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Abnormal electron paths induced by Klein tunneling in graphene quantum point contacts
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We study quantum transport in a general graphene system subject to external potential, a situation that can
be expected in all kinds of future graphene-based electronic devices with quantum dots and quantum point
contacts. We find that electrons tend to take on propagating paths due to Klein tunneling that have absolutely
no counterpart in nonrelativistic quantum systems. Strikingly, such abnormal quantum paths can lead to an
extreme type of fractal-like of conductance fluctuations, not seen previously in any quantum transport systems.
This phenomenon has profound implications to the development of graphene based devices that require stable
electronic properties.
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I. INTRODUCTION

When a free particle enters a region where there is an
external potential, which paths will the particle follow? In
classical physics, the possible paths are strictly confined to
regions where the energy of the particle is greater than the
potential energy. In nonrelativistic quantum mechanics, parti-
cle paths are more likely to be found in low-potential regions,
as there are propagating waves in regions where the particle
energy is greater than the potential energy, and evanescent
waves in regions otherwise. In relativistic quantum mechanics,
the phenomenon of Klein tunneling1 renders possible for the
particle to tunnel completely through a region even of higher
potential, and the strange paths depend sensitively on energy,
wave vector, the potential profile, and other parameters of the
system. In this article we find that in the transport through
graphene quantum point contacts (QPCs), the electrons follow
paths associated with high potential rather than those with
low potential, and this abnormal electron behavior leads to an
extreme type of conductance fluctuations, posing a potential
obstacle that must be overcome in developing graphene-based
electronic devices.

QPCs have been investigated extensively since the discov-
ery of conductance quantization at integer multiples of 2e2/h

in the GaAs/AlGaAs heterostructure, a two-dimensional
electron-gas (2DEG) system. QPC is usually built with narrow
constrictions in the 2DEG, where the opening is adjusted
by properly biased split gates. By controlling the depleting
gate voltage, the number of transmission modes through the
QPC can be adjusted, enabling continuous change in the QPC
conductance by one quantum at a time. Fundamentally, QPCs
provide a natural platform for studying few electron phe-
nomena. Practically, QPCs are an indispensable component
in all kinds of nanodevices to control the number of electron
transmission modes, with examples ranging from transport
in quantum dots, anomalous integer quantum Hall effects,2

single-charge,3 and individual electron-spin4 detection, single
photon detection,5 to quantum branched flows,6 and sensing of
nanomechanical oscillations.7 In all these situations governed

by nonrelativistic quantum mechanics, the conductance of the
QPC varies smoothly with some experimentally adjustable
parameter such as the depleting gate potential, apart from
a few isolated resonance peaks in certain experimental
settings.8,9

Since 2004 there has been a tremendous amount of
interest in graphene.10,11 Due to its peculiar honeycomb lattice
structure and the resulting sp2 bonding, graphene’s transport
bands arise from the pz orbitals normal to the plane and possess
a linear energy-momentum relation: E ∼ |�k|.12 As a result,
the quasiparticles are chiral, massless Dirac fermions obeying
relativistic quantum mechanics. A unique phenomenon in this
context, which finds no counterpart in nonrelativistic quantum
mechanics, is Klein tunneling (or Klein paradox), where an
electron can tunnel through a potential barrier of height larger
than its energy with probability one. An issue of both funda-
mental and practical importance concerns the manifestations
of this uniquely relativistic quantum phenomenon in graphene
systems. Since a QPC is effectively a transport system subject
to localized external potential, graphene QPCs provide an ideal
test bed for exploring the consequences of Klein tunneling.

A QPC in a graphene system can be realized by applying
local side- or back-gate potentials which deplete the electron
transmission13,14 or by geometrical nanoconstrictions.15 For
graphene QPC in the single-channel energy region, there exist
zero-conductance Fano resonances caused by backscattering
from the intervalley scattering as a result of the strong curvature
in the vicinity of the QPC center.14 Here we investigate
graphene QPCs formed by depleting potential gates. By com-
paring the transmission fluctuations and the local current flow
pattern, we find that, besides backscattering zero-conductance
dips, Klein tunneling is prevalent in electron transport through
graphene QPCs. Particularly, in the pinch-off regime, as
a parameter characterizing the tightness of the confining
potential changes, an extreme type of conductance fluctuations
arises. Note that enhanced conductance fluctuations have been
observed in disordered graphene systems, especially in the
case of long-range disorders. When the disorder potential
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varies on the atomic scale, due to the intervalley scattering
the conductance fluctuations are suppressed.16

II. THE QPC MODEL AND NUMERICAL METHODS

A QPC can be modeled by an external potential applied
to the nanoribbon, where the “tightness” of the potential
determines the degree of the confinement. A prototypical form
of the potential is6

V (x,y) = W exp (−x2/ξ 2) · y2, (1)

where x and y denote the parallel and lateral directions of the
ribbon, respectively. We choose ξ = 10a, a being the lattice
constant (a = 2.46 Å for graphene), and the parameter W

characterizes the “tightness” of the potential. By adjusting W ,
the total number of transmission modes through the QPC can
be controlled. The reasonable range to vary W is between
zero and t , where t is the nearest-neighbor hopping energy.
To calculate the electron flow paths and the conductance of
graphene QPC, we resort to the tight-binding framework. The
Hamiltonian is

