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A topological quantum phase requires a finite momentum-space Berry curvature which, conventionally, can
arise through breaking the inversion or the time-reversal symmetry so as to generate nontrivial, topologically
invariant quantities associated with the underlying energy band structure (e.g., a finite Chern number). For
conventional graphene or graphenelike two-dimensional (2D) systems with gapless Dirac cones, the symmetry
breaking will make the system insulating due to lifting of the degeneracy. To design materials that simultaneously
possess the two seemingly contradicting properties (i.e., a semimetal phase with gapless bulk Dirac-like cones
and a finite Berry curvature) is of interest. We propose a 2D mechanical dice lattice system that exhibits precisely
such properties. As a result, an intrinsic valley Hall effect can arise without compromising the carrier mobility
as the quasiparticles remain massless. We also find that, with confinement along the zigzag edges, two distinct
types of gapless edge states with opposite edge polarizations can arise, one with a finite but the other with zero
group velocity.
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I. INTRODUCTION

Topology has become a fundamental and powerful principle
to understand and characterize the exotic phases of condensed
matter systems, leading to the discovery of topological
materials such as topological insulators, topological supercon-
ductors, and topological metals [1–6]. The invariant quantity
used to characterize the novel topological states is the Chern
number calculated by integrating the Berry curvature within
the whole Brillouin zone [7]. The Berry curvature defined
in the momentum space as the Berry phase density plays a
similar role to that of a magnetic field in the position space.
Associated with topological transport, a Bloch electron will
experience an anomalous velocity induced by the finite Berry
curvature according to the semiclassical picture [7–10]. This
is the fundamentally intrinsic mechanism for the anomalous
Hall effect [11] and valley Hall effect [10].

In two-dimensional (2D) systems, the valley Hall effect was
first theorized [10] for graphene [12,13]. Despite the weak
spin-orbit interaction intrinsic to graphene, it possesses two
nonequivalent valleys at the corners of the Brillouin zone,
which are separated by a large momentum. As a result, there
is strong suppression of intervalley scattering, making the
valley index an additional quantum number to describe the
electronic state. Conventionally, a finite Berry curvature can
arise in systems with a broken inversion symmetry, and a finite
Chern number requires further breaking of the time-reversal
symmetry [7]. For graphene, according to the Haldane model
[14], the interactions required for breaking the inversion
or the time-reversal symmetry will generically remove the
degeneracy of the pair of Dirac cones at their interaction point,
opening an energy gap [10,15,16]. In addition to graphene, 2D
Chern semimetals have been proposed for the Lieb lattice,
but there is still a direct band-gap opening [17]. Nonetheless,
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topological phases in gapless bulk systems can occur but in
three dimensions, such as the Weyl [18–20] and Dirac [21,22]
semimetals.

In this paper, we ask the following question: is it possible to
have a 2D system with a finite Berry curvature but without any
direct band-gap opening? If yes, then novel topological quan-
tum phases can occur with massless quasiparticles. To address
this question and to obtain a physical understanding, we exploit
the mechanical analog of the electronic systems. Indeed,
recently the counterparts of a number of electronic phenomena
such as Dirac cones, the quantum (anomalous) Hall state, and
topologically protected edge states, have been realized in clas-
sical mechanical systems [23–35], leading to the emergence of
a new field: topological phononics [25,28,29,36]. In such a sys-
tem (and also in photonic systems), the nontrivial topological
phase is fundamentally a wave phenomenon [24], opening the
door to probing into topology-based physics through the clas-
sical approach. Compared with electronic systems, classical
mechanical systems as governed by the Newton’s laws have the
advantage of superior controllability and feasible experimental
implementability.

