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Anti-phase synchronization in microelectromechanical systems and effect of impulsive perturbations
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We show that anti-phase synchronization can emerge in a pair of electrically coupled micromechanical beams.
Under impulsive perturbation, desynchronization occurs, distorting the output of each beam. We derive a formula
for the relaxation rate and verify it numerically. We also find that the difference between the displacements of the
two beams, or the differential signal, is robustly immune to impulsive perturbation, implying that the system can
effectively counter external disturbances. This can have significant applications in the development of various
microscale devices, which we elaborate on using microelectromechanical resonators.
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I. INTRODUCTION

Synchronization is a universal phenomenon in a variety
of natural and engineering systems.1,2 In recent years, in-
terest in synchronization in micro- or nanoscale systems has
emerged,3–10 motivated by the potential that synchronization
can be exploited for significant applications in nanoscience
and nanotechnology. In this regard, phase locking in a pair of
mechanically coupled nanobeams was demonstrated.6 Quite
recently, the idea of using optical coupling to synchronize
micromechanical oscillators has been exploited9,10 for poten-
tial application in realizing massive optomechanical oscillator
arrays.11,12

In this paper, we articulate a class of electrically coupled,
micromechanical oscillator systems and show that anti-phase
synchronization can arise in such a system. Our system
consists of a pair of nearly identical micromechanical beams
driven by a differential electrical signal as shown in Fig. 1
where the traditional, extremely widely used SMS is also
shown for comparison. Let u+(x,t) and u−(x,t) be the
displacements of the two beams, respectively. The anti-phase
synchronization state13 is defined by u+(x,t) + u−(x,t) = 0.
We develop a realistic model, incorporating multiple physical
effects, such as beam bending, fluid-pressure forces, and
electrostatic force. One particularly interesting issue concerns
the consequence of impulsive perturbation which, in reality,
can be mechanical shocks, a sudden drop of the device, or
disturbances from extreme operational environments. When
the system is perturbed in such a fashion, synchronization
will be destroyed temporally, but the system can relax to the
anti-phase synchronous state after a certain amount of time. We
obtain a theoretical formula for the relaxation rate and verify
it numerically. An interesting finding is that the differential
displacement between the two beams, defined by ū(x,t) =
u+(x,t) − u−(x,t), depends on the electrical driving but is
extremely insensitive to impulsive perturbation, regardless of
whether anti-phase synchronization is achieved. This implies
that our electrically coupled, double-beam, or differential con-
figuration represents a novel class of microelectromechanical
(MEM) systems with superior capability to counter impulsive
perturbation. We note that developing effective strategies to
mitigate such perturbation in MEM systems is a problem of
tremendous engineering and technological interest.14–19 Thus,

our work and finding not only contribute to the basic nonlinear
dynamics of microscale systems, but also have the potential to
lead to effective shock-immune MEM systems for a variety of
significant, state-of-the-art technological applications.

In Sec. II, we describe the detailed physical model of our
coupled MEM system. In Sec. III, we analyze the relaxation
dynamics to anti-phase synchronization and argue that the
differential signal is robust against impulsive perturbation. In
Sec. IV, we present an application example to design robust
MEM resonators. A brief summary is presented in Sec. V.

II. MODEL OF AN ELECTRICALLY COUPLED
MEM SYSTEM

A physically detailed model of a pair of electrically
coupled MEM beams consists of four components: equations
of motion, electrostatic force equation, squeeze-film damping
formulation (fluid-pressure forces), and impulsive perturba-
tion. Without loss of generality, we consider the case of doubly
clamped MEM beams (similar considerations apply to other
MEM configurations, such as cantilevers or circular plates).

