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Detecting a weak physical signal immersed in overwhelming noises entails separating the two, a task
for which machine learning is naturally suited. In principle, such a signal is generated by a nonlinear
dynamical system of intrinsically high dimension for which a mathematical model is not available, ren-
dering unsuitable traditional linear or nonlinear state-estimation methods that require an accurate system
model (e.g., extended Kalman filters). We exploit the architectures of reservoir computing and feed-
forward neural networks (FNNs) with time-delayed inputs to solve the weak-signal-detection problem.
As a prototypical example, we apply the machine-learning schemes to Earth’s magnetic anomaly field-
based navigation. In particular, the time series are collected from the interior of the cockpit of a flying
aircraft during different maneuvering phases, where the overwhelmingly strong noise background is the
result of other components of Earth’s magnetic field and the fields generated by the electronic devices in
the cockpit. We demonstrate that, when combined with the traditional Tolles-Lawson model for Earth’s
magnetic field, the articulated machine-learning schemes are effective for accurately detecting the weak
anomaly field from the noisy time series. The schemes can be applied to detecting weak signals in other

domains of science and engineering.
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I. INTRODUCTION

Detecting a weak physical signal from strong noises
is a challenging problem in many applications. Take, for
example, modern navigation based on the Global Position-
ing System (GPS). The GPS signals, due to their weak
intensity and the need to travel through vast distances,
are vulnerable to external interference such as jamming
and spoofing [1]. Because of the fragility of GPS, there
has been some recent interest in developing navigational
systems as alternatives to the GPS. A promising idea is
to exploit Earth’s magnetic fields as a means to detect
the instantaneous locations of a moving object, e.g., an
aircraft [2,3]. The underlying physical principle is that
the intensity of the magnetic field exuding from Earth’s
surface depends on the location as characterized by the
magnetic anomaly maps. Magnetic sensors or magnetome-
ters attached to different parts of an aircraft could then be
used to detect the strength of the magnetic field, thereby
providing the locations of the airplane in reference to the
magnetic anomaly maps. A great difficulty is that Earth’s
anomaly field is weak and the magnetic signals collected
by the magnetometers are noisy. Compounding this dif-
ficulty is the various types of electronic equipment and
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devices embedded in the cockpit, which generate all kinds
of electromagnetic noises that cannot interfere only with,
but also overwhelm the desired magnetic signal. For the
idea of magnetic navigation to be feasible, to develop
effective schemes to mitigate and remove strong noise so
as to extract the weak magnetic anomaly signal is essen-
tial. We note that, for magnetic signals collected from the
interior of the cockpit of an airplane, jamming is usually
not of concern because there is no need to send the signals
through a large distance.

The need to develop effective methods to remove “noisy
magnetic fields” to detect the real magnetic anomaly sig-
nal can be further justified, as follows. The Tolles-Lawson
(TL) model [4—6] provides a means to isolate the air-
craft magnetic field so that it can be removed from the
total magnetic field, ideally yielding only Earth’s magnetic
anomaly field that can be exploited for navigation. This
process is based on examining the permanent, induced, and
eddy current aircraft magnetic fields and using band-pass
filtered measurements from an additional magnetometer
to remove these fields. However, this model works only
when the magnetic field from the aircraft is weak enough
relative to that from the Earth at the sensor. One way
to weaken the disturbing magnetic fields is to place the
magnetometer onto the tail stinger of the aircraft, but
this may not be practical. Alternatively, the magnetometer
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can be placed inside the cockpit. The difficulty is then
that the magnetometer is now close to multiple magnetic
interference sources within the aircraft. A challenge is to
detect the real magnetic anomaly signal from the noisy
signals.

In this paper, we develop a general machine-learning
framework to address the problem of detecting extraordi-
narily weak electromagnetic signals from an overwhelm-
ingly strong noisy environment. The basic principle under-
lying our work is that noise mitigation to detect the
magnetic anomaly signal can be viewed as a nonlinear
signal-filtering problem that can be solved by employ-
ing modern machine learning. The two distinct features
of Earth’s magnetic anomaly signal are its weak strength
and vulnerability to strong interference such as in-band and
overwhelming noises. A suitably trained neural machine
with features of the desired signal would view the dis-
turbances, e.g., cockpit noises, as undesired and remove
them. The real data used in our work are from the Open
Call for developing machine-learning approaches to signal
enhancement for magnetic navigation (MagNav) Chal-
lenge organized in 2020 by the Air Force-MIT Artificial
Intelligence Accelerator, where the objective was to use
magnetometer readings recorded from within a cockpit
and to remove the aircraft magnetic noise to yield a clean
magnetic anomaly signal [7].

How to select a suitable machine-learning architecture
to detect weak signals from strong noises? In this paper, we
study two machine-learning schemes: reservoir computing
and time-delayed feed-forward neural networks (FNNs),
for the following reasons. Consider again the magnetic
navigation problem. The magnetic field signal detected
by a flying aircraft can effectively be regarded as a time
series from a continuous-time nonlinear dynamical system.
To detect such a signal from a noisy background based
on machine learning, the neural networks should possess
certain memory capacity. The traditional multilayer per-
ceptrons (MLPs) [8] do not have memories, but recurrent
neural networks do. Moreover, because of the nature of
the nonlinear signal prediction and classification, reservoir
computing [9—11], a class of recurrent neural networks,
may be suited. Further justification comes from the fact
that there have been significant recent efforts establishing
reservoir computing as a powerful paradigm for chaotic
time series and signal prediction [12-32]. For example,
reservoir computing has been demonstrated to be effective
at distinguishing and separating characteristically different
chaotic signals [15,31,33]. As an alternative to reservoir
computing, FNNs with time-delayed inputs, the so-called
“next-generation reservoir computing” [29,30,34] is also
a viable solution, which has a memory capacity and
low computational cost. Combining each of the machine-
learning methods with the standard Tolles-Lawson model,
we show that the magnetic anomaly signal hidden in strong
noises can be detected with high accuracy. Our success

represents a necessary step forward in the development of
magnetic-anomaly-based navigation.

In Sec. 11, we provide a brief overview of the physics
background of magnetic-anomaly-based navigation and
existing signal-processing methods. The Tolles-Lawson
(TL) model for magnetic calibration, reservoir comput-
ing, and time-delayed FNN-based machine-learning archi-
tectures, as well as a data description are presented in
Sec. III. Testing results with the MagNav Challenge data
are demonstrated in Sec. IV and the detection perfor-
mance of reservoir computing and time-delayed FNNs are
compared. A discussion and potential future studies are
presented in Sec. V.