The main accomplishments of this paper are the following.
We utilize the classical spring-mass model to construct
a mechanical dice lattice system, a combination of two
honeycomb lattices with a relative displacement. Such a
lattice for electronic systems has a threefold band degenerate
structure with an emerging flatband and features massless
spinor quasiparticles [37]. Through a detailed exploration of
the parameter space for the proposed mechanical system,
we find regions of nonzero measure with three-band or
two-band degeneracies, about which the energy momentum
dispersion has a conical structure—the characteristic signature
of massless quasiparticles. A key result is that there is
naturally an inversion symmetry breaking with the degeneracy
maintained through modifying the spring constant of one
subset of the dice lattice. This leads to a finite Berry
curvature and, consequently, to a mechanical topological
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FIG. 1. Schematic illustration of our mechanical dice lattice. The
two subsets of honeycomb lattices are colored by black and red, with
respective spring parameters κ1,η1 and κ2,η2. All the mass points are
identical but can be physically nonequivalent. There are three mass
points in one unit cell, which are colored by red, blue, and green.
With unequal spring constants for the two subsets, there is naturally
an inversion symmetry breaking.

semimetal phase. We also study the ribbon geometry and
find gapless edge states with opposite conducting properties,
e.g., there can be a conducting channel along one edge but
a nonconducting channel along the other edge. These results
not only are relevant to the field of topological phononics,
but also provide insights into the possible realization of 2D
electronic materials exhibiting nontrivial topological quantum
phases with massless quasiparticles.

II. MECHANICAL LATTICE MODEL

We consider a mechanical dice lattice, motivated by the
recently studied mechanical honeycomb lattice [23,24], in
which atoms are modeled as identical mass points and any
pair of neighboring atoms is coupled through a spring of
constant κ1 (or κ2) and a natural length l0. As shown in Fig. 1,
the lattice is a superposition of two honeycomb lattices with
a relative displacement. Differing from the existing works
[23,24], in our lattice each unit cell contains three atoms. At
the equilibrium, the spring length R0 is not necessarily equal
to the natural length l0. It is thus convenient to use η = l0/R0

as a parameter to characterize the spring. Note that a threefold
rotational symmetry always holds in the system regardless of
the parameter values, while the spatial inversion symmetry
can be broken for κ1 �= κ2 or η1 �= η2. The static equilibrium
of the bulk mass points is guaranteed by the symmetry of the
dice lattice while the states of the boundary mass points are
determined by the boundary conditions. We restrict the motion
to 2D and focus on small displacements about the equilibrium
points. For the mass points in the unit cell, the dynamical
variables are their deviations from the static equilibrium

positions: xr = (xr,a,yr,a,xr,b,yr,b,xr,c,yr,c)T , where r de-
notes the unit-cell lattice coordinate and a,b,c are the three
mass points in one unit cell. In general, the two honeycomb
lattices have different parameters, so the three mass points in
the unit cell are not equivalent to each other.

The motions of atoms are described by the classical Hamil-
ton’s equations. For example, for one degree of freedom we
have mẍ + ∂H/∂x = 0. For simplicity, we assume unit mass
for all the atoms in the lattice. Only the nearest-neighboring
terms in the Hamiltonian H contribute to the motions. We
assume that the springs are in the linear regime so that the
elastic potential of an individual spring can be written as
Us = (κ/2)(l − l0)2, with l being the instantaneous length of
the spring. For motion about the equilibrium position, we
apply Taylor expansion up to the second order. Changing the
dynamical variables from the real r space into the momentum
k space [23],

zr,ν = 1

N

∑
k

eiωt+ik·rφν
z (k), (1)

where z ∈ {x,y} and ν ∈ {a,b,c}, we obtain the eigenfunctions
of the dynamic matrix, which yields the frequency spectrum
as

ω2φ(k) = �(k)φ(k), (2)
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x (k),φa

y (k),φb
x (k),φb

y (k),φc
x(k),φc

y(k)]T ,

�(k) =

⎡
⎢⎣

	1 �ab(k) 0

�
†
ab(k) 	1 + 	2 �bc(k)

0 �
†
bc(k) 	2

⎤
⎥⎦, (3)

and

	i = 3κi

(
1 − ηi

2

)
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with γ
xy

Ri
≡ [1 − η,ηRi,xRi,y ; ηRi,yRi,x,1 − η]. In these ex-

pressions, Ri,x and Ri,y (i = 1,2,3) are the x,y components
of the R vectors shown in Fig. 1, a1 = (1/2,

√
3/2)a, a2 =

(−1/2,
√

3/2)a, and a is the length of the primitive basis
vectors. Equation (2) represents a six-dimensional eigenvalue
problem. The frequencies ω are given by the square root of the
eigenvalues of Eq. (2). Negative eigenvalues lead to a pair of
purely imaginary values of ω, which depend upon the system
parameters and correspond to unstable eigenstates that can be
excluded from our calculation of the energy bands.

