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Li-Li Ye,1,2 Chen-Di Han,2 Liang Huang ,1,* and Ying-Cheng Lai 2,3,†

1Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory for Magnetism and
Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China

2School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
3Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

(Received 4 February 2022; revised 9 June 2022; accepted 19 July 2022; published 12 August 2022)

When a quantum particle moves in a curved space, a geometric potential can arise. In spite of a long history
of extensive theoretical studies, to experimentally observe the geometric potential remains a challenge. What
are the physically observable consequences of such a geometric potential? Solving the Schrödinger equation on
a truncated conic surface, we uncover a class of quantum scattering states that bear a strong resemblance to
the quasiresonant states associated with atomic collapse about a Coulomb impurity, a remarkable quantum
phenomenon in which an infinite number of quasiresonant states emerge. A characteristic defining feature of
such collapse states is the infinite oscillations of the local density of states (LDOS) about the zero energy
point separating the scattering from the bound states. The emergence of such states in the curved (Riemannian)
space requires neither a relativistic quantum mechanism nor any Coulomb impurity: they have zero angular
momentum and their origin is purely geometrical, hence the term “geometry-induced wave-function collapse.”
We establish the collapsing nature of these states through a detailed comparative analysis of the behavior of
the LDOS for both the zero and finite angular momentum states as well as the corresponding classical picture.
Potential experimental schemes to realize the geometry-induced collapse states are articulated. Not only does
our paper uncover an intrinsic connection between the geometric potential and atomic collapse, it also provides
a method to experimentally observe and characterize geometric potentials arising from different subfields of
physics. For example, in nanoscience and nanotechnology, curved geometry has become increasingly common.
Our finding suggests that wave-function collapse should be an important factor of consideration in designing and
developing nanodevices.
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I. INTRODUCTION

When a quantum particle moves on a curved surface, a
geometric potential can arise [1,2], which is fundamental to
quantum mechanics in the Riemannian geometry. However, it
remains a challenge to experimentally observe the geometric
potential [3–5]. The main message of this paper is that the
conic geometric potential can induce wave-function collapse
as manifested by the peculiar behavior of the local density
of states (LDOS) typically seen in atomic collapse. Semi-
classically, this geometry-induced collapse phenomenon is
manifested as a particle’s spiraling inward towards a region of
large curvature in the classical-quantum correspondence [6,7].
Thus, theoretically, our paper unveils a natural connection
between the quantum mechanics in the curved space and the
phenomenon of atomic collapse. Experimentally, our finding
provides a viable way to meet the challenge of experimentally
observing the geometric potential by putting forward measur-
able quantities as in the recent experimental study of atomic
collapse.

*huangl@lzu.edu.cn
†Ying-Cheng.Lai@asu.edu

The radial component of the Schrödinger equation for a
particle on a conic surface [8] can be simplified as the Bessel
equation with the 1/r2 effective potential. Historically, the
study of the 1/r2 potential in three dimensions has a long
history [6,9–13], which can be induced by diverse physical
mechanisms such as particle-charge interactions [11,14] and
Efimov physics [15,16]. For example, in the early work by
Shortley [6] in 1932, the wave function was set to be zero at
the origin. In the work of Case [13] in 1950, a fixed phase
was required for the wave functions at the origin. Bound and
scattering states under the hard-core boundary condition and
zero net outflow from the scattering region were analyzed ear-
lier by Nicholson [9] in 1962 and more recently by Coon and
Holstein [11] in 2002. That the three-dimensional (3D) central
1/r2 potential can induce a fall to the center associated with
both bound and scattering states was analyzed [10,17,18].
There were also works on the 3D central 1/r2 potential from
different perspectives, such as anomalous symmetry breaking
[11] and limit cycles [12].

A recent development in quantum physics is the experi-
mental observation of atomic collapse [19], a phenomenon
that was predicted nearly 80 years ago [20–22] to occur in
an atom with a superheavy nucleus. In the present paper, we
consider particle motion on a curved surface that gives rise
to a 1/r2 potential in two dimensions [2,8,23–27]. The main
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contribution of our paper is the establishment of the connec-
tion between the quantum behaviors on a curved surface and
those associated with atomic collapse, providing a feasible
way to experimentally observe the geometric potential. To
place our paper in a proper context and to better explain
our finding, here we provide a brief description of the phe-
nomenon of atomic collapse.

Consider a hydrogenlike atom of nuclear charge Z with
the Coulomb potential −Z/r. For Z > 1/α0, where α0 ≡
e2/(h̄c) ≈ 1/137 is the vacuum fine-structure constant, the
eigenenergy becomes complex, signifying the emergence of
a resonant state with a finite lifetime for the electron that is
inversely proportional to the imaginary part of the eigenen-
ergy. The physical picture is that, in a sufficiently strong
Coulomb field, the eigenenergy dives into the hole continuum,
and the laws of relativistic quantum mechanics stipulate the
creation of an electron-positron pair. Once this happens, the
positron is free but the electron and the nucleus will form
a quasibound resonant state, as if the electron had collapsed
onto the nucleus. From a classical point of view, the electron
behaves as if it spiraled inward toward the nucleus. Because
of the finite lifetime of the resonant state, the electron will
eventually escape the nucleus and couple to the positron [28].
The wave function thus contains two components: one around
the Coulomb singularity and another extending to infinity.