I1. PHYSICS OF MAGNETIC ANOMALY
NAVIGATION AND CURRENT
SIGNAL-PROCESSING METHODOLOGIES

The total magnetic field of the Earth, as schematically
illustrated in Fig. 1, is a linear combination of several
fields, each with a distinct physical origin. The dominant
source is the core field. The north direction to which a com-
pass points is almost entirely due to the core field whose
magnitude ranges from 20 to 60 mT. The anomaly field
with the magnitude of about 100 nT is the second source
of the geomagnetic field, which is due to the permanent or
induced magnetization of the rocks in Earth’s crust. The
strength of the anomaly field depends on the location, pro-
viding the possibility of exploiting this field for positioning

FIG. 1. Earth’s magnetic field simulated in a period of normal
polarity between reversals. Shown are the magnetic field lines,
blue when the field points towards the center and yellow when
pointing away [35] (from NASA image data sets in the public
domain that are not subject to copyright restriction).
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and navigation. When collected from, e.g., an airplane, the
anomaly field is effectively a time-series signal. Whereas
both the core and anomaly fields are generated inside the
Earth, the third source is the temporal variations gener-
ated externally due to the field contributions from the
ionosphere, the magnetosphere, and the coupling currents
between the two. Usually, the magnitude of this third field
is 10 times smaller than the anomaly field [36].

The magnetic anomaly field is a robust, accessible, and
reliable source of information that can be used for posi-
tioning. The fact that GPS signals are not accessible every-
where and are vulnerable to jamming [37] highlights the
relevance of developing magnetic-field-based navigation.
This is usually referred to as Global Navigation Satellite
System (GNSS) denied environments, examples of which
include indoor environments (e.g., underground bunkers)
and underwater (e.g., submarines) [38—40]. Magnetic-
field-aided navigation is passive and, because the strength
of a magnetic field decreases with the inverse cubic power
of the distance, it is practically impossible to jam a
magnetic-field-based navigation device from a distance
by using another magnetic field [41]. In some applica-
tions, magnetic field measurements gathered from an array
of magnetometers are incorporated into Inertial Naviga-
tion Systems (INS) to correct the drifting error, resu-
Iting in more reliable and robust navigation [38,42—44].
Magnetic aided navigation can serve as a reliable backup
plan in situations where GPS is denied [45]. The present
positioning errors of magnetic navigation achieved based
on actual flight test data are about 10 m, which are
larger than the GPS errors. The accuracy demonstrated
in Ref. [45] was achieved by leveraging only passive
sensors, providing support for the idea that Earth’s mag-
netic field may be a viable approach for future GPS
backup and alternative positioning systems for aircraft in
flight. A significant challenge is that the magnetic anomaly
field is weak [46]. As a result, navigation based on the
anomaly signal is extremely vulnerable to external mag-
netic fields, e.g., those from the devices operating inside
the aircraft. A well-defined signal-processing algorithm
that detects the magnetic anomaly signals by removing
the disturbance signals is needed for realizing magnetic
navigation.

Our development of a machine-learning-based method
to detect a weak physical signal from overwhelming noises
is based on the following considerations. The process
of employing a stochastic process, e.g., the measurement
process, to estimate another stochastic process, e.g., the
signal process, has been a fundamental problem in sig-
nal processing. Typically, a filter is a device that removes
unwanted components from a signal. A neural filter is a
neural network trained with simulated data or experimental
data to perform recursive processing. Since neural filtering
is a data-driven approach, no assumptions such as those
about the specific dynamics, distribution, or noise type

are required. A properly trained neural network carries
the most “informative” statistics in its dynamical state
and approximates the optimal filtering performance to any
accuracy [47]. Recursive neural-network-based filtering
is a measurement process to estimate a signal process
and used in applications where the range of the mea-
surement expands in time or is too large for recurrent
neural networks to handle for the required filtering resolu-
tion [48]. While recursive neural networks are effectively
hierarchical networks, recurrent neural filters or recurrent
autoencoder architectures that learn distinct representa-
tions for each Bayesian filtering step, captured by a series
of encoders and decoders [49], are mainly used for sequen-
tial inputs where time is the main factor differentiating the
components. In general, neural filters, which can be viewed
as the extension of classical linear adaptive filters to deal
with nonlinear modeling tasks [50], perform better than
linear methods in dealing with stationary or nonstationary
noise. In addition, neural filters are more computationally
efficient and perform better [48,51] compared to extended
Kalman filters [52—56]. In fact, reservoir computing can
also be used as a filter [57,58].

II1. DATA AND METHODS

A. Tolles-Lawson (TL) model for magnetic calibration

A challenge with magnetic navigation is that one can
only measure the total magnetic field, which has several
different components with magnitude much larger than the
anomaly field needed for positioning. In particular, the
total measured field B,, can be written as [58]

I
oo

Bm et Baircraft
c

ore T Eanomaly + étv + Eaircraﬁ: (1)

I
ool

where B, is Earth’s magnetic field that consists of three
components: the core field Bore, the anomaly field Banomaty,
and temporally varying fields E’tv, while Eaircmﬁ represents
the total field generated from the aircraft itself. The goal is
to filter out all the other components and keep only the
anomaly field. In this regard, it is relatively straightfor-
ward to remove Earth’s field components écore and By,. In
particular, the core field B o can be calculated with the
International Geomagnetic Reference Field (IGRF) coeffi-
cients, and the temporal variation field Etv, which is mostly
from the diurnal variations and space weather, can largely
be removed using ground-based reference measurements
[59]. It is thus the platform field Byjrcrare from the air-
craft that becomes the focus_of the problem. The goal
of our work is to eliminate Bjjcrart from measured data
using a combination of signal processing and machine
learning.
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FIG. 2. Data-collection scheme and representative time series
of the measured magnetic field. (a) Positions of the magnetome-
ters on the aircraft. One magnetometer (Mag 1) is placed at the
tail stinger to reduce noises from the plane. After calibration
using the TL model, the signal from Mag 1 is regarded as the
Earth’s real field B, and is used as the training target. Measure-
ments from the other four magnetometers, together with various
other signals, are used as inputs of the filtering problem. (b),(c)
Examples of the maps of the magnetic fields around the data-
gathering flights. The units are nT. Subtracting this field by the
core field calculated from IGRF yields the anomaly field. (d)
Magnetic signals measured by different magnetometers in the
plane.

The data sets used in our study (from the signal enhance-
ment for magnetic navigation challenge problem [60])
consist of the time series of the measured magnetic field
from five flights, each containing several segments (or
lines) with 65 features measured in real time during each
flight. There are in total five magnetometers placed on
the aircraft, with one of them placed at the attached tail
stinger, as shown in Fig. 2(a). After calibration by the
Tolles-Lawson model (described below), the reading of the
magnetometer at the tail stinger is considered to be the

real value of Earth’s field E’e, which serves as the train-
ing target in our supervised learning problem. The target
signal is denoted as Bsgr. There are four other magne-
tometers placed at different positions in the cabin, as shown
in Fig. 2(a), and 61 other various features recorded at the
same time by some current and voltage sensors and read-
ings from the INS system. (More details of these data can
be found in Ref. [60].) Two examples of the magnetic field
map in the flight region are shown in Figs. 2(b) and 2(c),
and examples of the magnetic signals measured by differ-
ent magnetometers in the plane are shown in Fig. 2(d).
For the three additional field components in Eq. (1) other
than Bynomaly, the two Earth-field components Beore and By
are already given in the data sets. The goal is thus to use
the readings of these four magnetometers, together with
other data features, to estimate the Earth’s real field B,
through minimizing some proper root-mean-square errors
(Erms)-