Equations of motion. Applying the classical Euler-
Bernoulli theory to both beams with constant cross-sectional
area, we obtain the following equation of motion:

ρA±
∂2u±
∂t2

+ EI±
∂4u±
∂x4

= FE
± + FA

± + FS
±, (1)

where both beams are along the x axis at rest, u±’s denote the
beam deflections in the z direction, ρ is the material density,
A± = w±δ± is the area (width × thickness; we assume w± ≡
w and δ± ≡ δ), and I± = wδ3/12 is the moment of inertia of
the two beams’ cross sections, FE

± is the electrostatic forces
per unit length, FA

± is the fluid-pressure forces, and FS
± is

the external impulsive forces acting on the beams. The fluid-
pressure forces are given by

|FA
± | =

∫ w/2

−w/2
|p±(x,y) − Pam|dy,

where p± is the interior air pressure acting on beams “+” and
“−,” respectively, and Pam is the ambient air pressure outside
the volume of the two parallel beams. When the squeeze-film
effect is present and if the beams are not at rest, we have
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FIG. 1. (Color online) (a) Traditional single movable structure
(SMS) in electrostatically actuated MEM systems where a single
micromovable electrode is suspended over a fixed electrode. A
voltage is applied between them. (b) Our scheme of a pair of parallel
movable electrodes where a differential voltage input signal is applied
to both beams.

p± �= Pam. In Eq. (1), we assume that the deflections of
the beams are small, a common situation for realistic MEM
devices. In this case, the residual stresses in the fixed beam
system can be neglected. The boundary conditions at the two
fixed ends of both beams are

u±(0,t) = u±(L,t) = 0,
(2)

∂u±(0,t)/∂t = ∂u±(L,t)/∂t = 0.

Electrostatic force. When the MEM system is in operation
so that the beams are bent, the capacitance of the differential
beam system depends on the deflection geometry of the beams
and so does the electrostatic force. The capacitance of the
differential MEM capacitors can be approximated by that
due to a number of small capacitors in parallel. Neglecting
deflection along the y direction, for a certain value of x and a
small length dx, the capacitance is given by

C(x) = ε0w dx

Z(x)
,

where Z(x) = Z0 + u+(x) − u−(x) is the gap distance be-
tween the two beams at position x, Z0 is the initial gap
between the two parallel beams, ε0 is the dielectric constant
of the medium, and nonhomogeneity in the charge distribution
has been neglected due to movement of the beams. The
potential energy associated with the small capacitance is
E(x) = C(x)V 2/2. The electrostatic forces per unit length
on the two beams are given by FE

± = (1/dx)[dE(x)/du±].
Because of the fringing-field effect in the parallel-plate
configuration, small corrections to the electrostatic forces on
the two beams are necessary,20 which can be modeled by
the following correctional coefficient to the force expressions:
(1 + 0.65Z/w). Taking this effect into account, the resulting
electrostatic forces can be expressed as

FE
+ = − ε0wV 2

2Z2(x)

[
1 + 0.65

Z(x)

w

]
= −FE

− . (3)

Fluid-pressure forces. Under the assumption that the
deflections of the two beams are small, the beam system can be

regarded as a series of moving pairs of plates of length dx and
gap Z(x). When the space in between a pair of moving plates is
filled with gas or fluid, a squeezed-film effect can arise.21,22 In
particular, when the plates move in the direction perpendicular
to the gas film, the following two phenomena can occur:
(1) The pressure inside the gas changes due to the plate motion,
and (2) gas can be either squeezed out or sucked in from the
edge of the plate surfaces. The pressure distribution in the gap
Z(x) can be modeled by the classical Reynolds equation,

12η
∂(pZ)

∂t
= ∇[(1 + 6kn)Z3p∇p], (4)

where p = p(x,y), η is the viscosity of the fluid, kn is
the Knudsen number given by kn = kbT /(2πPamd2Z), T is
the absolute temperature, and d is the collision diameter of the
fluid molecules. Under room temperature, the value of kn is
usually small and can be neglected. In addition, the pressure
gradient in the z direction is negligible. Equation (4), thus,
reduces to