From a mathematical point of view, the Dirac equa-
tion breaks down in the vicinity of the 1/r singularity of the
Coulomb potential and some regularized form of the potential
should then be used so that the Dirac equation remains valid.
Even then, for sufficiently large values of Z , the eigenenergies
will still be complex. A general estimate of the required Z
values for atomic collapse to occur [18,20] is Z > 170, which
exceeds the largest known atomic number of any natural ele-
ment with the fine-structure constant α0. To experimentally
realize atomic collapse, some kind of relativistic quantum
materials with a much larger effective fine-structure constant
(or a much reduced “speed of light”) can be exploited. In
graphene, the Fermi velocity of the relativistic quantum quasi-
particles is about two orders of magnitude smaller than the
vacuum speed of light, so the effective fine-structure constant
is on the order of unity, making possible experimental obser-
vation of atomic collapse [7,29]. This perspective stimulated
theoretical studies of the various aspects of the energy states of
an atomic impurity embedded in graphene such as screening
[30,31], density of states [7,29,32,33], scattering phase [7,34],
and generalization taking into account electron-electron inter-
actions [35]. In 2012, the first experimental observation of
atomic collapse in graphene was achieved [19,36], generat-
ing subsequent interest in this phenomenon [37–39]. Quite
recently, atomic collapse has been predicted to occur in
pseudospin-1 Dirac materials with a flat band [40].

The general feature of atomic collapse, i.e., the emergence
of infinitely many resonant states [7], can be understood by
considering Dirac fermions with energy ε < 0 in the two-
dimensional (2D) Coulomb potential V (r) = −Ze2/r. The
kinetic energy K = ε − V (r) is positive for r < r∗ ≡ Ze2/|ε|
and negative for r > r∗. If the Dirac particle wavelength λ =
h̄vF /|ε| (vF being the Fermi velocity) is smaller than r∗, which
occurs if Z > h̄vF /e2, then the particle can be trapped inside
r∗ but only for a finite amount of time before escaping due

( − )

FIG. 1. A truncated conic surface with angular deficit 2π (1 −
α) for 0 < α < 1. The truncation is physically infinitesimal in the
sense that the truncated distance away from the apex of the cone ρ0

is chosen to have the size of only one or two atoms: ρ0 ≈ 2 Å.

to the Klein-tunneling mechanism [41]. Since the ratio r∗/λ
is independent of the energy, an infinite number of such qua-
sibound states are possible [7]. If one plots the LDOS versus
the energy near the zero energy point, infinite oscillations can
occur, which is the defining characteristic of atomic collapse.

In this paper, we study particles confined on a curved
space and uncover a class of quantum states similar to those
that occur in atomic collapse. In general, the characteristics
of quantum states on a curved surface constitute a funda-
mental problem in physics [5]. To derive the Schrödinger
equation governing the motion of a particle on a curved sur-
face, an earlier approach was due to DeWitt [42], which was
based on the quantization of the classical 2D Lagrangian. A
difficulty with this method was that the particles are treated as
intrinsically moving in the 2D space, thereby generating the
dilemma of “operator ordering ambiguity” that, for a classical
function, multiple representative quantum operators may ex-
ist. The approach articulated by Jensen, Koppe, and da Costa
(JKC) [1,2] overcomes this difficulty, where the Schrödinger
equation was derived starting from the 3D Euclidean position
space followed by a reduction to a 2D curved surface through
an infinitesimally narrow confining potential locally normal to
the surface. As a result, a general feature of the Schrödinger
equation on a curved surface is a potential term due to the
intrinsic curvature of the 2D surface, and thus the so-called
geometric potential. This approach has an experimental ba-
sis as the effects of the geometric potential on the quantum
states have been observed experimentally in electronic sys-
tems [3,5] and photonic topological crystals [4]. In fact, the
JKC approach has become the standard tool to study quantum
mechanics on curved surfaces [43–47].

To be concrete, we study a conic surface with its apex
physically infinitesimally truncated in the sense that a circular
region about the apex with size of only 1 or 2 Å is removed,
as shown in Fig. 1. We employ the JKC method to derive the
radial Schrödinger equation on the truncated conic surface
[8] and identify an effective potential that has an inverse
squared dependence on the distance from the apex of the cone.
This potential has a geometric origin, which can be attractive
or repulsive depending on the angular momentum quantum
number. The analytical solutions of the Schrödinger equa-
tion contain both bound and scattering states. Surprisingly,
we uncover a class of abnormal scattering states that char-
acteristically resemble the states underlying atomic collapse
in a 2D system, e.g., in graphene. Since these unusual states
are purely due to the curved geometry without the presence of
any heavy nucleus, they are geometry induced. Quantitatively,
the “collapse” nature of these states is established through
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the behavior of the LDOS, which we find exhibits infinite
oscillations—the defining characteristic of atomic collapse.
Strictly speaking, they are only “collapselike” states because
atomic collapse is a relativistic quantum phenomenon but
these states have a purely nonrelativistic quantum origin. At
the minimal risk of confusion, we still use the term “col-
lapse” for convenience. To draw a stronger analogy of these
states with those in atomic collapse, we develop a qualita-
tive analysis of the classical trajectories corresponding to the
geometry-induced collapse states. Furthermore, we articulate
possible experimental schemes to observe the exotic quan-
tum states with a purely geometric origin. In terms of basic
physics, our finding provides useful insights into the nature of
quantum states in the curved space. With respect to applica-
tions, our results suggest that wave-function collapse should
be an important factor of consideration in designing and de-
veloping nanodevices, because curved geometry has become
increasingly common in nanoscience and nanotechnology.

II. SCHRÖDINGER EQUATION ON A TRUNCATED CONIC
SURFACE

The starting point in studying the quantum dynamics of a
particle on a 2D curved surface is to derive the Schrödinger
equation on the surface. A previous method was based on the
idea of confining potential [1,2], where one starts from the
Schrödinger equation in the 3D Euclidean space and applies
some appropriate potential to constrain the particle motion to
the curved surface. As a result, the Schrödinger equation con-
strained on a 2D curved surface defined by the metric tensor
gμν can be written as [1,2]

− h̄2

2M

[
1√
g
∂μ(

√
ggμν∂ν )

]
	 + VG	 = E	, (1)

where M is the particle mass, gμν is the contravariant compo-
nent of gμν , g = det gμν , and VG is a scalar geometric potential
given by

VG = − h̄2

2M

(
K2

m − K
)
, (2)

where Km and K are the mean and Gaussian curvatures of
points on the surface, respectively, which characterize the
internal and external geometric properties of the surface. Note
that VG has a pure geometric origin and it is independent of
any externally applied potential (if any). The quantum prop-
erties of the normal mode χn in the perpendicular direction of
the surface are governed by

− h̄2

2M

∂2χn

∂q2
n

+ V (qn)χn = Enχn, (3)

where qn is the coordinate normal to the surface and V (qn)
is the confining potential that constrains the particle to the
interface.