As shown in Fig. 1, our mechanical dice lattice constitutes
two honeycomb lattices with parameters (κ1,η1) (black) and
(κ2,η2) (red). The parameter space for the lattice system
is thus four dimensional: {κ1,η1,κ2,η2}. From Eq. (3), we
see that the parameters (κ1,κ2) only appear as the scaling
factors in both diagonal elements, representing the weight
of each sublattice and off-diagonal elements characterizing
the mutual coupling strength between sublattices. We thus
set κ1 = 1, which is equivalent to scaling κ2 as κ2/κ1. For
more complicated interactions such as the Coriolis force that
breaks the time-reversal symmetry, it is not possible to relate
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the frequency ω directly to the eigenvalues. This difficulty
can be overcome by introducing a Schrödinger-like equation
for phonons [25] so that the concept of wave function and
topology-related quantities can be naturally introduced into
the mechanical lattice system.

III. PHASE DIAGRAMS AND HIGHLY
DEGENERATE STATES

Highly degenerate states and the approximate dispersion
relations associated with the states are of physical interest.
Since the rescaled parameter space is three dimensional,
{η1,κ2,η2}, we fix the value of η1 to calculate the phase diagram
in the κ2 − η2 parameter plane. Because of the difficulty in
carrying out numerical characterization of the band structure
in an automated fashion, we exploit analytic solutions to detect
the parameter regions in which degeneracies occur (detailed
below). Representative results are shown in Fig. 2.

A characteristic feature of an electronic dice lattice is that it
has a three-band degenerate point at which a flatband intersects
with the degenerate point of the conventional Dirac cones. The
main goal of our work is to investigate whether such a three-
band degenerate point exists in the mechanical dice lattice
system. To achieve this, we first obtain analytic solutions of the
eigenvalue spectrum from a reduced 4 × 4 dynamic matrix (see
Appendix) for each parameter pair from a fine grid covering
the parameter plane. We then determine the parameter values

that lead to a three-band degeneracy. Figure 2(a) shows, for
η1 = 0, the analytically determined curves along which there
is an exact three-band degeneracy (the solid red curves). Away
from a point on the curves, there is an approximate three-band
degeneracy in the sense that there is still an exact two-band
degeneracy, but the third band is lifted slightly, opening a gap of
size proportional to the parameter distance from the red curve.
The shaded/fading regions containing the curves thus represent
parameter regions in which the gap between the third band
and the two-band degeneracy point is insignificant. Physically
these regions exhibit an approximate three-band degeneracy
that is potentially accessible to experimental observations.
The blank areas in Fig. 2(a) correspond to the parameter
regions of an exact two-band degeneracy. Figures 2(b)–2(e)
show the typical band structures from the four red curves, with
the parameters specified by the cyan points. Note that since
we focus on physically realizable stable solutions, we ignore
the purely imaginary band so that the total number of bands
is less than six. The band structure with a small value of
κ2 is similar to that of mechanical graphene but has a triply
degenerate point, as shown in Fig. 2(b). Notably, Fig. 2(c)
shows a different gapless profile of the degeneracy of the same
fold, which is similar to that in an electrical dice lattice near
the degenerate point. In Fig. 2(c), the green and yellow bands
form a pair of Dirac cones at the K(K ′) point which intersect
with a third flat purple band. The band structure in Fig. 2(d) is
analogous to that characterizing massive Dirac quasiparticles