12η
∂Z

∂t
= ∂

∂x

(
Z3 ∂p

∂x

)
+ ∂

∂y

(
Z3 ∂p

∂y

)
, (5)

which is linear in p so that the pressure can be replaced by the
difference between the internal pressure of the fluid and that of
the ambient p̃ = p − Pam. Applying the boundary condition
p̃ = 0 to the beam edges and using the assumption that the
pressure is a separable function of x and y, i.e., p̃(x,y,t) =
P̃ (x,t)(1 − 4y2/w2), we obtain

12η
∂Ẑ

∂t
= 2Ẑ2

(
Z0

L

)2
∂Ẑ

∂x̂

∂P̃

∂x̂
+ 2

3
Ẑ3

(
Z0

L

)2
∂2P̃

∂x̂2
− 8

Ẑ3

ŵ2
P̃ ,

(6)

where Z = Z(x,t) is assumed to be independent of y and
the following nondimensionalized quantities are used: x̂ =
x/L (L: beam length), Ẑ = Z/Z0, and ŵ = w/Z0. Since,
generally, we have Z0 � L for a doubly clamped MEM beam,
Eq. (6) can be further simplified by dropping terms on the order
of (Z0/L)2. The pressure can, thus, be obtained as P̃ (x,t) =
(3/2)(ηw2/Z3)(∂Z/∂t). Since the pressure gradient in the gas
film is assumed to be negligible, the fluid pressure on the
two capacitors is equal in magnitude [p+(x,y) = p−(x,y) =
p(x,y)], but the resulting forces are opposite to each other.
The two fluid-pressure forces per unit length FA

+ and FA
− are,

thus, given by

FA
+ =

∫ w/2

−w/2
[p+(x,y) − Pam]dy =

∫ w/2

−w/2
[p(x,y) − Pam]dy

=
∫ w/2

−w/2
p̃dy =

∫ w/2

−w/2
P̃ (x,t)

(
1 − 4y2

w2

)
dy = ηw3

Z3

∂Z

∂t
,

(7)

FA
− =

∫ w/2

−w/2
[Pam − p−(x,y)]dy

=
∫ w/2

−w/2
[Pam − p(x,y)]dy = −

∫ w/2

−w/2
p̃ dy

= −
∫ w/2

−w/2
P̃ (x,t)

(
1 − 4y2

w2

)
dy = −ηw3

Z3

∂Z

∂t
. (8)

144304-2



ANTI-PHASE SYNCHRONIZATION IN . . . PHYSICAL REVIEW B 87, 144304 (2013)

Force due to impulsive perturbation. In realistic MEM
devices, a mechanical shock load is transmitted from the
supports (e.g., package or wafer) to the microstructure. Due
to the small size of the MEM system, the forces can be
regarded equivalently as the distributed acceleration pulls over
the microstructure. The load on the two beams can be regarded
as identical due to their symmetry. The impulsive force per
unit length can, thus, be modeled as FS

+(x,t) = FS
−(x,t) =

αρwh(t), where α is the pulse amplitude and h(t) is the pulse
profile over time. To be concrete, we will use the rectangular
profile for impulsive force perturbation.

III. RELAXATION TO ANTI-PHASE SYNCHRONIZATION
AND ROBUSTNESS AGAINST IMPULSIVE

PERTURBATION

When impulsive perturbation is absent, the double-beam
MEM system exhibits an anti-phase synchronization state
defined by u+ + u− = 0. When such a perturbation is applied,
synchronization is destroyed. After the perturbation, the
system typically goes through a relaxation process towards
synchronization. The rate of relaxation is important and is
key to the performance of the MEM system in response to
impulsive perturbation. The leading damping force in the
device is that due to the squeeze-film damping, but since the
directions along which they act on the two beams are opposite
to each other, they have little effect on synchronization. As
a result, otherwise insignificant damping forces, such as the
linear viscous force of the moving beam and the thermal-elastic
damping force,23 will dominate the relaxation dynamics.
That is, these forces will be significant particularly near the
anti-phase synchronization manifold û where fluid forces are
approximately canceled. Taking into account the linear viscous
and thermal-elastic damping forces, we obtain the following
dynamical equation:

ρA
∂2u±
∂t2

− b
∂u±
∂t

+ EI
∂4u±
∂x4

= FA
± + FE

± + FS
±, (9)

where b is the damping coefficient. Focusing on the dynamical
variable û = u+ + u−, which characterizes the dynamics of
the beam system in the subspace transverse to the anti-phase
synchronization manifold, we get

ρA
∂2û

∂t2
− b

∂û

∂t
+ EI

∂4û

∂x4
= 2FS, (10)

which is the equation of motion of a single beam under a
mechanical load in a damping environment. From Eq. (10),
we can see that, when impulsive perturbations are present,
the anti-phase synchronization state is no longer a solution.
To calculate the relaxation rate, we set FS = 0 so that û = 0
is a solution of the system. Note that Eq. (10) has the form
of a single free-motion beam system under dissipation. The
relaxation rate at which û → 0 can then be measured as the
rate R(t) of the energy loss of a free-motion beam system
described by Eq. (10) for FS = 0. For solutions corresponding
to harmonic oscillations, since the two parallel beams have the
same resonant frequency, we can set û(x,t) = û0(x) exp (iωt),
where ω is complex, its real part Re(ω) gives the new
eigenfrequencies of the beam in the damping environment,
and the imaginary part Im(ω) characterizes attenuation of the
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FIG. 2. Energy-loss rate versus the damping coefficient where the
solid line represents the theoretical prediction Eq. (11) and the open
circles are numerical data.

oscillation, which is the energy-loss rate. Substituting this
form of û(x,t) into Eq. (10) for FS = 0 and collecting the
coefficients of exp (iωt), we get

EI (d4û0/dx4) − ibωû0 − ρAω2û0 = 0.

The normal modes of oscillation of the beam24 are described
by

û0(x) = C1 sin (qx) + C2 cos (qx) + C3 sinh (qx)

+C4 cosh (qx),

where C1–4 are the coefficients of different modes. A simple
substitution then gives EIq4 − ibω − ρAω2 = 0, which leads
to ω = (ib +

√
4ρAEIq4 − b)(2ρA). The energy-loss rate is

given by

R = 2 Im(ω) = b

ρA
. (11)

Figure 2 shows the simulation results of R from Eq. (10)
in comparison with the theoretical predictions Eq. (11). The
structural parameters are L = 80, w = 5, and δ = 1 μm. In
the numerical computation, a rectangular impulsive force
of strength a = 500 g is applied to the system from t = 0
to t = 0.1 s, and the decay rate of the peak amplitude of
the oscillation is measured: Re = −2 ln[û(t2)/û(t1)]/(t2 − t1),
where t1 and t2 (t2 > t1) are the occurrence times of the first
two peaks of û(t). We observe an excellent agreement between
theory and numerics.

After an impulsive perturbation, the more symmetrical the
system is, the faster û relaxes to 0, leading to more desirable
dynamics of the differential system. To enhance the relaxation
rate, one can change the design of the beam structure, e.g.,
by adjusting the cross-sectional area A, to make the decay
û(t) = û(t0) exp[−(R/2)(t − t0)] faster. It is, however, difficult
to control the damping parameter b. Consider, for example,
a MEM resonator, which is typically designed to work in
a low-pressure environment where b is near zero so as to
increase the signal-to-noise ratio. In such a case, when an
impulsive perturbation occurs, the anti-phase synchronization
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state and the desired motion of each microbeam will be
strongly perturbed within a certain time, leading to a significant
signal-integrity issue if the resonator was of the SMS type.
By the merit of our differential MEM scheme, the impulsive
perturbation will not affect the desired differential beam
motion, despite the lack of anti-phase synchronization.