To be concrete, we consider the solution of the Schrödinger
equation on a conic surface. A truncated cone can be obtained
by a “cut-and-glue” process from a sheet of paper, as shown
in Fig. 1. The distance away from the apex of the cone is de-
noted as ρ ∈ [ρ0,∞), where the part of the cone with ρ < ρ0

is removed. The truncation is physically infinitesimal in the

sense that ρ0 is chosen to be the size of one or two atoms, e.g.,
ρ0 ≈ 2 Å. The line element or metric on a truncated cone is

ds2 = dρ2 + α2ρ2dϕ2, (4)

where ϕ ∈ [0, 2π ) and 2πα (0 < α < 1) is the sector angle of
the corresponding solid angle of the cone. At ρ = ρ0, there is a
hard wall boundary condition: ψ |ρ0 = 0, so the wave function
does not extend into the forbidden region ρ < ρ0. Since, as
demonstrated in Appendix A, the geometric potential induced
by the mean and Gaussian curvatures has a singularity at ρ =
0, the hard wall boundary condition at ρ = ρ0 removes this
singularity—a physically meaningful setting.

The Schrödinger Hamiltonian on a truncated conic surface
becomes [8]

H = − h̄2

2M

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

α2ρ2

∂2

∂ϕ2

]
+ VG, (5)

where the geometry-induced potential is given by

VG = − h̄2

2M

(
1 − α2

4α2ρ2

)
. (6)

Because of the circular symmetry of the conical geometric
potential field, the angular momentum l is a good quantum
number. The wave functions can thus be naturally written in
terms of the angular momentum eigenstates eilϕ as

	(r) = ψ (ρ)eilϕ (7)

with l = 0,±1, · · · (l ∈ Z). In the angular momentum repre-
sentation, the Schrödinger equation reduces to the following
radial equation:[

− h̄2

2M

1

ρ

d

dρ

(
ρ

d

dρ

)
+ UG(ρ)

]
ψ (ρ) = Eψ (ρ), (8)

where

UG ≡ h̄2

2M

ν̃2

ρ2
(9)

with

ν̃2(α, l ) ≡ l2

α2
− 1 − α2

4α2
. (10)

The first term in Eq. (10) arises from the conical metric and the
second term originates from the mean curvature of the cone, a
quantum geometric potential.

Equations (9) and (10) indicate that, for zero angular mo-
mentum l = 0, the geometry-induced potential is attractive.
In this case, bound states will naturally arise [8,48]. How-
ever, in spite of the attractive nature of the potential, a class
of unusually extended or scattering states can emerge, and
we will show below that they closely resemble the quantum
states characteristic of atomic collapse (the main result of
this paper). For nonzero angular momentum states |l| � 1, the
potential is repulsive, so the resulting scattering states are of
the conventional type.

To simplify notations, we transfer the term
√

2MEρ/h̄
into the dimensionless form

√
εr with the requirement√

2ME0ρ0/h̄ ≈ 1, where ε ≡ E/E0 and r ≡ ρ/ρ0. We as-
sume M to be the electron mass and consider E0 = 1 eV. The
cutoff radial size is ρ0 = 1.93 ≈ 2 Å.
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III. CHARACTERISTICALLY DISTINCT EIGENSTATES

Analytically solving Eqs. (8)–(10), we obtain three types
of eigenstates: bound states and wave-function collapse states
at zero angular momentum as well as conventional scattering
states at finite angular momenta.

A. Bound states

For l = 0 and E < 0, the quantum particle is effectively
under the inverse square attractive potential and will be con-
fined around the origin. Using the general solution of the
Bessel equation of the imaginary order and the imaginary
argument [49]

ψ (r) = AKiν (x) + BLiν (x), (11)

and considering the divergence of function Liν (x) at infinity,
we have that the solutions of the Schrödinger equation for r �
1 and α ∈ (0, 1) are non-normalized bound states, which can
be written as

ψ0,εn (r) = Kiα̃
(√−εnr

)
, (12)

where the new notation

α̃ ≡
√

1 − α2/(2α)

is introduced to emphasize the imaginary order of the Bessel
functions for zero angular momentum. Applying the boundary
condition, we have that the zeros of Kν (x) determine the
discrete energy spectrum. In particular, at ρ = ρ0 or r = 1,
applying the hard wall boundary condition leads to

Kiα̃
(√−εn

) = 0. (13)

Figure 2 shows the zeros of the function Kiα̃ (
√−ε). For√−ε → 0, we have [49]

Kiα̃
(√−ε

) → sin[α̃ ln(
√−ε/2) − φα̃,0] = 0, (14)

where φα̃,0 = arg{�(1 + iα̃)} and � is the gamma function.
The dimensionless eigenenergy spectrum is given by

εn ≈ −4 exp [2(−nπ + φα̃,0)/α̃], (15)

where for α ∈ [0.15, 1) we have n ∈ N+ and the ground state
corresponds to n0 = 1, while for α ∈ (0, 0.15) the approxi-
mation in Eq. (14) is invalid due to the increasing value of
the ground-state energy. In this case, the minimal integer n0

is less than 1 and the ground-state energy εn0 is smaller than
the approximate value. For α ∈ (0, 1), the whole eigenenergy
spectrum εn goes from a finite negative value to 0−. Since√−ε = √−2MEρ0/h̄, the corresponding bound-state energy
spectrum becomes

En ≈ h̄2εn

2Mρ2
0

, (16)

which is consistent with the result in Refs. [8,48] with the
approximation φα̃,0/α̃ ≈ −γ , where γ is the Euler constant.
There are then an infinite number of bound states.