The TL model [58,61,62] is a classic method for mag-
netic calibration. It models the magnetic field generated by
the body of the aircraft as three magnetic moments: the per-
manent, the induced, and the eddy-current moments. The
permanent magnetic moment represents the nearly con-
stant magnetic moment of the entire aircraft. The induced
magnetic moment is the magnetic response of the mag-
netically susceptible materials in the aircraft to Earth’s
magnetic field. The eddy-current moment is caused by the
temporal variations of the Earth’s magnetic field due to
the motion of the aircraft. The TL correction terms can be
expressed as

BrL = Bperm + Bind + Beady

X1 X4 X5 Xg
ST S =r >
= Bm X2 + |Bm|Bm Xs X7 Xg Bm
X3 X6 X3 X9

I
+ |BulB,, | x13 x4 X5
X16  X17  X18

oo

s )

where x; to x5 are 18 constant coefficients that can be cal-
culated [60] after a calibration flight [58,61,62]. Earth’s
field B, calculated by the TL model can then be cor-
rected by subtracting these terms from the total measured
field ém:

|§e, 1Ll = |Bul — Brv. 3)

The TL model works well only when the flying aircraft is
in a “magnetically quiet” mode and all the magnetometer
measurements are performed on a tail stinger outside the
cabin. During a normal flight mode without an additional
tail stinger hanging outside of the plane, the TL model
is not effective for magnetic calibration. In our work, we
use the TL model only as a first-step processing to obtain
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the ground truth and exploit machine-learning methods to
perform further corrections.

B. Machine-learning methods
1. Reservoir computing

The basic structure of a reservoir computer is shown in
Fig. 3. The matrix W, maps the input signal u(¢) into a
high-dimensional state vector 7(f) of the neural network in
the hidden layer. The state r(f) is updated according to the
input u(#) and the state r(t — Af) at the previous time step,
leading to the recurrent structure. The output matrix Wy,
maps r(?) into the output layer to generate the output signal
v(?). In our problem of detecting the magnetic anomaly sig-
nal, v(#) gives the (normalized) estimation of the anomaly
field Banomaly-

For reservoir computing, the intrinsic recurrent structure
provides a basis to deal with the temporal dependency in
the input time series. When the size of the hidden-layer net-
work is adequately large and with optimal hyperparameter
values determined by the input data through, e.g., Bayesian
optimization, it has the ability to remove the noise from the
multiple input features and yield a clean target anomaly
field. The intrinsic memory capacity embedded in the
recurrent dynamics of the hidden layer provides histor-
ical information necessary for accurate filtering output.
Because a trained reservoir computer is a self-evolving
nonlinear dynamical system, transient behaviors can arise,
during which the prediction of the actual field can be quite
inaccurate. It is thus necessary to remove the transients.
More details about reservoir computing can be found in
Appendix A 1, and the issue of transients is addressed in
Appendix B.

Input layer Hidden layer Output layer
u(t) r(t) v(t)
FIG. 3. Reservoir computing structure. A reservoir computer

is composed of three layers: the input, the hidden layer, and the
output. The input, state vector of the hidden-layer neural net-
work, and the output are u(?), r(¢), and v(¢), respectively. The
matrices Wi, A, and Wy, represent the input weights, the net-
work structure, and the output weights. The weights in #j, and
A are fixed prior to training. The output matrix We, is deter-
mined by training through a linear regression. The filtered signal
is v(?).

Input layer Hidden layer Output layer
u(t) U(t)
u(t—1)
u(t — mr)

FIG. 4. The architecture of the proposed feed-forward neu-
ral network with time-delayed inputs for detecting the Earth’s
anomaly magnetic field for navigation. The architecture includes
three main components: the input layer, two hidden layers, and
the output layer, where u(?), u(t — 7), . .., u(t — mt) are the real
time and historical signal with t being the time delay and m being
the embedding dimension. The filtered signal is v(?).

2. Feed-forward neural networks with time-delayed

inputs

We use artificial neural networks to process the selected
features associated with the magnetic measurements to
estimate the anomaly field. As described in Sec. I, we
exploit a class of feed-forward neural networks with time-
delayed inputs [29,30] as the machine-learning architec-
ture for detecting the magnetic anomaly field, as shown
in Fig. 4. Different from recurrent neural networks, the
nodes in a FNN do not form cycles so it cannot form mem-
ory using its own internal states. To embed the memory
information, we use the present and historical data u(t —
7),...,u(t —mt) as the inputs to the network, where u(¢)
includes the magnetic field signals, fluxgate, and noises
recorded by different sensors.

The reasons that we choose FNNs with time-delayed
inputs are as follows. Because the noises contain both
high-frequency and low-frequency components, it is diffi-
cult to use conventional filtering methods to remove these
noises. Time-delayed inputs are introduced to address this
critical issue, where the estimation of the anomaly field for
a time step ¢ is determined not only by the measured sig-
nals at that time step but also by the data from the recent
past. We choose FNNs with time-delayed inputs, where the
intrinsic temporal dependencies in the input magnetic field
data are accounted for by imposing time delays.

A FNN usually includes several hidden layers, each with
dozens of nodes. An activation function is used to map
the state from one hidden layer to the next in a nonlinear
fashion.
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We use the following hyperbolic tangent sigmoid
(tansig(xy)) as the activation function that compresses the
output into the range [—1, 1]:

2

tansig(xtn) = 1+ e 2

-1 “4)

for all layers. The learning technique we choose for the
FNN is scaled conjugate gradient backpropagation (SCG)
[63]. (Details of FNN and this algorithm and FNN can be
found in Appendix A 2.)

C. Data description

For all trials and features of the entire dataset, we use
z-score normalization [64] to preprocess the time series
so that they have zero mean and unit standard deviation.
In particular, if the data x, in each line has mean X, and
standard deviation S;, the z-score normalization is given
by z = (x; — x.)/S.. When training the machine-learning
models, we randomize the training length to accommodate
realistic situations where the collected data sets can have
varying lengths. Specifically, the training, validation, and
testing length are chosen to be 60%, 20%, and 20% of the
total length of the data line. For validation and testing, we
use Eins to measure the performance:

T

1
Ems(.9) = |23 [y —30]. (%)

=1

where y(¢) and p(¢) are the real and predicted signals,
respectively. The Ess are also averaged over different
training length.

The sampling rate of the data, the average number of
samples obtained in 1 s, is f; = 10 Hz, so the time interval
between two adjacent data points is df = 0.1 s. The flight
data lines do not have the same length, where the average
length is 921 s with the standard deviation 1395 s. The
average training, validation, and testing lengths are 553,
184, and 184 s, respectively. More details about the data
can be found in Appendix C.