Ĥ = −t
∑

|i〉〈j | +
∑

i

V (xi,yi)|i〉〈i|,

where the first summation is over all pairs of nearest-
neighboring atoms, and the second term describes the

depleting potential. The retarded (advanced) Green’s function
of the QPC is given by

Gr(a)(E) = [
E · I − H − �

r(a)
S (E) − �

r(a)
D (E)

]−1
,

where �
r(a)
S(D)(E) is the retarded (advanced) self-energy due to

the source (drain) of the QPC, and the coupling matrices are

�S(D)(E) = i
[
�r

S(D)(E) − �a
S(D)(E)

]
.

The transmission is given by

T (E) = Tr[�S(E)Gr (E)�D(E)Ga(E)],

and the conductance is obtained via the Landauer-Büttiker
formula.17 The local current per unit energy at the Fermi energy
between two neighboring sites i and j can be calculated by

Ji→j (E) = 4e

h
Im

[
HijC

n
ji(E)

]
, (2)

where Cn = Gr�SGa is the electron correlation function and
Hij is the corresponding matrix element in the tight-binding
Hamiltonian.17

III. RESULTS AND DISCUSSION

A. Abnormal electron paths

Figure 1 shows typical electron flow patterns through a
graphene QPC as W is increased (left column, from top to
bottom). For comparison, we have included the corresponding

FIG. 1. (Color online) Electron flow (x-component) patterns through graphene (left column) and nonrelativistic (right column) QPC for
different values of the parameter W . In each panel the current flow is normalized by the maximum value Jmax through the QPC. The conductance
(in unit of 2e2/h), W/t and Jmax are (a) 3.2464, 0.05, 0.8638; (b) 3.0107, 0.02, 0.2505; (c) 1.0172, 0.26, 0.6872; (d) 1.0113, 0.16, 0.2645;
(e) 0.0281, 0.64, 0.0049; and (f) 0.0111, 1, 0.0006, respectively. The Fermi energy for all cases is the same: EF /t = 0.8. The crosses in the
left panels indicate the regions where V ∼ 2EF .
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flow patterns for a nonrelativistic QPC (e.g., square lattice
structure for conventional semiconductor quantum dots) of the
same geometry (right column). For the nonrelativistic QPC,
the transport tends to occur mostly in the region where the
potential is minimum, and the electron flow pattern is smooth.6

However, for the graphene QPC, the transport appears highly
nonuniform. Surprisingly, for some values of W the electrons
tend to move along paths with higher local potentials. A
careful examination of the electron flows reveals that, in such
a case, the most favorable path has the potential energy that
is approximately twice of the Fermi energy, as indicated by
the paths marked by the crosses in the left column of Fig. 1.
This finding strongly suggests Klein tunneling as a plausible
mechanism for the observed highly localized electron flow
paths in the graphene QPC. The phenomenon is persistent for
various choices of the parameters W and ξ in the model (1).

B. The mechanism — Klein tunneling

Why do quasiparticles in the graphene choose the particular
Klein-tunneling path to travel through the QPC? A more
general question is what paths do quasiparticles take in a
graphene system consisting of regions under different external
potentials? In nonrelativistic quantum mechanics, particles
can tunnel through a potential barrier but the transmission
probability decreases exponentially with the height and/or
width of the barrier. However, when a relativistic quantum
particle approaches a potential barrier, situations can occur
where, for example, as the height of the barrier is increased,
the transmission probability can reach unity (corresponding to
zero reflection)—the Klein paradox.1 The occurrence of Klein
tunneling depends on a number of parameters in the system,
such as the height and the width of the potential barrier and
the incident angle of the particle. For a rectangular potential
barrier, the dependence of the transmission probability on
parameters can be obtained analytically.18–20 In the graphene
QPC system, when a relativistic quasiparticle approaches the
potential region, it may not follow the path corresponding the
minimal potential but can instead choose a path with higher
potential to pass through the QPC via the mechanism of Klein
tunneling.

To gain insight, we consider a simplified model of a square
potential barrier on a graphene ribbon, as shown in Fig. 2. For
fixed Fermi energy, the variation of the conductance versus
the potential height V is shown in Fig. 3. The results can be
understood by considering the number of transmitting modes
NT in the potential region: As the potential V is increased from
0, it squeezes out the electrons and there are fewer transmission
modes, leading to decreased conductance. The conductance
reaches minimum at V ∼ EF as NT is small. Due to the conical
spectrum of graphene, after crossing the Dirac point, NT (now
for the holes) increase again until V ∼ 2EF , where values
of NT inside (holes) and outside (electrons) the potential are
equal and the conductance reaches the maximum due to Klein
tunneling. As V is increased further, the conductance tends to
approximately constant values since NT inside the potential
region is still larger.