For α = 1/6, the maximal zero root of Kiα̃ (
√−ε) occurs

at n = 1, which corresponds to the ground state. The differ-
ence in the energy level decreases as n increases from 1 to
∞. Since the function Kiα̃ (

√−ε) exhibits infinite oscillations
near the zero energy point, as shown in Fig. 2(a), there are
an infinite number of bound states the energy spectrum of

−

(a)

(b)

Large Energy

Small Energy

∗

= −

FIG. 2. Bound states for α = 1/6. (a) The bound states deter-
mined by the zeros of the function Kiα̃ (the middle curve), the
asymptotic behaviors of which in the small and large energy regimes
are given by sin[α̃ ln(x/2) − φα̃,0] (the oscillatory curve for a small
energy) and e−x/

√
x (the upper curve for a large energy), respec-

tively, where x = √−ε. (b) The ground-state wave function (dashed
curve) with the energy εn0 = −1 (the solid horizontal line) for the
potential of the form −h̄2α̃2/(2Mρ2

0 r2) (solid trace) for r � 1. There
is a hard wall at r = 1. The depth of the potential well, the minimal
potential for the whole region, is about U ≈ −8. The vertical dotted
line denotes the “center of mass” 〈r〉 of the wave function, which is
to the left of r∗, the classical forbidden region. All quantities plotted
are dimensionless.

which converges to zero 0−, near which the spectrum is quasi-
continuous, corresponding to the semiclassical regime. In the
vicinity of the virtual zero root (corresponding to n = 0), the
asymptotic behavior of Kiα̃ (

√−ε) is approximately exponen-
tial. For r → ∞, we have

Kiα̃
(√−εnr

) ∼
√

π

2
√−εnr

e−√−εnr . (17)

Figure 2(b) shows, for α = 1/6, the wave function of the
ground state of energy εn0 = −1. Using Eq. (16) and con-
sidering that εn is independent of ρ0, we have En0 → −∞
for ρ0 → 0. In this case, the ground state corresponds to the
classical picture of the falling of the particle into the center
as ρ0 → 0 (an analogous situation was discussed by Landau
[10]). In principle, for ρ0 → 0, all bound states with a finite
energy correspond to classical trajectories falling to the center
(to be analyzed in Sec. V).
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(a)

(b)

FIG. 3. Normalization of the quantum states at large distances
from the conical apex: (a) a collapse state at zero angular momentum
(l = 0 and E > 0) and (b) a conventional scattering state at a finite
angular momentum (|l| > 0 and E > 0). The dimensionless distance
is defined as r ≡ ρ/ρ0 (Sec. II).

B. Scattering states with geometry-induced wave-function
collapse

For l = 0 and E > 0, a particle on the truncated conic
surface experiences an equivalent inverse square attractive
potential as for the case of bound states discussed in Sec. III A.
In this case, the solutions are scattering states that exhibit
infinite oscillations with energy near the zero energy point.
In particular, using the general solution of the Bessel equation
of the imaginary order and the real argument [49], we write
the real solution for r � 1 and α ∈ (0, 1) as

ψ0,ε (r) = AFiα̃ (
√

εr) − BGiα̃ (
√

εr), (18)

where the functions Fiα̃ and Giα̃ are linear combinations of
Hankel’s functions of the first and second kind [given by
Eqs. (B9) and (B10) in Appendix B, respectively], and the
coefficients 0 � A � 1 and 0 � B � 1 are

A = Giα̃ (
√

ε)√
G2

iα̃ (
√

ε) + F 2
iα̃ (

√
ε)

,

B = Fiα̃ (
√

ε)√
G2

iα̃ (
√

ε) + F 2
iα̃ (

√
ε)

.

(19)

The solution in Eq. (18) satisfies the boundary condition
ψ |r=1 = 0 and extends to infinity with proper normalization,
as shown in Fig. 3(a). For r → ∞, the functions Fiα̃ (

√
εr) and

Giα̃ (
√

εr) tend to the conventional Bessel’s functions:

J0
(√

εr
) ≈

√
2

π
√

εr
cos

(√
εr − π

4

)
, (20)

J1
(√

εr
) ≈

√
2

π
√

εr
sin

(√
εr − π

4

)
, (21)

respectively (Appendix B). Numerically, we find that for α ∈
[2/6, 1) the asymptotic forms hold for

√
εr > 5. For α < 2/6,

the asymptotic forms are valid for somewhat larger values

of
√

εr. For α ∈ (0, 1) and fixed r, we have the following
asymptotic forms [49] of Fiα̃ (

√
εr) and Giα̃ (

√
εr) for ε → 0:

Fiα̃ (
√

εr) ∼ cos[α̃ ln(
√

εr/2) − φα̃,0], (22)

Giα̃ (
√

εr) ∼ sin[α̃ ln(
√

εr/2) − φα̃,0], (23)

where φα̃,0 = arg {�(1 + iα̃)} and � is the gamma function.
For ε → 0, the scattering states given by Eq. (18) thus have
the following form:

A sin [α̃ ln (r)]√
B − C cos2 [α̃ ln (

√
ε/2) − φα̃,0]

, (24)

where r � 1, A = −√
2/(α̃π ), B = coth(α̃π/2), and C =

2/ sinh(α̃π ). In this near zero energy regime, the wave
function thus oscillates with the period 2π/α̃ in a natural
logarithmic scale. The resulting abnormal scattering states
are effectively collapse states, corresponding to classically
collapsing trajectories (see Sec. V).