FIG. 2. Phase diagrams of proposed mechanical dice lattice system. (a) For η1 = 0, three-band degenerate phases (shaded/fading areas
containing the red curves) and two-band degenerate phases (the blank areas). Insets are examples of the two-band degenerate phases. (b–e)
Typical band structures in the three-band degenerate phase, with parameters marked by the cyan points in (a). (f) Phase diagram for η1 = 0.5,
where the two-band degenerate phases are shown as shaded/fading areas containing the blue curves and the blank areas correspond to parameter
regions with no degeneracy (inset: an example of nondegenerate band structure). (g–j) Typical structures of two-band degeneracy for parameter
values marked by the magenta points in (f).
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based on the two dispersive bands about the K point, with the
exception that there are two additional coincident flatbands
intersecting with the orange dispersive band. Figure 2(e) shows
the six bands in the entire momentum space, where another
triply degenerate point emerges with a different dispersion
profile. From Figs. 2(b)–2(e), we see that the number of bands
above the three degenerate points changes gradually, e.g.,
from zero in Fig. 2(b) to three in Fig. 2(e). The emerging
triply degenerate points and the conical-like dispersion about
them are evidence of the classical mechanical analog of triple
point metals with massless quasiparticles beyond the canonical
Dirac/Weyl paradigm [38,39].

In different parameter regimes, our mechanical dice lattice
system can exhibit features of the two-band structure as in
mechanical graphene. Figure 2(f) shows, for η1 = 0.5, the
phase diagram with κ2 and η2 varying in the ranges from
0 to 3 and from 0 to 4, respectively. The solid blue curves
represent results from the analytic solutions along which an
exact two-band degeneracy occurs, and the shaded/fading
regions containing the curves indicate regions in which an
approximate two-band degeneracy can arise. Figures 2(g)–2(j)
present typical band structures corresponding to the four
two-band degenerate phases with parameters marked by the
magenta dots in Fig. 2(f). From Fig. 2(i), we find no isolated
degenerate points, as the middle two bands coincide with
each other along different paths in the k space. A comparison
between Figs. 2(g) and 2(j) indicates that the former exhibits
pronounced features typical of a mechanical graphene system
[23–27] while the latter exhibits six-band features. This can
be understood in that, as κ2 is decreased, the connection
between the two subhoneycomb lattices is weakened. In the
extreme case of κ2 = 0, the band structure is reduced to that
of mechanical graphene, regardless of the value of η2. On
the opposite side, the emergence of the flatband is a strong
indication that the system is no longer mechanical graphene.
The blank areas in Fig. 2(f) specify parameter regions in which
no degeneracies arise. A typical nondegenerate band structure
is shown in the inset.

Note that from the spectrum equation for a given Bloch
wave vector k [Eq. (2)], the normal mode frequencies ω

are the square roots of the eigenvalues of the matrix �(k),
which is originated from the second-order time derivative in
the Newton’s equations of motion. Depending on the system
parameters κ and η, ω2 can be negative, giving rise to unstable
collective oscillation modes/excitations. In the domain of the
real part of the frequency versus the momentum characterizing
the band-structure profiles as in Fig. 2, the negative eigenvalues
are physically irrelevant. In fact, there are regions of finite area
in the parameter space where all six eigenfrequencies are real.
For example, the lowest shaded regions in Figs. 2(a) and 2(b)
have all six real frequencies, with two representative cases
shown in Figs. 2(e) and 2(j), respectively.

To gain theoretical insights into the phase diagrams, we
carry out an analysis to distinguish the band structures
by expanding the dynamic matrix �(k) about the K =
[2π/(3a),2π/(

√
3a)] and K ′ = [−2π/(3a),2π/(

√
3a)] points

and keeping the lower-order terms. As �(k) is a 6 × 6 matrix,
it is difficult to obtain explicit analytical expressions for the
eigenvalues. However, since the maximum degeneracy occurs
at the K(K ′) points, we can focus on the energy levels at these

points. The frequency squared at the K point is

ω2=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3 − 3
2η1,

3κ2 − 3
2η2κ2,

3
4

[
4 − 2η1 − (−2 + η2)κ2 ±

√
4η2

1 + (−2 + η2)2κ2
2

]
,

3
4

[
2 − η1 − 2(−2 + η2)κ2 ±

√
(−2 + η1)2 + 4η2

2κ
2
2

]
.