To further illustrate the peculiar electron flow pattern in
graphene QPC and its consequences on transport, we plot the
local current flow in the graphene lattice on top of the surface

FIG. 2. (Color online) (a) Illustration of Klein tunneling of
graphene quasiparticles. (b) Simplified potential profile, a square
potential barrier of height V along the direction of the ribbon.

of the confinement potential in Fig. 4. The current is uniformly
distributed in the y direction far from the QPC. As it approaches
the QPC region, it is squeezed to the middle by the confinement
potential. Then, as the current flows into the central region of
the QPC, it diminishes in its original x direction and diverges
to the sides: the current flows up the potential hill and reaches
the region V ∼ 2EF .20,21 Then it flows on the path of V ∼
2EF . As it reaches the boundary of the drain of the QPC, it
flows down the potential hill toward the middle valley, and
continues into the drain. The electrons thus choose not to go
through the region where the potential is minimum, but instead
follow the paths in regions of higher potential, as stipulated by
Klein tunneling. This uniquely relativistic quantum behavior
is determined by the chiralities of the quasiparticles.19
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FIG. 3. (Color online) Conductance G versus applied rectangular
potential height V for the graphene nanoribbon under different Fermi
energy EF /t = 0.8, 0.5, and 0.3. The width of the ribbon is 138a so
the a maximum number of allowed transmission modes is Nmode =
160, where a is the lattice constant. The size of the potential region
is 20a.
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FIG. 4. (Color online) A direct demonstration of Klein tunneling in graphene QPC: three-dimensional view of current flow with respect to
the potential profile of the QPC. The sizes of the arrows indicate the values of the current flow. The Fermi energy is EF = 0.8. Inset: solid line
is the fractal-like conductance fluctuations of the graphene QPC as a result of Klein tunneling; dashed line is the smooth conductance variation
in the corresponding nonrelativistic QPC.

C. Fractal-like conductance fluctuations

Note that, due to the sensitive dependence of Klein
tunneling on a number of physical factors, the matching
condition between the V ∼ 2EF and V ∼ 0 regions to form
a steady flow depends sensitively on the energy and external-
potential parameters in various devices.19,20 As a consequence,
a small change in the potential parameter [Eq. (1)] has a finite
probability to open up a channel for the tunneling, leading to
a sudden increase in the conductance. Overall, as the potential
parameter changes, the QPC conductance exhibits extremely
wild, fractal-like fluctuations, as shown in the inset of Fig. 4.
To contrast, we have also calculated the QPC conductance but
for a conventional semiconductor 2DEG system subject to the
same depleting-gate potential, as shown by the dashed smooth
curve in the inset of Fig. 4.

Magnifications of some portion of the fluctuation pattern
in the inset of Fig. 4 reveal qualitatively the same behavior,
indicating fractal-like characteristics. To demonstrate that
the fluctuations indeed occur on a hierarchy of scales and
to quantify the fractal-like fluctuation pattern, we use the
uncertainty algorithm.22 Specifically, we first set a small
perturbation ε to the parameter W and calculate the conduc-
tances at W and W + ε. If |G(W + ε) − G(W )| > δ, where
δ is a proper threshold, this value of W is referred to as
ε-uncertain as the perturbation can lead to a significantly
different value of transmission. For a large number of randomly
chosen parameter values, we determine the fraction f (ε) of
the uncertain parameter values. If strong fluctuations in the
transmission occur across many scales, the fraction f (ε) scales
with ε as f (ε) ∼ εα , where 0 � α � 1 is the uncertainty

exponent.22 For the fluctuation pattern in the inset of Fig. 4,
we observe that the algebraic scaling of f (ε) extends over
two orders of magnitude and the uncertainty exponent is
α ≈ 0.16, suggesting the existence of fractal-like fluctuations
in the transmission of QPC over a hierarchy of scales.23

In previous studies of fractal conductance fluctuations, the
phenomenon generally originates from the heterogeneous
dynamical structures of the quantum ballistic cavities,24 while
the fractal-like fluctuations reported here are mainly due to
the sensitive dependence of the tunneling path on the control
parameters. One implication is that the QPC conductance
in graphene-based systems can depend sensitively on the
detailed physical and geometric properties of the confinement,
which may be undesirable in applications where stable QPC
conductances are needed.

IV. CONCLUSION

In summary, we have investigated transport through
graphene QPCs and obtained direct evidence of “strange”
electron paths as determined by Klein tunneling in relativistic
quantum mechanics. As a consequence, the low-temperature
conductance of the graphene QPC exhibits an extreme-type of,
fractal like fluctuations. These phenomena find no counterparts
in conventional 2DEG systems, and they may have funda-
mental implications to the stability of future graphene-based
electronic devices. A paradigmatic system would consist of
a number of quantum dots and QPCs, and control gates
are properly biased to effectively open or pinch off the
conduction modes. The presence of fractal-like conductance
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fluctuations may pose interesting challenges to the operation
of such devices. As an example, integrated graphene devices
subject to some kind of external potential would be one
such class of systems and it will become a topic of high
interest.
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