C. Scattering states with finite angular momentum

For a nonzero angular momentum, l �= 0, the overall in-
verse square potential [Eq. (9)] is repulsive, so the scattering
states are conventional with a positive energy. The general so-
lution of the Bessel equation of real order with a real argument
is

ψ (r) = AJν (x) + BYν (x) (25)

so the scattering states for the whole energy region can be
written as

ψl,ε (r) = [AJν̃ (
√

εr) − BYν̃ (
√

εr)]eilϕ, (26)

for l = ±1,±2, . . ., where the coefficients 0 � A � 1 and
0 � B � 1 are given by

A = Yν̃ (
√

ε)√
J2
ν̃ (

√
ε) + Y 2

ν̃ (
√

ε)
,

B = Jν̃ (
√

ε)√
J2
ν̃ (

√
ε) + Y 2

ν̃ (
√

ε)
,

(27)

and the order of Bessel functions has the form

ν̃(α, l ) =
√

l2

α2
− 1 − α2

4α2
(28)

with α ∈ (0, 1). Equation (26) is the exact analytical solution,
where Yν̃ (

√
εr) diverges at the boundary r = 1 for ε ≈ 0. In

numerical simulations, we set the maximum cutoff as Yν̃ �
100, guaranteeing the hard wall boundary condition at r = 1.
The maximal error of the LDOS is of the order of 10−32 near
the zero energy point and in the finite energy region (0,10].
Asymptotically, as shown in Fig. 3(b), the conventional scat-
tering states can be normalized at infinity through the standard
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form

Jν̃

(√
εr

) ∼
√

2

π
√

εr
cos

(√
εr − ν̃π

2
− π

4

)
,

Yν̃

(√
εr

) ∼
√

2

π
√

εr
sin

(√
εr − ν̃π

2
− π

4

)
.

(29)

We discuss two extreme cases among the three kinds of
quantum states: α → 1 and α → 0. For α → 1 with fixed
ρ0, the conic surface becomes a 2D plane with a hole of
radius ρ0 at the center. The geometric potential vanishes be-
cause α̃2 = (1 − α2)/(4α2) = 0. In this case, the bound states
disappear due to the zero depth of the potential well in the
form of h̄2α̃2/(2Mρ2

0 r2), which is defined by the minimum of
the effective potential. The geometry-induced collapse states
and scattering states with finite angular momenta degenerate
into the normal scattering states in the plane, which can be
expressed as a linear combination of Jl (

√
εr) and Yl (

√
εr)

multiplied by eilϕ for l = 0,±1,±2, . . . with

lim
α̃→0

Fiα̃ → J0(
√

εr),

lim
α̃→0

Giα̃ (
√

εr) → Y0(
√

εr),

which have been verified numerically and are consistent with,
e.g., Eq. (3.3) in Ref. [49] and ν̃ → l . For α → 0 with fixed
ρ0, the conic surface tends to a cylindrical one with an in-
finitesimally small radius. In this case, since α̃ → ∞, the
geometric potential is homogeneously infinite for the whole
surface region. Because the potential is infinitely negative for
zero angular momentum and infinitely positive for nonzero
angular momenta, the wave functions simply vanish.

IV. LOCAL DENSITY OF STATES AND DEMONSTRATION
OF COLLAPSE STATES

In general, the characteristics of the wave function depend
on the distance from the apex of the cone r and the sector
angle of a truncated cone as measured by 2πα, which can
be studied through the LDOS. The general definition of the
LDOS [32] is

N (ε, r) =
∑
ε′

|	ε′ (r)|2δ(ε − ε′) =
+∞∑

l=−∞
nl (ε, r), (30)

where nl (ε, r) = |ψl,ε (r)|2, a quantity that involves only the
positive-energy states. Evidence of the emergence of the col-
lapse states is presented in Figs. 4(b)–4(d) for α = 5/6, 4/6,
and 3/6, respectively, where the infinite oscillations of the
LDOS are shown in the corresponding insets. Note that, for
α = 3/6, LDOS oscillations can be seen in a relatively large
energy region: E ≈ μeV (corresponding roughly to the acces-
sible resolution in the current experimental technology [50]).
The results indicate that zero energy is the accumulation point
of infinitely many resonances, a characteristic of the atomic
collapse states [7,29,32]. The collapse states arise from the
conic surface for α values close neither to one nor to zero,
as the energy interval in which the LDOS oscillations are
pronounced shrinks to zero for α → 1 and the LDOS is zero
for α → 0.

(a)

(
,
)

(b)

(
,
)

(c)

(
,
)

(d)

(
,
)

FIG. 4. Behavior of the total LDOS for different conic surfaces
at r = 10. (a) LDOS for the two extreme cases: α = 0.99 and 0.01
(the solid curves and the right inset for small energy). For α = 0.99,
the LDOS oscillates about the value 1, a characteristic of the normal
scattering states for α = 1 in the 2D plane with a hole of radius ρ0.
For α = 0.01, no quantum states exist to contribute to the LDOS.
In a higher-energy regime, the asymptotic behavior of the LDOS for
α = 1 is shown in the left inset. [(b)–(d)] LDOS plots for α = 5/6,
4/6, and 3/6, respectively, where the top curve in each panel is for
α = 1. In these cases, the values about which the LDOS oscillates
are between zero and one. In a small energy interval near zero, the
LDOS exhibits infinite oscillations with the energy, as shown in the
respective insets of the three cases. As argued in the text, in a near
zero energy interval, the main contribution to the LDOS comes from
the zero angular momentum states, where the infinite oscillations are
indicative of the collapse nature of these states. In each panel, the
dimensionless energy ε is defined as ε ≡ E/E0 (Sec. II).