Setting η1 = 0, we obtain two bands at ω2 = 3, regardless of
the values of κ2 and η2. To achieve a three-band degeneracy,
we adjust the values of κ2 and η2 to make an additional band
cross the ω2 = 3 point. We then get

η2 =

⎧⎪⎪⎨
⎪⎪⎩

2 → Band II

2 − 2
κ2

→ Band III

1 + 1
1−2κ2

→ Band I/IV

which defines the curves in the parameter plane along which
three-band degeneracies occur. In Fig. 2(a), the solid red curves
I and IV share the same η2(κ2) relation, as they correspond to

ω2 = 3
4

[
2 − η1 − 2(−2 + η2)κ2 ±

√
(−2 + η1)2 + 4η2

2κ
2
2

]
.

The physical picture here is that, in the limit η1 = 0 (see
Appendix for details), one of the three nonequivalent mass
points, e.g., the green mass point in Fig. 1, can be decoupled
from the other two about the K(K ′) point, up to the first order.
The two decoupled bands are degenerate at the K(K ′) point,
and a three-band degeneracy can be achieved insofar as the
remaining four bands cross ω2 = 3. A similar analysis applies
to the results in Fig. 2(f).

A direct consequence of the parameter differences in the
two subhoneycomb lattices is the breaking of the inversion
symmetry. In our proposed mechanical system, the broken
inversion symmetry does not necessarily lift the conical-like
degeneracy that is the characteristic signature of the massless
nature of the quasiparticles in the semimetal phase. It is useful
to investigate the effects of the inversion symmetry breaking in
terms of the topology-related quantities, as will be described
next.

IV. ANOMALOUS VALLEY HALL EFFECT IN
SEMIMETAL PHASE

To probe into the topological properties of lattice systems
with a three-band degeneracy, we first calculate the Berry
curvature underlying the occupied Bloch states. In electronic
systems, in the presence of an in-plane electric field, an
electron will acquire an anomalous velocity proportional to
the Berry curvature in the transverse direction [6–11], leading
to anomalous quantum Hall and anomalous valley Hall effects.
Based on symmetry considerations, in the momentum space,
we have that the Berry curvature,

�n(k) = ∇k × 〈φn(k)|i∇k|φn(k)〉,
is odd in the presence of a time-reversal symmetry and
even in the presence of an inversion symmetry, where the
subscript n denotes the band index and φ(k) is the Bloch wave
defined in Eq. (2). When both time-reversal and inversion
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FIG. 3. Numerical and analytic results of Berry curvature. (a–
f) Berry curvatures for the six bands of a threefold degenerate
configuration, respectively. (g) Comparison between the numerical
(blue solid curve) and analytical (red dished curve segments) results
from the reduced 4 × 4 dynamic matrix. The green curve is numerical
result shown in (b) calculated from the original 6 × 6 dynamic matrix.
The small black circles in (g) indicate the small neighborhoods of the
K (K ′) points in which the numerical curvature values are not reliable.
The parameters used are η1 = 0, κ2 = 1.5, and η2 = 0.5, which are
the same as in Fig. 2(e).

symmetries are present, the Berry curvature is zero over the
whole Brillouin zone, except at the zero-measure degeneracy
points (singularities) for semimetals.

Our mechanical dice lattice system preserves the time-
reversal symmetry, while the inversion symmetry can be
broken. We thus expect the Berry curvature in the Brillouin
zone to be nonzero and an odd function of the wave vector.
The Chern number, which is the integral of the Berry curvature
within the entire Brillouin zone, is zero due to the time-reversal
symmetry. However, the local finite Berry curvature with
opposite signs for the two nonequivalent valleys can lead to
an anomalous valley Hall effect in the semimetal phase, which
cannot arise in conventional, Haldane-model-based electronic
systems.