We now present the general principle for applications of our
differential MEM system in countering impulsive perturbation.
To contrast, we will compare its performance against such
perturbation with that associated with the traditional SMS
MEM systems widely used in all kinds of modern technologies.
The basic observation is that the perturbation effects on the
two beams can cancel each other but not the electrical signals.
In particular, a closer examination of Eq. (1) and the force
expressions reveals that the two beams are, in fact, coupled
through the dynamical variable Z(x). Due to symmetry, the
electrostatic forces acting on them are equal in magnitude but
opposite in sign and, so, are the fluid-pressure forces. Another
distinctive feature of Eq. (1) is that, whereas, the whole system
is nonlinear, the nonlinearity originates solely from the force
terms FE

± and FA
± , which are valid when the deflections of the

beams are relatively small. The spatiotemporal evolution of
the differential signal ū = u+ − u− is, thus, governed by

ρA
∂2ū

∂t2
+ EI

∂4ū

∂x4
= 2

wεV 2

2(Z0 − ū)2

(
1 + 0.65

Z0 − ū

w

)

+ 2
ηw3

(Z0 − ū)3

∂ū

∂t
. (12)

The consequences of Eq. (12) are the following. First, ū(x,t)
represents a low-dimensional manifold of the differential
MEM system, meaning that the dynamics of ū are independent
of those of u±. Second, the underlying system is on the scale of
a micron, so any realistic mechanical disturbances to the two
beams can be regarded as identical. As a result, the impulsive
perturbation forces on the two beams do not appear in Eq. (12),
indicating that such forces effectively cancel each other in the
manifold. Third, the dynamics of ū(x,t) in the manifold has
the same form as that of the dynamics of a single electrostatic
MEM beam. This is so because the first and second terms on the
right-hand side of Eq. (12) are mathematically identical to two
times the corresponding terms for the electrostatic force and
the squeezed-film damping force in an SMS system. To make
up for the factor of 2 in these two forces, we can design the
system so that the fluid viscosity is increased by the same factor
and the required driving voltage is reduced by the factor of

√
2.

This way, the intrinsic dynamics of the MEM beam system are
retained, but the external impulsive disturbances are effectively
eliminated. Except for these parameter changes, there is no
need to alter the design principles with respect to specific
performance criteria. In addition, the required voltage can be
smaller as compared with that associated with the conventional
SMS beam-electrode configuration. This can help mitigate
common problems in applications of MEM switches, such as
a high-voltage drive.25

IV. APPLICATION EXAMPLE: MEM RESONATORS

To give a concrete application example, we focus on an
important class of devices: MEM resonators and carry out

systematic finite-element simulations. To be realistic, we take
into account two types of mismatches: damping and beam
thickness mismatches and compare the main performance
characteristics with those of an SMS MEM resonator.

In general, our differential MEM setting is compatible with
the widely used MEM capacitive-sensing principle,26,27 which
can be seen as follows. The traditional configuration of a
capacitive MEM actuator consists of a movable electrode and
a fixed electrode parallel to it. A voltage is applied between
the movable and the fixed electrodes, creating an electrostatic
force that tends to drag the movable electrode downwards. In
the differential setting shown in Fig. 1(b), the output signal
is taken as the relative displacement between the electrodes:
ū = u+ − u−, where u± are the displacements of the upper and
lower ones. The displacement signal from an oscillating beam
system can be sensed by some standard measurement circuit.28

In our design, for resonator applications, the two parallel
beams also act as a measurement device for converting relative
displacement into electric current. In particular, the oscillations
of the two beams effectively generate a time-varying capacitor,
the output current of which is given by

I = V̄dc

dC

dū

dū

dt
, (13)

where V̄dc is the dc bias voltage of the differential input, C(ū)
is the capacitance between the two beams, and dC/(dū) is the
change in the capacitance due to the beams’ movement. Since
dC/(dū) is deterministic, dū/dt can be measured from the
output charging or discharging current of the MEM capacitor
formed by the two beams.

