (A16),
(B4), and (B5). Note that these formulas are valid in certain
potential range. The scattering cross section should be zero
when there is no potential. The corresponding results for the
elliptic scatterer are shown in Fig. 12, where the phenomenon
of super scattering persists.

APPENDIX D: EFFECT OF VARYING INCIDENT ANGLE
FOR THE CASE OF AN ELLIPTICAL SCATTERER

For the elliptical scatterer, a different incident direction
may affect the scattering cross sections. Surprisingly, we find
that resonant skew scattering persists and changes little for
different incident angles, as exemplified in Figs. 13(a) and
13(b), in spite of large variations in the transport cross section.
The current distribution reveals that the vortices are similar
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FIG. 11. Resonant transport cross section for massive
pseudospin-1 scattering from a circular potential barrier in the
Klein tunneling regime. The parameter values are the same as those
in Fig. 2. (a) σtr for massive pseudospin-1 quasiparticles versus the
incident energy. There are resonant peaks, corresponding to these
in Fig. 2. (b) The corresponding plot for pseudospin- 1

2 scattering,
where no resonant peaks occur and the values of σtr are much
smaller than those (a) in the entire energy range. (c) Magnification
of the first resonant peak in (a), where the red and blue dashed
curves are the numerical and theoretical results, respectively. (d) The
corresponding magnification for pseudospin- 1

2 scattering with the
same legends as in (c). (e) Magnification of the second resonant
peak in (a). (f) The corresponding magnification for pseudospin- 1

2
scattering. (g) Scaling of the resonant transport cross-section peak
value with the strength of the scatterer. The symbols are numerical
data and the lines are the corresponding theoretical predictions.

for different incident angles, giving rise to robust vortices (or
resonance) that lead to robust super skew scattering, as shown
in Fig. 14.

TABLE I. Summary of the scaling of the peak value of skew and
transport scattering cross sections with the scatterer strength V R.

Spin 1 (1st) Spin 1 (2nd) Spin 1
2

σskew/R V R ln(γV R)
V R (V R)5

σtr/R (V R)−1 (V R)−1 (V R)3
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FIG. 12. Resonant transport cross section versus energy for
scattering from an elliptical potential. (a) Pseudospin-1 system,
(b) pseudospin- 1

2 system. The parameter values are the same as those
in Fig. 5. (c) Scaling of the resonant transport cross-section peak
value with the strength of the elliptical scatterer. Legends are the
same as those in Fig. 7.

APPENDIX E: UNITARY TRANSFORMATION BETWEEN
THE EFFECTIVE HAMILTONIANS OF SINGLE

DIRAC-CONE DICE AND LIEB LATTICES

In Secs. II and III, the effective Hamiltonian is derived
from the a single Dirac-cone dice lattice. In Sec. IV, the
phenomenon of super skew scattering is observed in the single
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FIG. 13. Resonant skew and transport scattering cross sections
for an elliptical scatterer for different incident angles. (a) Resonant
skew scattering cross section for the first peak in Fig. 5. The red solid,
blue dashed, and green dashed-dotted curves are for the incident
angles of 0 (along positive x direction), π/2 (along positive y di-
rection), and π/4 (with respect to positive x direction), respectively.
(b) The corresponding results for the fourth resonant peak in Fig. 5.
(c) Resonant transport scattering cross section for the first peak in
Fig. 12. The red solid, blue dashed, and green dashed-dotted curves
are for the incident angles of 0, π/2, and π/4, respectively. (d) The
corresponding results for the fourth resonant peak in Fig. 12.

FIG. 14. In-plane current density and pseudospin-z distribution
for different incident angles. (a), (c), (e) Results for the first resonant
state in Fig. 5 for incident angle 0, π/2, and π/4. (b), (d), (f) Results
for the fourth resonant state in Fig. 5 for the same set of incident
angles.

Dirac-cone Lieb lattice. From a theoretical point of view,
there exists a unitary transformation between the effective
Hamiltonians of the single Dirac-cone dice and Lieb lattices.
Thus, in principle, results from the effective Hamiltonian of
the single Dirac-cone dice lattice are expected to hold when
the effective Hamiltonian is one from the Lieb lattice. The
results in Secs. II–IV thus demonstrate the generality of the
phenomenon of super skew scattering across the two lattice
systems. Here we present this unitary transformation.

For the dice lattice, the effective Hamiltonian is given by

Hd = h̄vF Sd · k + �Sz + V (r), (E1)

with

Sd
x = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sd

y = 1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

(E2)
and

Sd
z =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (E3)

For the Lieb lattice, the effective Hamiltonian is

HL = h̄vF SL · k + �Sz + V (r), (E4)

with

SL
x =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, SL

y =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, (E5)

and

SL
z =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠. (E6)
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Consider the following unitary matrix:

U =

⎛
⎜⎜⎝

0 1 0
1√
2

0 1√
2

i√
2

0 − i√
2

⎞
⎟⎟⎠, (E7)

which satisfies U †U = I . The unitary transformation for the S
matrix can be expressed as

U †SL
x U = Sd

x , (E8)

U †SL
y U = Sd

y , (E9)

U †SL
z U = Sd

z . (E10)

The effective Hamiltonians from the two lattice systems can
thus be connected by the unitary transformation

U †HLU = Hd , (E11)

with the current operator defined as

Ĵ = ∇pH. (E12)

The conclusion is that the far-field scattering behavior and
near-field probability and current distributions are identical
for the single Dirac-cone dice and Lieb lattices.

APPENDIX F: TOPOLOGICAL EFFECT
ON SUPER SKEW SCATTERING

In Sec. IV, two gap-opening methods are employed for
the Lieb lattice system: exploiting the dimerization term
and adding a purely imaginary next-nearest-neighbor hopping
term. The topological properties of these two types of lattices
are different. The dimerization lattice is topologically trivial
while the lattice system with the imaginary NNN hopping is
topologically nontrivial. A detailed discussion of the topolog-
ical properties of these two cases can be found in Ref. [64].
For the finite device in our study, we calculate the energy
band for a strip that is finite in the y direction and infinite
along the x direction, as shown in Fig. 15. It can be seen
that there is an empty gap for the dimerization lattice, while
there is an edge mode for the imaginary NNN hopping lattice

(a)

(b)

FIG. 15. Energy band structures of Lieb lattice under two gap-
opening mechanisms. The lattice system is a strip that has the width
of 40 lattice constants in the y direction and is infinite along the
x direction. (a) Dimerization Lieb lattice and (b) imaginary NNN
hopping Lieb lattice. Here, for the illustrative purpose, the band-gap
size is chosen to be relatively large.

about kx = ±π/a. There is indication that the topology can
have some effect on skew scattering for transport inside the
energy band gap. In particular, as shown in Figs. 9(a) and 9(c),
there is zero Hall voltage away from the resonance for the
dimerization lattice, but there is a finite Hall voltage for the
imaginary NNN hopping lattice when the energies are away
from the resonance so it becomes a resonant valley. While the
focus of this paper is on super skew scattering, the effect of
topology deserves further attention.
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