For large energy ε → ∞, according to Eqs. (26), (27), and
(29), the norm square of the conventional scattering states
with fixed angular momenta can be written as

lim
ε→∞ |ψl,ε |2 → 2

π
√

εr
sin2[

√
ε(1 − r)], (31)

which is independent of the angular momentum quantum
number l because of the asymptotic relations:

A → sin
(√

ε − ν̃π
2 − π

4

)
,

B → cos
(√

ε − ν̃π
2 − π

4

)
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FIG. 5. Contributions to the LDOS from the collapse and con-
ventional scattering states. [(a)–(c)] The contribution from the
collapse states for three distance values with the asymptotic behavior
(dashed curves) in a large energy interval. (d) The contribution from
the conventional scattering states at two distances: r = 3 and 5. The
inset shows the decay behavior in the higher-energy regime for r = 3,
where the dashed curve indicates the asymptotic behavior. (e) Oscil-
lations of the LDOS due to the collapse states in a small near zero
energy interval for different values of the distance, as represented by
a 3D plot of the LDOS in terms of both the energy and distance. The
amplitudes of LDOS oscillations for different distances are projected
to the 2D plane. All quantities plotted are dimensionless.

with ε → ∞. The asymptotic LDOS of the conven-
tional states for large energies is thus proportional to Nl :
LDOS ∝ Nl limε→∞ |ψl,ε |2. For l ∈ [−50, 0) ∪ (0, 50], we
have Nl = 100 for conventional scattering states, as shown
in the inset of Fig. 5(d). For l ∈ [−50, 50], we have Nl = 101
to include the degenerate collapse states for α close to 1, as
shown in the inset of Fig. 4(a). For the collapse states with
α ∈ (0, 1), the asymptotic LDOS has the form 2/(π

√
εr), as

shown in Figs. 5(a)–5(c) and 6(a) based on Eqs. (19), (20) and
(21).

As α decreases from one to zero, the value around which
the total LDOS oscillates reduces from one to zero, as shown
in Figs. 4(a)–4(d). The main reduction comes from the con-
ventional scattering states shown in Figs. 6(a) and 6(b). This
can be argued heuristically, as follows. For a fixed distance
from the conical apex, the wave functions Fiα̃ (

√
εr) and

Giα̃ (
√

εr) for the sufficiently large energy, e.g.,
√

εr > 5,
tend to J0 and J1, respectively, regardless of the values of α.
Consequently, the reduction does not occur for the collapse
states, as shown in Fig. 6(a). For the conventional scattering
states, given a finite energy interval, the high angular mo-
mentum states Jν̃ (

√
εr) will be pushed out of this energy

interval into a higher-energy region, leaving behind the low
angular momentum states to contribute to the total LDOS, as
shown in Fig. 6(b). As a result, the value around which the
LDOS oscillates will reduce with α. In the extreme case of α

decreasing to zero, the number of contributing states becomes
zero.

To obtain a more comprehensive picture of the contribution
of the collapse states to the LDOS, we decompose it into two
parts:

N (ε, r) =
∑
l=0

n̄l (ε, r) +
∑
l �=0

nl (ε, r), (32)

where the first and second terms are the contributions from
the collapse states and the conventional scattering states, re-
spectively. As an example, we fix α = 5/6 and examine the
two types of contribution at different distances from the apex
of the cone. Figures 5(a)–5(c) show the contribution to the
LDOS from the collapse states for three distance values, re-
spectively, while Fig. 5(d) displays the contribution from the
conventional scattering state at two distances. The oscillations
of the collapse-state-contributed LDOS near the zero energy
point with the distance exhibit a different behavior, as shown
in a 3D plot of N (ε, r) versus the energy and distance, as
exemplified in Fig. 5(e). In this interval of infinitesimal en-
ergies, the oscillation amplitude of N (ε, r) depends on the
distance r in the form of sin(α̃ ln r) as in Eq. (24), described
by the 2D projection in the 3D plot of Fig. 5(e). The oscillation
frequency depends on α as determined by

cos2[α̃ ln
√

ε + C(α̃)],

providing an explanation of the observed same number of pe-
riods of oscillation at different distances for the same energy
range, as shown in Fig. 5(e).

What is the effect of varying the sector angle 2πα of the
truncated cone on the LDOS? Figures 6(a) and 6(b) show,
for fixed r = 5 and several values of α, the LDOS versus
the energy for the contributions from the collapse and con-
ventional scattering states, respectively. In both cases, the
number of oscillation periods is independent of the value
of α, as can be seen from Eqs. (20), (21), and (31). In an
infinitesimal energy interval near zero, Eq. (24) stipulates that
the oscillation amplitude of the LDOS associated with the
collapse states enhances with α but the oscillation frequency
reduces, as shown in Fig. 6(c). For a near zero α value, e.g.,
α = 0.01, the oscillation amplitude is approximately zero. In
the opposite extreme case, e.g., α = 0.99, the LDOS exhibits
a single oscillation and then approaches zero.

To be concrete, we define the average LDOS with respect
to energy values near the zero energy point ε ≈ 0. In this
energy interval, the LDOS is mainly contributed to by the
geometry-induced collapse states, which exhibits regular os-
cillations as stipulated by Eq. (24). The average LDOS is
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(b)

(a)

(
,
)

(
,
)

(c)

FIG. 6. Effect of different conic geometry on the LDOS. [(a), (b)] LDOS vs energy contributed to by the collapse and conventional
scattering states, respectively, for r = 5 and four different values of the sector angle 2πα. The dashed curves in (a) show the asymptotic
behaviors in the high-energy region. The dashed curve in (b) show the LDOS of the conventional scattering states in the 2D plane with a hard
hole. (c) The LDOS contributed to by the collapse states in an infinitesimal energy interval near zero, the frequencies of which decrease while
the amplitudes increase as α increases from zero to one. The average LDOS N̄ (r) over the near zero energy point is plotted vs α, which is
projected to the 2D plane. The solid curve in the back plane is the prediction of Eq. (34) and the data points are the corresponding numerical
results. All quantities plotted are dimensionless.

given by

N̄ (r) = {max[N (ε, r)] + min[N (ε, r)]}/2. (33)

The 2D projection of the 3D plot in Fig. 6(c) shows the
average value of the LDOS, where the black curve represents
the theoretical formula obtained from Eq. (24):

N̄ (r) = 1

2

[
1

B
+ 1

B − C

]
A2 sin2 [α̃ ln (r)], (34)

where A, B, and C are defined by Eq. (24), which only depend
on α̃. The data points in Fig. 6(c) are from numerical simula-
tions, which fall precisely on the theoretical curve.