A. Mismatch effects in a differential MEMS system

The basic underlying principle of our proposed differential-
beam scheme is to take advantage of the symmetry of the
system to cancel the effects of external disturbances, which
requires that the two beams be as identical as possible. A
perfect match in the beam characteristics is not possible in
realistic situations as uncertainties, such as manufacturing
tolerance, thermal expansion, irregular surface topography,
and material property variations, etc., are inevitable.29 Since
the two beams are close to each other, the mismatch caused by
thermal effect is insignificant. The main causes of mismatch
are various intrinsic structural defects. We analyze two main
mismatch mechanisms for our double-beam MEM system.

Mismatch in damping induced by the bottom gap. The
typical configuration of a differential MEM system is shown
in Fig. 3 where the two symmetrical structures are over-
lapped and are supported above the substrate by anchors.
Except for the damping effect induced by the gap between
the two movable structures (denoted as Z0), the gap between
the lower movable structure and the substrate (denoted as Zb)
can also induce squeeze-film damping to the lower structure.
Physically, this damping force can be expressed by22

FA
B = ηw3

(Zb + u−)3

∂(Zb + u−)

∂t
= ηw3

(Zb + u−)3

∂u−
∂t

. (14)

The force only affects the dynamics of beam − in Eq. (1),
which induces viscous force to the beam −. Our analysis
and computation reveal that this mismatched damping effect
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FIG. 3. (Color online) Schematic of the differential electrostatic
doubly clamped beams where Z0 is the gap between the two beams
and Zb is the gap between the lower beam and the bottom electrode.

can deteriorate the perturbation-resisting performance of
differential MEM switches.

Mismatch in thickness. In the lateral fabrication process,
to control the thickness of the deposited silicon or metal
film is difficult. Since, in the differential device shown in
Fig. 3, the two movable beams are deposited at different
layers, their thicknesses will always have errors with respect to
their designed values, leading to mismatches of the differential
beams’ dynamical properties. Here, the thickness mismatch is
defined as


δ = δ+ − δ−
2

. (15)

By considering the two mismatch effects discussed here, the
mismatched physical model for the differential device can be
modified as

ρA+
∂2u+
∂t2

+ EI+
∂4u+
∂x4

= FE
+ + FA

+ + FS
+,

(16)

ρA−
∂2u−
∂t2

+ EI−
∂4u−
∂x4

= FE
− + FA

− + FA
B + FS

−,

which will be used below for the performance analysis of a
differential MEM resonator.

B. Performance of a differential MEM resonator

The geometrical parameters of the system are as follows:
beam width w = 100 μm, length L = 800 μm, thickness
δ = 2 μm, initial gap Z0 = 2 μm, cross-sectional area A =
w × δ = 200 μm2, and moment of inertia I = wδ3/12 =
66.67 × 10−24 μm4. The material parameters of the beams
are as follows: Young’s modulus E = 169 GPa and density
ρ = 2231 kg/m3. To compensate the difference between the
outputs of our system and the conventional SMS system so
as to make a fair comparison, we set the air viscosity of our
system to be half that of the SMS system. The input voltage
should, however, be

√
2 times smaller in our case. Under these

settings, the performances of the two types of systems are
similar in the absence of any impulsive perturbation.

A basic requirement for a resonator is that the output signal
be sinusoidal with the same frequency as that of the input
signal (e.g., no harmonics). For the SMS system, we assume it
is under room temperature, so the air viscosity is η = ηroom =
1.82 × 10−5 kg/ms. The viscosity in our differential MEM
system is chosen to be η′ = η/2 = 0.91 × 10−5 kg/ms. We
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FIG. 4. (Color online) For our differential MEM system and
traditional SMS system, comparison of the effects of impulsive
perturbation on the device operation as MEM resonators where the
desirable output signal is sinusoidal with the same frequency as that
of the input signal. The behavior before the arrival of the first impulse
is initial transient resulted from the choice of the initial conditions in
the simulation.