Figures 3(a)–3(f) show the Berry curvature for the six
bands associated with the threefold degenerate configuration
of Fig. 2(e). We see that across the Brillouin zone the Berry
curvature is finite and assumes relatively large values about
the K(K ′) points. It is also apparent that the Berry curvature
possesses an odd inversion symmetry with respect to the �

point, due to the time-reversal symmetry. Analytic results of
the Berry curvature about the K(K ′) points are shown as the
red dished line in Fig. 3(g), with the blue solid line representing
the numerical result for comparison. The results represented by
the red and blue colors are obtained through a reduced, 4 × 4
dynamic matrix (see Appendix), while the green curve is the
numerical result calculated directly from the 6 × 6 matrix.
Since the Berry curvature depends on the normalized Bloch
wave, a dimension reduction can cause small modifications
to the value of the curvature, which is responsible for the

differences between the blue and green curves about the
K(K ′) points. However, these two curves have similar features.
For the reduced dynamic matrix, due to the small deviations
about the K(K ′) points, we expect disagreement away from
these points. There is a good agreement between analytic and
numerical results, especially in terms of the sign, the value,
and the trend of the curvature. The valley-contrasting Berry
curvature will induce an anomalous velocity perpendicular to
the external driving field, leading to an anomalous valley Hall
effect in the semimetal phase. In practice, the driving field can
be generated via an in-plane gradient strain [40]. Alternatively,
one can follow the scheme of applying a Gaussian pulse
source, as proposed in a more recent work [41], to observe and
realize nontrivial valley-contrasting physics in the proposed
mechanical lattice system. While the results in Figs. 3(a)–3(g)
are for the limiting case η1 = 0, similar phenomena have been
observed for η1 = 0.5, where there is an inversion symmetry
breaking.

For the system to exhibit a finite Chern number, one can
introduce a Coriolis force. In particular, when the classical
system rotates uniformly with angular frequency �a, the point
with mass m and velocity v will experience a force proportional
to mv × �a. This is equivalent to the Lorentz force for charged
particles under a magnetic field.

We note that, in general, at the degenerate (singular) points,
the Berry curvature is ill defined. However, what really matters
for the emergence of the topological states is finite Berry
curvature away from the gapless points in the semimetal phase
(from the corresponding band structure). This is precisely the
feature that distinguishes our lattice from the conventional
systems, with a vanishing Berry curvature away from the
gapless Dirac points, e.g., graphene, making our system
a mechanical analog of topological semimetal. While in a
conventional system the Berry curvature values at the Dirac
points are divergent, they are physically irrelevant. For the
triply degenerate band profile arising from our lattice system,
what is shown in Fig. 3 is the curvature values away from the
K and K ′ points. Arbitrarily close to these points, an accurate
calculation of the Berry curvature is not feasible. Nonetheless,
as discussed, the divergent curvature values at the Dirac points
are not essential to the emergence of topological states.

V. EDGE STATES

To study the edge states in our mechanical dice lattice
system, we assume hard walls along the zigzag edges to form
a ribbon structure and impose the periodic boundary condition
along the perpendicular direction. Of particular interest is
whether the restriction will induce a gap at the degenerate
points. We find that in most cases, a gap will indeed open due
to the confinement. However, gapless states localized at the
edge of the ribbon can arise [e.g., for the states at the bottom
of Figs. 2(a) and 2(f)].

Figures 4(a) and 4(b) show ribbon band structures corre-
sponding to the bulk band structures in Figs. 2(e) and 2(j),
respectively. It can be seen that the density of states is finite
along the bulk degenerate energy value, the behavior of which
is typical of gapless edge states in topologically nontrivial
materials [2–4,6,15,16]. These edge states have quite different
behaviors from those of the nearby bulk states. To check
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FIG. 4. Ribbon band structure and edge states in three- and
two-band degenerate configurations. (a) Ribbon band structure
corresponding to the three-band degenerate bulk configuration in
Fig. 2(e). (b) Ribbon band structure corresponding to the two-band
degenerate bulk configuration in Fig. 2(j). (c, d) Weight distributions
of the edge states along index i of mass points in one unit cell. The
corresponding bands are marked by the same color in (a, b). (e) A
schematic illustration of the polarization of the edge states.