V. A CLASSICAL PICTURE

To gain deep physical insights into the geometry-induced
collapsed states, we construct the corresponding classical pic-
ture, following the pioneering work on geometric potential
[6,7]. Consider a classical particle of mass M moving on a
2D truncated conic surface, subject to an external potential.
The effective classical potential is −L2

eff/(2Mρ2), where Leff

is the coefficient. The classical Hamiltonian is

H = |p|2
2M

− L2
eff

2Mρ2
. (35)

The particle is constrained to move in the region ρ > ρ0 with
a hard wall at ρ = ρ0. The classical linear momentum can
be decomposed into two parts, the radial and angular com-
ponents, as

|p|2 = p2
ρ + L2

z /(α2ρ2), (36)

where Lz = αρpϕ is the classical angular momentum char-
acterizing the particle motion around the z axis. Since the

potential −L2
eff/(2Mρ2) results in a central force field, the an-

gular momentum Lz is conserved. The classical Hamiltonian
can be expanded as

H = p2
ρ

2M
+ 1

2Mρ2

(
L2

z

α2
− L2

eff

)
, (37)

where the quantities in the bracket of the second term are
constants, so this term is effectively a potential function of
ρ. Depending on Lz and Leff , this effective potential can be
either positive or negative. The radial motion of the particle is
thus completely governed by the Hamiltonian (37).

For |Leff | > |Lz|/α, the second term in Eq. (37) is nega-
tive and the attractively effective potential. For total negative
energy E < 0, the particle is trapped inside the region with
radius ρ ∈ (ρ0, ρ

∗), where pρ (ρ∗) = 0, as shown in Fig. 7(a).
The particle spirals inward and reflects from the hard wall
boundary at ρ0, spirals outward, is pulled back by the attrac-
tive potential, begins to spiral inward again, and so on, as
depicted in Fig. 7(d). This type of motion corresponds to the
bound states in the quantum regime.

For E > 0, in the ρ → ∞ limit, there is a radial kinetic
energy of the form p2

ρ/(2M ). In this case, ρ∗ extends to infin-
ity. As illustrated in Figs. 7(b) and 7(e), the particle spirals
inward toward the center from infinity, is reflected at the
boundary ρ0, and then spirals outward back to infinity. This
is the classical picture of the geometry-induced collapse state
with an infinitely oscillating local density of states.

For |Leff | < |Lz|/α, the second term in Eq. (37) is positive
and the repulsively effective potential. The motion of the par-
ticle is constrained in the region ρ ∈ (ρ∗,∞). As illustrated in
Figs. 7(c) and 7(f), it is not a falling trajectory and the particle
is scattered away from ρ∗, corresponding to the conventional
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0 0 0

E > 0

E < 0

E > 0

∗

∗

| | < | | ⁄

(a) (b) (c)

(d) (e) (f)

∗ ∗

| | > | | ⁄|L | > | | ⁄

∞ ∞ ∞

FIG. 7. Representative classical particle trajectories on a truncated conic surface from the Hamiltonian (35). [(a)–(c)] Three different
potential profiles, and [(d)–(f)] the corresponding classical trajectories. [(a), (d)] For |Leff | > |Lz|/α and E < 0, the effective potential is
attractive and the particle is confined in the region (ρ, ρ∗), corresponding to bound states. [(b), (e)] For |Leff | > |Lz|/α and E > 0, the classical
particle can collapse to ρ0 in finite time but would eventually escape to infinity due to the reflective boundary condition at ρ0. Geometry-induced
wave-function collapse occurs in this case. [(c), (f)] For |Leff | < |Lz|/α and E > 0, the effective potential is repulsive and the particle is confined
in the region (ρ∗,∞), corresponding to the conventional quantum scattering case.

quantum scattering states. Note that ρ0 is assumed to be suf-
ficiently small so that the potential at ρ = ρ0 can be regarded
as infinite. Furthermore, if we quantify Lz as l h̄ following
the standard procedure of quantization and assume Leff is
equivalent to h̄α̃ in the quantum-classical correspondence, the
effective potential in Eq. (37) will have the same mathematical
form as Eqs. (9) and (10).

VI. EXPERIMENTAL FEASIBILITY OF OBSERVING THE
GEOMETRY-INDUCED COLLAPSE STATES

We analyze in detail the feasibility of observing the phe-
nomenon of geometry-induced wave-function collapse. A
basic issue is to measure the LDOS oscillations associated
with the collapse phenomenon. With the development of the
scanning tunneling microscopy (STM) technology [51,52],
the LDOS can be detected by STM with tunneling current
proportional to the LDOS of the surface at the position of
the tip [19,53,54]. For example, a recent experimental work
[50] reported the achievement of a μeV tunneling resolution
with in operando measurement capabilities of STM, making
it feasible to observe the oscillations in the LDOS associated
with the collapse state, as shown in Fig. 8(a), where the di-
mensional energy is about ε eV (defined below).

Since the experimental observation of atomic collapse was
primarily achieved in graphene [19,36–39], we analyze the
feasibility of experimentally observing the phenomenon of
geometry-induced wave-function collapse in graphene. How-
ever, our theoretical prediction of this phenomenon has been
made through the solutions of the Schrödinger equation on a
curved surface, so for graphene a critical issue is band-gap
opening. To carry out the analysis, we first recall some basic
parameters in our calculation of the LDOS of the Schrödinger
electron: the rest mass energy is Mc2 ≈ 0.511MeV and the

radial cutoff size on a conic surface is ρ0 ≈ 2 Å. In the di-
mensionless form, we have

√
2ME0ρ0/h̄ ≈ 1 by setting E0 ≈

1 eV.