IV. RESULTS

We train the machine-learning models on a computer
with one RTX 4000 NVIDIA GPU, using MATLAB. For
one flight line, the average training, validation, and testing
lengths are 5530, 1840, and 1840 data points, respectively.
Since we have 45 lines of flight data, the total training, vali-
dation, and testing lengths are 248 850, 82 800, and 82 800,
respectively.

For this challenging task of nonlinear filtering of weak
signals to be successful, it is essential that some historical
information from the measurements is incorporated into
the neural-network architecture. For reservoir computing,

once the optimal hyperparameter values are determined
through Bayesian optimization, it is computationally effi-
cient provided that the size of the recurrent network in
the hidden layer is reasonable (e.g., fewer than 1000
nodes). The time-delayed FNNs, by design, are compu-
tationally efficient. As mentioned, both machine-learning
architectures intrinsically possess a memory capacity:
through recurrent dynamics in reservoir computing and
time-delayed inputs in FNN. Here we present results from
reservoir computing, followed by those from time-delayed
FNNGs.

A. Filtering by reservoir computing

We reconstruct a reservoir computer by using a ran-
dom network of size n = 500 in the hidden layer (a brief
description of the reservoir computing architecture can
be found in Appendix A 1). The hyperparameter values
obtained through Bayesian optimization are p = 0.29, b =
0.75, « = 0.47, B =102, p = 0.78, and bias = 0.32.
The dimension of the input signal u(?) is 3 + 15 = 18,
where three components are the measurements from Mag,,
Mag,, and Mag; [Fig. 2(a)], and the other 15 components
are time series of various features with relative significance
ranking calculated by a greedy algorithm, as displayed in
Table I. The output dimension is one, corresponding to the
anomaly field signal to be detected.

We train and test 45 lines of flight data. Results from two
representative lines: line numbers 1004.4015 and 1006.07,
are shown in Fig. 5. These two lines of data are from the
Perth survey flown at 800 m within Eastern Ontario and the
transit and descent from 3048 to 400 m [7]. The reservoir
computer-predicted magnetic anomaly signals are shown
in Figs. 5(a) and 5(b), together with the ground truth. The
differences between the predicted and true signals are not
apparent, and the overall E.,s is about 6.0 nT. However,

TABLE I. Significance ranking of the features selected by a
greedy algorithm.

Features Units Description

flux_c_t nT Flux C: fluxgate total
cur_ac_lo A Current sensor: air conditioner fan low
ins_alt m INS computed elevation

flux_c z nT Flux C: fluxgate z axis

flux_a t nT Flux A: fluxgate total

vol_back_p A%
vol_back_n A\

Voltage sensor: resolver board(+)
Voltage sensor: resolver board(—)

ins_lat rad INS computed latitude
cur_com_1 A Current sensor: aircraft radio 1
flux_c_y nT Flux C: fluxgate y axis
vol_acpwr A% Voltage sensor: aircraft power
ins_wander rad INS computed wander angle
cur_flap A Current sensor: flap motor
vol_bat_2 A Current sensor: battery 2
ins_roll deg INS computed aircraft roll
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FIG. 5. Reservoir-computing-based detection of anomaly
magnetic field. (a),(b) The real and predicted signals for lines
1004.4015 and 1006.07. (c),(d) The errors between the real and
predicted signals. Note that on this scale, the errors are not
noticeable visually. (e) The E;ns distribution.

if we calculate the E,,s without the transient, the overall
E.ms will be much lower and about 4.1 nT. An intrinsic
difficulty with reservoir computing is that the initial nodal
states of the trained machine are necessarily set to be zero
and it takes a transient time for the output to approach
the true signal. Figure 5(e) shows the distribution of the
E.s from all 45 lines of fly data. If we neglect the large
transient errors, the error values are small enough for the
predicted field anomaly signals to be useful for navigation.
Results from three additional flight data lines are shown in
Fig. 6, where the line numbers are 1003.02, 1003.08, and
1007.02 that specify the magnetic field measurements [7]
of free fly at 400 m in Eastern Ontario, free fly at 400 m on
Renfrew, and free fly at 800 m within the Perth minisur-
vey area, respectively. The three panels in the top row of
Fig. 6 show the FNN-predicted magnetic anomaly signals
together with the ground truth, while the three panels in the
bottom row show the corresponding errors. The ensemble
averaged Ens for the three data sets are 3.6, 7.2, and 4.4
nT, respectively.

The accuracy of the existing magnetic anomaly maps
is a useful factor underlying the positioning accuracy. In
some traditional anomaly maps, the accuracy is about 10

nT. With the aid of GPS, modern magnetic anomaly maps
can have an accuracy of 1-3 nT [2]. The mean magnetic
signal error below 6.5 nT typically corresponds to an error
of less than 45 m in navigation positioning for each line
[58]. While the relationship between the signal and the
positioning error is generally nonlinear, we set the g
threshold to 10 nT. E.ys values greater than 10 nT are
regarded as large errors.

The overall detection errors from reservoir computing
are relatively small, even when transients are present at
the beginning of the prediction. The advantages of reser-
voir computing include fast training and testing, intrinsic
recurrence, and high prediction accuracy. The most time-
consuming part of reservoir computing is Bayesian opti-
mization, which is dependent upon the model complexity
and the hidden-layer network size. The hyperparameter
values from the Bayesian optimization ensures that the
reservoir computer can “learn” the dynamics of this sys-
tem and then output the target signal. The effects of the
network size on the prediction performance are discussed
in Sec. IV C. At the start of the prediction, the states of all
nodes in the hidden-layer network are set to zero, leading
to transients that can result in large detection errors. A brief
analysis of the errors obtained from the two cases (with or
without transient) is presented in Appendix B.

B. Results from time-delayed FNNs

Time-delayed FNNs have the following advantages: the
required small size of the underlying neural networks,
incorporation of the historical information in the measure-
ments directly into the training process, absence of tran-
sients, low computational cost, and high prediction accu-
racy. Typically, the machine-learning architecture requires
only a few hidden layers, each with a relatively small num-
ber of nodes. For the three magnetic signals and 15 feature
signals (Table I, to be justified below) as the input data, we
find that using two or three hidden layers suffices. To be
concrete, we choose two settings: (1) two hidden layers,
one with 30 and another with 10 nodes; (2) three hid-
den layers, with 50, 30, and 10 nodes in the first, second,
and third layers, respectively. The three basic input signals
from Mag,, Mag,, Mag, (Fig. 2) are preprocessed by the
Tolles-Lawson model.

As described in Sec. 111, the three magnetic signals con-
stitute the basic input signals. In addition, a large number
of feature measurements are available. Utilizing all the
additional features as inputs in general does not lead to
the desired performances due to high computational cost
associated with training. How to choose the proper fea-
tures? We use the greedy algorithm for this task, which
can provide a local best choice of the features [65] for
complex optimization problems. (It should be noted that
the algorithm has been widely used in optimizing the
neural-network performance to reduce the E,s [66—68].)
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FIG. 6. Reservoir computing-detected anomaly field signal for three additional lines of flight data. (a){c) The predicted signals

together with the ground truth for the three lines (1003.02, 1003.08, and 1007.02). (d)~(f) The corresponding errors.