whether the bands are localized on the edge, we calculate the
weight distribution of the wave function along the confinement
direction of one unit cell, as shown in Figs. 4(c) and 4(d). In
the simulation, there are 252 mass points within one unit cell
which are marked consecutively from one end to the other.
Figure 4(a) shows that there are three major bands with unique
behaviors (marked by red, cyan, and magenta). Figure 4(b)
shows the ribbon band structure with a two-band degeneracy
[with the corresponding bulk band structure indicated as the
bottom line in Fig. 2(j)]. We choose an arbitrary momentum
value at which the bands appear and plot the real space
distributions in Fig. 4(c), which indicate that these bands
indeed are associated with edge states. To verify the level
crossing phenomenon between the red and cyan bands, we
choose a momentum value before and after the crossing points
and find that the localization behavior does not change about
the crossing points, i.e., the red and cyan band edge states
are localized on different edges. A schematic illustration is
presented in Fig. 4(e). A magnification of the flatband at about
ω = √

3 in Fig. 4(a) reveals that there are in fact two degenerate
flatbands: one marked by cyan and the other by blue. The states
associated with the two degenerate bands are localized on the
same edge, i.e., the opposite side of the red and magenta edge
states. Such edge states arise for both η1 = 0 and η1 = 0.5
cases.

The gradient of the red edge states ensures the existence
of at least one conducting channel about the bulk degenerate
energy. As the conducting channels are located at the opposite
side of the nonconducting channels for the edge states, in the
physical space conduction occurs only along one side. From
Fig. 1, we see that there is no inversion symmetry along the
vertical direction in the general case where the two subsets of

springs are nonidentical, making this type of asymmetric edge
states possible. We also find that a level crossing behavior
can occur in a finite parameter region. For example, for
η1 = 0, an examination of the ribbon band structure reveals
a level crossing behavior for 1.41 < η2 < 1.67. For larger
values of η2, the red state becomes flat and coincides with
the blue band, leading to two edge states with the same
frequency but localized at different edges. For other highly
degenerate phases, the confinement effect will open a gap in
the ribbon band structure. However, edge states connecting the
projections of the K and K ′ valleys persist.

VI. CONCLUSION

For ideal graphene or graphenelike 2D materials with a pair
of Dirac cones connecting at a single point, the Berry curvature
is zero. As a result, such materials in the metallic phase
are incapable of generating nontrivial topological states. Is it
possible to have 2D semimetals with a finite Berry curvature?
Equivalently, is it possible for a 2D material to possess
topological quantum phases without a gap opening even in
the presence of symmetry breaking so that the quasiparticles
remain massless? This paper provides an affirmative answer
to this question.

We articulate a mechanical dice lattice system and analyze
its band structure. In our system, there is a natural inver-
sion symmetry breaking but the time-reversal symmetry is
preserved. We find both three-band and two-band conical-
like degeneracies and provide analytical insights into the
emergence of the associated degenerate points in the absence
of inversion symmetry. Due to the breaking of the inversion
symmetry, the Berry curvature in the momentum space is
generally finite, especially about the K and K ′ valleys, leading
to a topologically nontrivial band structure and, consequently,
to an anomalous valley Hall effect. As the degenerate points
remain to be degenerate (i.e., no gap opening) even in the
presence of an inversion symmetry breaking, the dice lattice
system is effectively a mechanical topological semimetal with
massless quasiparticles. We also study the confinement effect
and find gapless edge states at the degenerate energy. In certain
regions of the parameter space, between the projections of
the K and K ′ valleys, conducting edge channels associated
with a particular edge can arise while the opposite edge is
nonconducting. A direct extension of our work to the case of
rotating mechanical dice lattice would be worth pursuing, as
the rotation will break the time-reversal symmetry so that a
finite Chern number and topological protected edge states can
arise.

ACKNOWLEDGMENTS

The authors would like to acknowledge support from the
Vannevar Bush Faculty Fellowship program sponsored by the
Basic Research Office of the Assistant Secretary of Defense
for Research and Engineering and funded by the Office of
Naval Research through Grant No. N00014-16-1-2828. This
work was also supported by ONR under Grant No. N00014-
15-1-2405.