consider the nonideal case where there is a 5% thickness
mismatch effect between the two beams and the bottom
gap is set to be Zb = 20 μm. The input voltage signal
consists of a dc bias Vdc and a small ac component: V (t) =
Vdc + Vac cos(2πf t), where Vac is the amplitude of the ac
driving and f is its frequency. Since the ac signal is small,
in the absence of impulsive perturbation, the output of the
MEM resonator should be a purely sinusoidal signal of the
same frequency. In the presence of such a perturbation,
however, the output of the SMS system will typically be
distorted.14 Results from both SMS and our system are shown
in Fig. 4 where the voltage amplitudes and the frequency
are Vdc = 2 V, Vac = 1 V (V̄dc = 2/

√
2 = √

2 V and V̄ac =
1/

√
2 V for a differential MEM system), and f = 1 KHz. In

the simulation, the impulsive perturbation consists of periodic
square pulses of magnitude a = 102 g and duration T/3, where
T = 1/f = 1 ms is the period of the ac input. One can see that,
as a result of the perturbation, a strong distortion is present in
the output of the SMS system, preventing it from functioning
properly as a resonator. However, in our system, the effects of
the perturbation on the two symmetrical beams are effectively
canceled, and the output is a faithful sinusoidal signal, which
is essential for the device to function as a resonator. This is,
thus, strong evidence that our differential MEM system can
serve as a perturbation-immune resonator.

V. CONCLUSION

To summarize, we have proposed and have investigated the
anti-phase synchronization dynamics of a class of microscale
systems consisting of two symmetrical electrostatic MEM
beams under a differential input voltage. Detailed physical
modeling and mathematical analysis indicate the existence of
a low-dimensional manifold of differential output, determined
by the dynamics of a single electrostatically actuated beam in
the absence of any perturbation. Dynamics in the manifold are
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immune to external perturbation, especially those of an im-
pulsive nature. Performance in terms of microscale resonators
against impulsive perturbation is demonstrated to be superior
in our system. Our differential MEM system not only is
interesting from the standpoint of basic physics and nonlinear
dynamics as it brings important phenomena, such as nonlinear
synchronization into microscale systems, but also has tremen-
dous application potential in the design of various kinds of
MEM devices that are super-resistant to external disturbances.

We remark that, whereas, synchronization in nonlinear
systems has been studied extensively and continues to
be an extremely active area of research, the majority of
the existing papers focused on systems of coupled low-
dimensional oscillators.2 The importance of synchronization
in physically realistic micro- or nanoscale systems has been
gradually recognized, and recent papers have suggested that
the phenomenon can be exploited for significant applications
in nanotechnology.3–10 Despite these papers, the phenomenon
of anti-phase synchronization, where two MEM beams os-
cillate in completely opposite phase with respect to each

other, had not been reported. In terms of basic science, due
to the differential system’s increased degrees of freedom,
by electrostatically driving the system into the nonlinear
domain,16 one effectively creates a paradigm to investigate
a variety of complex dynamical behaviors, such as phase
synchronization, chaos synchronization, and intermittency
in small-scale devices. From an application point of view,
complex nonlinear dynamical behaviors, such as anti-phase
synchronization studied in this paper, may possess a remark-
able degree of robustness against external perturbation. This
can be exploited for developing novel MEM systems with
superior anti-perturbation/disturbance capabilities.
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T. T. Heikkilä, and M. A. Sillanpää, Nat. Commun. 3, 987
(2012).

12A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller, Phys.
Rev. A 86, 033821 (2012).

13L.-Y. Cao and Y.-C. Lai, Phys. Rev. E 58, 382 (1998).

14M. I. Younis, R. Miles, and D. Jordy, J. Micromech. Microeng. 16,
2463 (2006).

15S. W. Yoon, N. Yazdi, N. C. Perkins, and K. Najafi, Sens. Actuators,
A 130-131, 166 (2006).