Specifically, for each iteration of the algorithm, we per-
form a testing loop by adding each feature to the input layer
to measure the corresponding decrease in the resulting
E.ns, then remove this feature and test another candidate
feature. After looping over all the remaining candidate
features, we select several features that have the top per-
formance on reducing the average E,ns calculated from 50
independent runs. Once a feature has been selected, it will
be an input signal in the following iterations. Figure 7(a)
shows the continuous reduction in the ensemble averaged
E.ms as more features are included as the inputs. It can be
seen that as the number of features increases from one to
15, the average E.,s decreases rapidly but tends to increase
only slightly as more features are included. We thus choose
15 of the best features generated by a greedy algorithm
as the additional input signals, as listed in Table I, which
include the measurements from fluxgate, INS, and current
or voltage sensors. In all cases, there is no indication of any
overfitting.

It is worth mentioning that the greedy algorithm usu-
ally does not produce optimal solutions. In fact, it might
miss useful features—each alone would not reduce the E
but their combination would. We use the greedy algorithm
because the feature selection in our task is an NP-hard
problem and the algorithm provides a viable solution.
Indeed, if the global optimum is not reachable, a reason-
able alternative is to use the greedy algorithm to find a local
optimum to best select the most relevant features.

Two helpful parameters underlying our time-delayed
FNNs are the amount of time delay 7 associated with the

input signals and the embedding dimension m. In tradi-
tional nonlinear or chaotic time-series analysis based on
the classic Takens’ delay-coordinate embedding theory for
reconstructing the phase space of the underlying nonlinear
system [69—74], the delay time can be chosen empiri-
cally as the average oscillation period of the underlying
time series (corresponding to the unit value in a discrete-
time map) [73,75—77]. We apply the same criterion here
to choose the proper value of 7. To determine the embed-
ding dimension m is more complicated, where the standard
Grassberger-Procaccia correlation integral algorithm [75]
is often used for the task of reconstructing a chaotic attrac-
tor. Our task here to determine a proper configuration
of the input signals is different from attractor reconstruc-
tion, so the Grassberger-Procaccia algorithm is not directly
applicable. We resort to empirical testing. In particular,
we select an adequate number of feature signals and cal-
culate the ensemble averaged E., versus the embedding
dimension m. As m increases, we expect the average Eyng
to decrease and possibly approach a constant (relatively
small) value when m exceeds a critical value. Figure 7(b)
shows such a behavior when 15 additional features are
used (the total number of input signals is 18). It can be
seen that for m > 5, the average training En levels off.
We thus set m = 5. It is worth noting that the choice of the
m value depends on the sampling rate of the data set. If
the sampling rate is high in comparison with the intrinsic
frequency of the data, choosing a small m value for reduc-
ing the computations may be beneficial. In our study, the
sampling rate taken is not much higher than the intrinsic
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FIG. 7. Selecting the number of features and embedding

dimension. (a) Ensemble averaged E,ns (with 50 independent
realizations) versus the number of features. The E,s decreases
rapidly as the number increases from one but tends to increase
only slightly as the number of more than about 20. (b) Ensemble
averaged E,n versus the embedding time m. The E;ns decreases
with m but tends to a constant for m > 5. The E,,¢s are calculated
for the training set and validation set, separately.

frequency of the magnetic field data, so reducing the sam-
pling rate may lead to large errors. For example, if we
reduce the sampling rate two times, the testing error will
increase approximately by over 20 %. If the sampling rate
is decreased three times, at some time steps the testing
error would diverge.

We train and test 45 lines of available flight data fol-
lowing the same division scheme as reservoir computing.
Because of the choice of 15 features and m = 5, the dimen-
sion of the input to the FNN is d = (154 3) x 6 = 108.
For consistency, we show the filtered results on the same
lines as Sec. IV A shows. Figures 8(a) and 8(b) show,
for the two hidden-layer ([30,10]) configuration, the FNN-
predicted signals for the data lines 1004.4015 and 1006.07.
The corresponding errors are shown Figs. 8(c) and 8(d),
which are comparable with those from reservoir comput-
ing [Fig. 5]. We also test a FNN configuration with three
hidden layers ([50,30,10]) and obtained similar results.
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FIG. 8. FNN-filtered anomaly field signal. (a),(b) Comparing
the real and predicted signals for lines 1004.4015, 1006.07.
(¢),(d) The difference (error) between the predicted and true sig-
nals. (e) Distribution of the average E;ns from 45 lines of flight
data. On the whole, the prediction accuracies are adequate for
magnetic-anomaly-guided navigation.

Figure 8(e) shows the distributions of the E,ns from all 45
lines of the flight data, obtained with the two and three
hidden-layer FNN configurations. The E\,sS are in general
quite small. Particularly, for the two hidden-layer neural-
network configuration, the ensemble-averaged E,,s and the
standard deviation are 4.5 and 2.7 nT, respectively. For the
three hidden-layer configuration, the corresponding values
are 4.5 and 2.4 nT. Results from three additional flight
data lines are shown in Fig. 9, where the line numbers
are 1003.02, 1003.08, and 1007.02 that specify the mag-
netic field measurements [7] of free fly at 400 m in Eastern
Ontario, free fly at 400 m on Renfrew, and free fly at 800
m within the Perth minisurvey area, respectively. The three
panels in the top row of Fig. 9 show the FNN-predicted
magnetic anomaly signals together with the ground truth,
while the three panels in the bottom row show the corre-
sponding errors. The ensemble-averaged E,s for the three
data sets are 4.8, 5.7, and 4.3 nT, respectively. The small
error values from time-delayed FNNs for all cases suggest
the feasibility of achieving magnetic anomaly navigation
aided by INS.
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together with the ground truth the three lines (1003.02, 1003.08, and 1007.02). (d)~(f) The corresponding errors.

C. Performance comparison between reservoir
computing and time-delayed FNN

The structures of the two machine-learning methods
are characteristically different, in the following aspects.
First, reservoir computing has a recurrent structure that
is intrinsically capable of preserving the memory in the
data. The conventional FNN architecture does not have
this “memory-preserving” property, but our time-delayed
FNNs have. Second, a reservoir computer has a single
hidden layer, rendering necessary using a relatively large
network size (500 nodes in our work). A FNN typically
contains multiple hidden layers, each with a relatively
small size. Figure 10 shows the effects of the network
structure for the two machine-learning architectures. In
particular, Fig. 10(a) shows, for reservoir computing, both
the training and validation errors decrease continuously
as the hidden-layer network becomes larger. Figure 10(b)
demonstrates that four configurations of the time-delayed
FNN have comparable errors with the two-layer structure
(30, 10) performing slightly better than the others. Since
the training time tends to increase significantly with the
number of hidden layers, we choose the two-layer struc-
ture (30, 10). In all cases studied, there is no apparent sign
of overfitting [78].