235159-6



MECHANICAL TOPOLOGICAL SEMIMETALS WITH . . . PHYSICAL REVIEW B 95, 235159 (2017)

APPENDIX

We present calculations of the band structure of our mechanical dice lattice. The starting point is Eqs. (2) and (3). Since our
focus is on the band structure about the K and K ′ points, we set the momentum to that of the K point to obtain six energy levels,
which depend on the parameters κ2, η1, and η2(κ1 = 1). By setting η1 = 0 and letting three of the six energy levels have the same
energy, we can obtain an expression of the Berry curvature for the three-band degenerate phase. The formula for the two-band
degenerate phase can be derived in a similar manner, with some specific value of η1. To proceed, we first expand the dynamic
matrix Eq. (3) about the K = [2π/(3a),2π/(

√
3a)] point and introduce (dkx,dky) through

kx = 2π

3a
+ dkx,ky = 2π√

3a
+ dky.

Neglecting higher-order terms of (dkx,dky), we have that the of-diagonal parts of the dynamic matrix are changed to

�ab(dkx,dky) =
(

3η1

4 − i
√

3(η1−4)
8 dky +

√
3(η1−4)

8 dkx i
3η1

4 − 3
√

3η1

8 dky + i
√

3η1

8 dkx

i
3η1

4 − 3
√

3η1

8 dky + i
√

3η1

8 dkx − 3η1

4 − i
√

3(3η1−4)
8 dky +

√
3(3η1−4)

8 dkx,

)

and

�bc(dkx,dky)

= κ2

(
i

3(i+√
3)η2

8 + (i
√

3+3)(η2−1)
4 dky + 2(

√
3−3i)+(3i+√

3)η2

8 dkx − 3(i+√
3)η2

8 + i
(3i+√

3)η2

8 dkx

− 3(i+√
3)η2

8 + i
(3i+√

3)η2

8 dkx −i
3(i+√

3)η2

8 − i (−3i+√
3)

4 dky + −2(3i−√
3)+(3i−3

√
3)η2

8 dkx

)
.

From the expressions of �ab and �bc, we see that each matrix element contains an O(1) term, which is proportional to the values
of η1 and η2, as well as O(dk) terms. Physically, �ab and �bc quantify the coupling between the nonequivalent mass points. As
a result, in the limit η1 = 0, the coupling between the mass points a and b is at most a first-order quantity. (In fact, the value η

controls the interplay between the longitudinal and transverse wave modes [23].) Note that, in a mechanical graphene system,
in the limit η = 0 there is no distinction between the longitudinal and transverse waves so that the system possesses a twofold
degenerate dispersion relation typical of the nearest-neighbor tight-binding graphene system. However, in our mechanical dice
lattice, even for η1 = 0, there is still coupling between the mass points (the blue and red points in Fig. 1) through the finite values
of κ2 and η2. As a result, we expect richer physical phenomena to arise in the dice lattice system than in the mechanical graphene
system. In fact, insofar as η2 �= 0, �bc will contribute an O(1) order coupling between the blue (b) and red (c) mass points. Note
that, setting κ2 = 0 reduces the mechanical dice lattice to a mechanical graphene system.

To calculate the Berry curvature about the K point, we need the Bloch wave functions, which is difficult to be calculated
analytically for 6 × 6 matrices. However, for η1 = 0, the influence of the mass point a on the mass points b,c can be neglected,
as �ab ≈ O(dk). We thus obtain a 4 × 4 reduced matrix:

�̃(dk) =
[
	1 + 	2 �bc(dk)

�
†
bc(dk) 	2

]
.

For this reduced dynamic matrix, analytical expressions for the eigenfunctions can be obtained from which the Berry curvature
can be calculated. Figure 3(g) shows the Berry curvature along ky = 2π/(

√
3a), where the parameters are κ2 = 3/2 and η2 = 1/2.

The analytic expression for the Berry curvature is

�(dkx) = τz

(
1.2 − 7.43dk2

x

)
,

where τz = 1(−1) for the K(K ′) point. Note that these analytic expressions of the Berry curvature hold only for momentum
values not in the immediate vicinities of the Dirac points.
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