16S. K. De and N. R. Aluru, J. Microelectromech. Syst. 15, 355 (2006).
17M. I. Younis, D. Jordy, and J. M. Pitarresi, J. Microelectromech.

Syst. 16, 628 (2007).
18M. W. Weber, EP Patent No. 1,840,508, 2007.
19K. Najafi and J. Chae, U.S. Patent No. 6,938,484, 2005; S. Je,

F. Rivas, R. Diaz, J. Kwon, J. Kim, B. Bakkaloglu, S. Kiaei, and
J. Chae, IEEE Trans. Biomed. Circ. Sys. 3, 348 (2009).

20P. M. Osterberg and S. D. Senturia, J. Microelectromech. Syst. 6,
107 (1997).

21B. McCarthy, G. G. Adams, and N. E. McGruer,
J. Microelectromech. Syst. 11, 276 (2002).

22K. Park, Q. Chen, and Y.-C. Lai, Phys. Rev. E 77, 026210 (2008).
23S. K. De and N. R. Aluru, Phys. Rev. B 74, 144305 (2006).
24R. Lifshitz and M. L. Roukes, Phys. Rev. B 61, 5600 (2000).
25G. Rebeiz and J. Muldavin, IEEE Microw. Mag. 2, 59 (2001).
26E. S. Hung and S. D. Senturia, J. Microelectromech. Syst. 8, 280

(1999).
27M. I. Younis, E. M. Abdel-Rahman, and A. Nayfeh,

J. Microelectromech. Syst. 12, 672 (2003).
28F. D. Frank, D. Bannon III, J. R. John, R. Clark, C. T. C. Clark, and

T. C. Nguyen, J. Solid State Circuits 35, 512 (2000).
29G. T. A. Kovacs, Micromachined Transducers Sourcebook

(McGraw-Hill, New York, 1998).

144304-6

http://dx.doi.org/10.1063/1.1618363
http://dx.doi.org/10.1063/1.1618363
http://dx.doi.org/10.1038/nature04035
http://dx.doi.org/10.1038/nature04036
http://dx.doi.org/10.1038/nature04036
http://dx.doi.org/10.1126/science.1137307
http://dx.doi.org/10.1038/nnano.2006.208
http://dx.doi.org/10.1038/nnano.2011.180
http://dx.doi.org/10.1038/nnano.2011.180
http://dx.doi.org/10.1103/PhysRevE.85.066203
http://dx.doi.org/10.1103/PhysRevE.85.066203
http://dx.doi.org/10.1103/PhysRevLett.109.233906
http://dx.doi.org/10.1103/PhysRevLett.109.233906
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1103/PhysRevA.86.033821
http://dx.doi.org/10.1103/PhysRevA.86.033821
http://dx.doi.org/10.1103/PhysRevE.58.382
http://dx.doi.org/10.1088/0960-1317/16/11/030
http://dx.doi.org/10.1088/0960-1317/16/11/030
http://dx.doi.org/10.1016/j.sna.2005.12.032
http://dx.doi.org/10.1016/j.sna.2005.12.032
http://dx.doi.org/10.1109/JMEMS.2006.872227
http://dx.doi.org/10.1109/JMEMS.2007.896701
http://dx.doi.org/10.1109/JMEMS.2007.896701
http://dx.doi.org/10.1109/TBCAS.2009.2026429
http://dx.doi.org/10.1109/84.585788
http://dx.doi.org/10.1109/84.585788
http://dx.doi.org/10.1109/JMEMS.2002.1007406
http://dx.doi.org/10.1103/PhysRevE.77.026210
http://dx.doi.org/10.1103/PhysRevB.74.144305
http://dx.doi.org/10.1103/PhysRevB.61.5600
http://dx.doi.org/10.1109/6668.969936
http://dx.doi.org/10.1109/84.788632
http://dx.doi.org/10.1109/84.788632
http://dx.doi.org/10.1109/JMEMS.2003.818069
http://dx.doi.org/10.1109/4.839911