The parameter optimization algorithms for the two
machine-learning methods are also different. As explained
in Appendix A 1, after updating the network state, lin-
ear regression is performed. As a result, the training time
depends only on the training data length. For FNNs, as
described in Appendix A 2, the parameters are optimized

through a gradient-descent-based algorithm, so the train-
ing time depends on the training data length and epoch.
We set a small epoch number for feature and embedding
time selection (see Fig. 7) for reducing computation time,
and a longer epoch number for testing results. Further-
more, a unique feature of reservoir computing, because
of its being a closed-loop, self-evolving dynamical sys-
tem in the test phase, is the occurrence of transients that
can lead to inaccuracies, especially at the beginning of
the filtering process. Our results indicate that, despite the
different properties and structures of the two machine-
learning schemes, both have the ability to output the cor-
rect anomaly field signal from several measurement signals
immersed in overwhelming noises.

Finally, we discuss the issue of computational cost
for the two machine-learning architectures. For the time-
delayed FNN, the average computer time required for
training with the optimal hyperparameters is 650 s, and the
one-step inference computation time is 0.003 s. For reser-
voir computing, a substantial amount of the computation
time is required for finding the optimal hyperparameter
values: about 4 h. However, one can use prerecorded data
for this task. Once the optimal hyperparameter values have
been found, they are fixed. The mean training time is 23 s
and the one-step inference computation time is 4 x 107 s.
For navigation to be practically feasible, the time interval
of prediction should be, e.g., less than 1 s for an air-
plane and 5 ms for a hypersonic vehicle. Our estimates of
the computational time indicate that both neural-network
architectures can meet this requirement.
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V. DISCUSSION

The focus of our study is the detection of physical
signals, e.g., those generated in natural systems, whose
measurements come with strong noises. The signals of
interest are thus weak in comparison with the various
noises that occur inevitably during the measurements. The
physical signals themselves are generated by some nonlin-
ear dynamical systems whose effective intrinsic dimension
can be extremely high. Detecting such weak signals from
an overwhelmingly strong noise background constitutes
one of the most challenging problems in nonlinear sig-
nal processing. The achievement of the present work is
the articulation and demonstration of a machine-learning
framework to address this challenging problem.

The application investigated in this paper is precise posi-
tioning and navigation of flying objects guided by Earth’s
magnetic anomaly field. The hypothetical scenario is that
GPS is not available so navigation must rely on some alter-
native signals, and the anomaly field provides the most
natural physical signal. Measurements of the anomaly field
typically occur in the cockpit of an aircraft. There are
two types of noise sources. The first is associated with
the physical environment of the Earth: Earth’s measured

magnetic field contains other components such as the fields
generated by the core of the Earth, its atmospheric environ-
ment, and possibly magnetic sources in the solar system.
The second is the magnetic interference from the sophis-
ticated electronic equipment within the airplane cockpit,
which can be orders of magnitude stronger than Earth’s
anomaly field. To obtain the anomaly field for navigation,
these noises must be filtered out from the measurements.

Because of the physical and dynamical nature of the
weak signals to be detected, a machine-learning frame-
work must necessarily possess a memory capacity. Recur-
rent neural networks such as reservoir computing have
intrinsic memories (Appendix A 1) with the advantage
of fast training and prediction. With Bayesian optimiza-
tion for hyperparameters, a reservoir computer can gen-
erate accurate predictions, especially when transients are
removed. Time-delayed FNNs can also be effective for
weak signal detection, with the advantage that neural
networks of small sizes can be used.

The real-world application studied in this paper is based
on noisy flight data collected within the aircraft cockpit and
the ground truth, i.e., the actual magnetic anomaly field is
recorded by the tail stinger located outside the aircraft. The
data sets thus provide an ideal platform to test our machine-
learning framework. From the noisy cockpit data, we first
use the Tolles-Lawson model to obtain a number of pre-
processed magnetic signals: these from Mag;, Mag, and
Mags, as shown in Fig. 2(a). We then use our reservoir
computing and time-delayed FNNSs to calibrate the signals
and predict the magnetic anomaly field. More specifically,
to achieve accuracies as high as possible, we input the
three preprocessed signals together with 15 additional fea-
ture signals selected by a greedy algorithm, which include
the magnetic field signals, fluxgate, and noise recorded by
different sensors inside the aircraft. We justify the ratio-
nals behind the selection of the additional feature signals
through assessing the change in the ensemble averaged
Ervs as the available feature signals are included in the
input signal to the neural network one after another. Our
results indicate that the machine-learning methods with the
combination of the input signals so selected can lead to
accurate and stable predictions of the magnetic anomaly
field. With the aid of INS, the anomaly field can be used
for precise positioning so as to navigate the aircraft. For
example, extended Kalman filters [79] can be exploited
to develop the navigation algorithm, where the aircraft
can estimate its location according to the data recorded
by the sensors inside the aircraft, the predetermined mag-
netic maps, and INS. The mean magnetic signal errors
in our work are around 4 nT, where an error below 6.5
nT corresponds to the positioning error of less than 45
m. Empirically, the position error is approximately about
1040 m when the magnetic signal error is around 4 nT.
The anomaly field detected by our methods can thus be
used for actual aircraft navigation positioning.
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We remark on the necessity of combining the Tolles-
Lawson model with machine learning. While the Tolles-
Lawson model still represents a state-of-the-art approach
to calibrating Earth’s anomaly magnetic field, its sole use
will result in a large distance root-mean-square error. A
basic reason is that the Tolles-Lawson model is a linear
model, while the underlying dynamical process generating
the time-varying data of the anomaly field is nonlinear. To
reduce the error, it is then necessary to combine the Tolles-
Lawson model with some additional nonlinear signal pro-
cessing method. Exploiting machine learning represents
a viable approach. Nonetheless, the currently available
machine-learning architectures for complex signal filter-
ing is not powerful enough in the sense that, if it is used
alone without the Tolles-Lawson correction, the resulting
errors will be large. In our work, the Tolles-Lawson model
is used for data preprocessing, aiding the machine-learning
methods to better filter the magnetic signal. This strategy
aligns well with the recent trend of developing “physics-
informed neural networks,” where specific physical prin-
ciples are incorporated into machine learning to improve
performance, robustness, and efficiency. (For example, in
mechanics, the Hamiltonian structure can be built into
the neural-network architecture for it to better learn the
dynamics [80—84]. Physics-based neural networks have
also been developed in areas such as fluid dynamics [85],
optical metasurface design [86], and quantum tomography
[871)

A number of issues remain. First, while the achieved
average E,ss are small and may be deemed as qualified for
actual navigation, there are random fluctuations associated
with the predicted magnetic anomaly field. It is desired
that these fluctuations be significantly reduced to achieve
higher prediction accuracy, which requires their physical
and dynamical origin to be known. Second, both machine-
learning schemes have shortages. Reservoir computing has
transient and, for time-delayed FNNs, it is necessary to
determine the key hyperparameter - the embedding dimen-
sion of the time-delayed signals. We use some empirical
observation to determine the embedding dimension, but a
more justified criterion based on mathematical and physi-
cal considerations is desired. Third, the sizes of the FNN
neural networks in the hidden layers used in our study
are relatively small, which are determined also empirically
through numerical tests. A mathematical understanding of
how the network sizes affect the prediction performance
is essential to extending the machine-learning methods
to detecting weak signals arising from other domains of
research.
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APPENDIX A: MACHINE-LEARNING METHODS

1. Reservoir computing

A reservoir computer consists of three layers: an input
layer, a hidden recurrent layer, and an output layer. The
major advantage of reservoir computing is that the input
weights and hidden-layer weights are preselected and only
the weights of the output layer W, need to be determined
by training through a linear regression associated with the
updating of the dynamical state of the hidden-layer neural
network.

The iterative equation of the dynamical process in the
hidden layer is described by

r(t) = (1 —a)r(it — Af)

+ atanh(Ar(t — Af) + Wiu(t)),
U(t) = Wout’/(t)s

(A1)
(A2)

where « is the leakage parameter ' = f(r) where f(.)
squares all the vector entries in the even rows. During the
training, the input data are injected as u(f) to activate the
dynamical state 7(f) of the hidden-layer neural network.
All states 7(¢) stimulated this way are concatenated in terms
of the temporal dimension to form a matrix R of dimension
1 X Tigain, Where Ty, 1S the training length. Similarly, the
time series of the training target Bs. g is also concatenated
to form a matrix V. A ridge regression is finally performed
between R' = f (R) and the V' to yield the output matrix:

Wou =V x RT(R x RT + B!, (A3)
where S is the coefficient of the /-2 regularization.

For reservoir computing, hyperparameter optimization
is essential to achieving the desired performance. We use
a Bayesian optimization algorithm from MATLAB (sur-
rogateopt) to find the optimal values of the following
hyperparameters: the leakage «, the regularization coeffi-
cient 8, the scaling factor b of the input matrix Wi,, the
spectral radius p of the recurrent network A, and the nodal
connection probability p of the network A.

2. Feed-forward neural networks

FNNs are artificial neural networks that do not possess
any loops in the directed connections among the neurons
[88]. Different from the recurrent neural networks (RNNs)
that have a feedback structure, in a FNN there is only one
direction of information flow, i.e., the neurons can only
process the signal forward through the connections from
the inputs to the outputs. We use FNNs with a classic
layered architecture that has an input layer, a number of
hidden layers, and an output layer. Each layer contains a
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number of neurons, and there are only interlayer connec-
tions from the neurons in a former layer closer to the inputs
to a latter layer closer to the outputs, which are directed
and weighted. A sufficiently large FNN is able to perform
as a universal approximator, which can capture the hidden
complex relationship between the input and output data,
accomplished through a training process that adjusts the
weights to map the inputs to the outputs.

We use an improved version of FNNs: time-delayed
FNNS, as in Fig. 4, which is similar to the architecture of
“next-generation reservoir computing” [29,30,34], where
the present and historical information of the time series
data is input into the neural network through time-delayed
embedding. In particular, we define the following weight
vector of all the connections and neurons:

w= (W why w0 w07 (Ad)
where wfj is the weight between neuron 7 in layer / to neu-
ron j in the next layer / 4+ 1, NV, is the number of neurons
in layer /, and Gjm is the bias of neuron j in layer /. In
the training phase, a global error function E(w) is mini-
mized, which depends on the weight vector in Eq. (A4),
where E(w) can be a least-squares function or other rea-
sonable error functions. While a variety of error-function
optimization strategies with different features are available,
they share the same optimization principle: searching for
the neighbors around the current point in the weight space
and minimizing the error function to gradually reach the
global minimum. More specifically, to minimize the error
function E(wy) at the kth step, we seek the search direc-
tion py and step size o} such that E(wy + oxpr) < E(wy)
and then update wyy| to wi 4 oxpi. In general, the search
direction and step size are useful because they represent the
direction of search in weight space from the present point
and the distance to proceed in that direction, respectively.
The iterating process stops when the gradient of the error
function £’ (wy) becomes approximately zero.

When the search direction p; and the step size oy are
set as the negative gradient and as a constant, respectively,
the algorithm is essentially a classical back-propagation
(BP), gradient-descent-based algorithm. However, a con-
stant step size tends to make the algorithm nonadaptive
and inefficient and the most negative of the gradient can
lead to poor convergence. Let y be the change added to the
weight vector, then the linear approximation E(w + y) &
E(w) + E'(w)y constitutes the base of minimization in
BP. In fact, the BP algorithm relies heavily on parame-
ters such as the learning rate and the momentum constant
[63,89], which can lead to difficulties and large-scale prob-
lems. In this work, we choose the search direction and the
step size by using the information from the second-order
approximation

Ew+y) ~ Ew) +E Wy +y"E" (w)y /2.

Further, a conjugate gradient (CG) algorithm [63] can yield
faster convergence while keeping the error minimized so it
can handle complex problems in a more effective way. In
CQG, the search direction goes along the conjugate direction
and the step size is adjusted at each iteration, which is a
variant of the gradient descent with an additional term from
the last search step, defined as

Pit1 = —&k+1 + B (AS)
where g is again the gradient vector g1 = —E' (Wyy1),
Pr 1s the conjugate direction from the last search step, and

Br = (g1 1> — gh180) /i gk

is the weight of the previous direction p;. The step size
is scaled by a second-order term: s; = E”(wy)pr. More
details of the algorithm can be found in Ref. [63].

In our work, we use scaled conjugate gradient (SCG)
as the optimization algorithm. Similar to CG, SCG also
uses the conjugate direction calculated by Eq. (AS). Com-
pared with CG, the main advantage of SCG is that it uses
another more efficient method to estimate the step size at
each step. In particular, the second-order information term
s = E”(wy)px can be replaced by

_ E'(wi + oxpr) — E'(wy)
o

Sk + APk, (A6)

where Ay is a scalar to regulate the indefiniteness of E” (wy)
[90]. Overall, through adjusting the search direction and
step size in a reasonable and efficient way, SCG is efficient
and adaptive, and it does not depend on any individual
dependent parameters.

3. Extended Kalman filters

The two machine-learning architectures studied in this
paper, i.e., reservoir computing and time-delayed FNNs,
are generally suited for time-series prediction and classi-
fication applications. In contrast, Kalman filtering is for
state estimation of the system from noisy and uncertain
measurements. In particular, the classical Kalman-filtering
algorithm is suitable for time-invariant linear dynamical
systems while extended Kalman filtering is applicable to
nonlinear dynamical systems. In both cases, the Kalman
filter predicts the state of the system at the next time step
from a mathematical model of the system that is known a
priori, and then refines the forecast using the current mea-
surement of the state variables. If the known system model
is accurate, a high accuracy in the estimated state by the
Kalman filter can be achieved.

What does it entail if one intends to apply extended
Kalman filtering to our problem of anomaly magnetic field
detection? In classical Kalman filtering, the initial state
estimation and the initial covariance matrix are required
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FIG. 11. An extended Kalman filter. It contains two steps:
prediction and correction. See text for legends.

as initial conditions. Also needed are the predicted noise
covariance and the measurement noise covariance matrix
representing the inaccuracies during the state-estimation
process. The dynamical system underlying the anomaly
magnetic field is nonlinear, requiring extended Kalman fil-
tering whose general structure is shown in Fig. 11, where
f is the nonlinear state transition model, / represents the
nonlinear measurement function, and their respective Jaco-
bian matrices are ® and H. Because the magnetic field is
passive, there is no system input u. The Tolles-Lawson
model provides the measurement y; at each time step.
For the extended Kalman filtering to be applicable to our
problem, the nonlinear models f and / to map the state
forward in time are needed, but these are unknown. For
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FIG. 12. Effects of transients on reservoir-computing perfor-
mance. (a) Small E,,s with the transients removed. (b) Relatively
large E.ns without removing the transient.

Kalman filtering, precise knowledge of the mathematical
model governing the dynamical evolution of the system of
interest is an essential requirement.

The reliance of Kalman filtering on the accurate math-
ematical model of the underlying dynamical system
presents a fundamental difficulty in applications where
such a model is not available. Our problem of estimating
Earth’s anomaly magnetic field from noisy measurements
belongs to this category because the underlying dynami-
cal model governing the magnetic field is not available.
Another difficulty with applying Kalman filtering to our
problem lies in the nature of the noises. In Kalman filtering,
classic or extended, the noises in the system are assumed
to be Gaussian, whose distributions are symmetric with
a constant variance. However, in our anomaly magnetic
field detection problem, there are a variety of noise sources
whose distributions deviate from Gaussian, which include
the other components of Earth’s magnetic field and the
field generated by the extensive electronics in the cock-
pit of the airplane. The deficiencies of Kalman filtering for
nonlinear state estimation have long been recognized [91].
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FIG. 13. Effect of low-pass filtering for data preprocessing on

detection performance. Shown is Ey;,s versus the Gaussian fil-
ter window size. (a) Training and validation E.,s for reservoir
computing, which tends to increase with the window size. (b)
Training and validation E,y,s for time-delayed FNNs. Varying
the window size has little effect on the errors. In both panels,
each point is the result of ensemble average of 50 independent
realizations.
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TABLE II. Line number summary for flight 1003. TABLE IV. Line number summary for flight 1005.

Line Training  Validation/test Line Training Validation/test

number Description length (s) length (s) number Description length (s) length (s)

1003.02  Eastern Ontario 2246.5 748.8 4011.00  Perth Survey Line 325.0 108.3
Free-Fly 400 m 4010.00  Perth Survey Line 366.8 1223

1003.03  Climb to 800 m 61.3 20.4 4009.00  Perth Survey Line 3252 108.4

1003.04 Eastern Ontario 2877.7 959.2 4008.00  Perth Survey Line 334.9 111.6
Free-Fly 800 m 4007.00  Perth Survey Line 328.5 109.5

1003.05 Transit at 800 m 246.7 82.2 4004.00  Perth Survey Line 331.3 1104

1003.06 Descend to 400 m 83.5 27.8 4003.00  Perth Survey Line 3235 107.8

1003.07 Transit to Renfrew 58.9 19.6 4002.00  Perth Survey Line 335.7 111.9
Free-Fly

1003.08 Renfrew Free-Fly 2581.9 860.6

1003.09 Clﬁgg g)l 200 m 223 274 to filter out the high-frequency fluctuations in the origi-

APPENDIX B: EFFECTS OF TRANSIENTS AND
LOW-PASS FILTERING

In Sec. IV, the issue of transients in reservoir comput-
ing is mentioned. How do transients affect the detection
performance? Figures. 12(a) and 12(b) show the global
E.ns distributions for the two cases where the transient is
removed and retained, respectively. The results suggest the
benefits of removing the transients in reducing the error.

In addition, we study if low-pass filtering the raw data
can help improve the machine-learning performance in
detecting the anomaly magnetic field. In particular, we
employ a half Gaussian-window filter of window size L,,

TABLE III. Line number summary for flight 1004.
Line Training Validation/test
number Description length (s) length (s)
4019.00  Perth Survey Line 318.7 106.2
4018.00  Perth Survey Line 328.7 109.6
4017.00  Perth Survey Line 327.1 109.0
4016.00  Perth Survey Line 331.5 110.5
421.00 Perth Survey Line 77.6 25.9
419.00 Perth Survey Line 90.2 30.1
417.00 Perth Survey Line 82.7 27.6
415.00 Perth Survey Line 97.4 32.5
413.00 Perth Survey Line 77.2 25.7
411.00 Perth Survey Line 89.4 29.8
409.00 Perth Survey Line 74.2 24.7
408.00 Perth Survey Line 91.0 30.3
407.00 Perth Survey Line 74.4 24.8
405.00 Perth Survey Line 102.7 342
403.00 Perth Survey Line 76.9 25.6
401.00 Perth Survey Line 92.6 30.9
4015.00  Perth Survey Line 339.7 113.2
4012.00  Perth Survey Line 3343 111.4
4001.00  Perth Survey Line 3393 113.1

nal data, which operates on the historical half of the data
within the window. The results are shown in Fig. 13. For
both reservoir computing and time-delayed FNN, apply-
ing the low-pass filtering does not lead to any performance
improvement. In fact, as the window width L,, increases,
the errors tend to increase. A plausible explanation is that
the machine-learning architecture intrinsically has some
filtering capability. What is more, the high-frequency fluc-
tuations in the data that low-pass filtering aims to remove
may constitute historical information (memory) and are
often beneficial to training a neural network, so removing
them from the original data may deteriorate the machine-
learning performance.

APPENDIX C: DATA DESCRIPTION

We describe in more detail the 45 lines of flight data
used in this study. Five flights are flown to collect data,
named 1003, 1004, 1005, 1006, 1007. Each individ-
ual flight contains several flight segments, e.g., 1003.02,
1003.03, etc. The details of the flights and their related
description are presented in Tables I, III, IV, V, and VI.

TABLE V. Line number summary for flight 1006.

Line Training  Validation/test
number Description length (s) length (s)
1006.03  Climb to 17 000 ft 448.3 149.4
1006.04 Compensation 2547.7 849.2
maneuvers at
17,000 ft
1006.05 Descent to 10000 ft 317.5 105.8
1006.06 Compensation 369.1 123.0
maneuvers at
10000 ft
1006.07 Transit and descent to 732.1 244.0
Eastern Ontario
1006.08 Compensation 479.5 159.8

maneuvers in
Eastern Ontario at
400 m
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TABLE VI. Line number summary for flight 1007.
Line Training  Validation/test
number Description length (s) length (s)
1007.02  Free fly at 800 m 2289.7 763.2
within Perth
minisurvey area
1007.03 Descent and transit to 78.1 26.0
400 m Eastern
Ontario free fly
1007.05 Transit to Renfrew 240.1 80.0
free fly
1007.06 Free fly at 400 m 3120.1 1040.0
within Renfrew
area
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