(a)

(b)

FIG. 8. Feasibility of experimentally observing geometry-
induced wave-function collapse through LDOS oscillations. (a) For
the sector angle 2πα = π of the truncated cone, LDOS oscilla-
tions associated with total, collapse, and normal states with the
corresponding behavior near zero energy, where ε ∈ [10−6, 10−3]
corresponds to � ∈ 2 × [1, 103] μeV. Experimental observation of
the oscillations is feasible [55,56] (see text for an analysis). (b) The
energy-momentum dispersion relation of a massive Dirac fermion
and a Schrödinger particle with the dimensionless energy gap �̃ =
0.05, corresponding to � = 0.1 eV.
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As reported in Ref. [57], band-gap opening can be realized
around 0.26 eV in graphene through epitaxial growth on the
SiC substrate, where the gap decreases as the sample thickness
increases. It is thus experimentally feasible to set the band
gap to be � ≈ 0.1eV, which is related to the effective mass
of the quasiparticle as � = M∗v2

F . The energy-momentum
dispersion relation of a massive Dirac fermion measured from
a Dirac point in dimensionless form can be written as

ε =
√

k̃2 + �̃2, (38)

where ε = Ξ/Ξ0, k̃ = h̄vF k/Ξ0, and �̃ = �/Ξ0. Because of
the effective mass M∗, it is necessary to transform the original
characteristic quantity into a different form, i.e.,√

2ME0ρ0/h̄ =
√

2M∗Ξ0ξ0/h̄ ≈ 1 (39)

with the new energy unit Ξ0 and cutoff radius ξ0. In the
limit of a large gap, �̃ � k̃, the dispersion relation can be
approximated as

ε ≈ �̃ + δε,

where δε ≡ k̃2/(2�̃). This is the dispersion relation for a
Schrödinger particle.

Next, we describe the process required for fabricating a
graphene cone and articulate the possibility of realizing a
truncated graphitic cone at the nanoscale (the setting of our
theoretical analysis and computations). Graphitic cones (or
graphene [58]) were first reported in Ref. [55] in 1997 with
the disinclination defects that are multiples of 60◦, which cor-
respond to a given number of pentagons: disk (no pentagons),
five types of cones (one to five pentagons), and open tubes
(six pentagons). Another cone-helix structure with a wide
distribution of apex angles in the cone’s cross section was
experimentally realized [59]. In a very recent experimental
study [60], spiral graphite cones have been successfully grown
under normal conditions without requiring high temperatures
and high pressure. In addition, open graphitic cones with
an apex angle, e.g., 60◦ (lampshade structures), were real-
ized [56]. Based on these current experimental achievements,
we conclude that it is feasible to fabricate a nanotruncated
graphene cone with an open gap.

According to the dimensionless form Eq. (39), the radial
cutoff size of a truncated graphite cone can be set as ξ0 =
5ρ0 ≈ 1 nm, so the characteristic energy is Ξ0 = 2E0 = 2 eV
with the energy band gap � ≈ 0.1 eV. From our theoretical
results, if the graphite cone is shaped as α = 0.5 (so the apex
of the cone is 60◦ as reported in Refs. [55,56]) and if the
LDOS is to be detected at the radial position ρ = rξ0 ≈ 6nm,
where r = exp[π/(2α)] ≈ 6, it would be possible to observe
the collapse oscillations of the LDOS with the energy interval
Ξ = δεΞ0 ∈ 2 × [1, 103] μeV. In this case, the wave vector
is

k̃ ≈
√

2δε�̃ ≈ [10−3.5, 10−2],

which is describable by the Schrödinger equation, as shown in
Fig. 8(b).

Our analysis of the experimental feasibility indicates that
the phenomenon of geometry-induced wave-function collapse
can arise in nanoscale graphene systems, rendering it im-
portant to take this phenomenon into consideration when

developing graphene-based devices that involve curved or
Riemannian geometry.

VII. DISCUSSION

Our paper has focused on the quantum states of particles
confined on a truncated conic surface, for which the corre-
sponding geometric potential has the form of inverse squared
distance. It has been established for a long time that, semiclas-
sically, this type of potential in three dimensions can cause a
particle to collapse to the center [9,10,17,18]. The main reason
that we chose to study the conic structure is that it can be real-
ized in experiments, such as graphite nanocones [55,59,61,62]
where the issue of topological phase [63–66] was addressed
[58,67–73]. There were also previous studies [8,23–26] on the
effects of the geometric potential in terms of the mean and
Gaussian curvatures [8,24] on the quantum states on the conic
surface. The main contribution of our paper is the finding of
a class of quantum states that mimic those arising in atomic
collapse, but here the collapse mechanism is purely geometri-
cal, hence the terminology “geometry-induced wave-function
collapse.” In particular, depending on the angular momentum
and the energy of the particle, the inverse square-distance
potential can generate bound states, conventional scattering
states, and collapse states that are essentially an abnormal type
of scattering states. The emergence of the collapse states was
demonstrated through the LDOS that exhibits infinite oscil-
lations with the energy near the zero energy point separating
the scattering states from the bound states. We note that this
feature of infinite oscillations was previously used to estab-
lish the atomic collapse states about a Coulomb impurity in
graphene [7,32]. From a classical point of view, the geometry-
induced and Coulomb-impurity induced collapse states share
a common feature: the particle appears to fall into the center
but will escape eventually either due to the finite ρ0 or the
complex eigenenergy. A key difference is that the geometry-
induced collapse states uncovered here are a nonrelativistic
quantum phenomenon while the atomic collapse states have a
relativistic quantum origin.

The mechanism for the geometry-induced collapse states
can be intuitively understood by noting that the sign of the
effective radial potential is determined by [Eq. (10)]

l2

α2
− 1 − α2

4α2
,

where the second term is due to the mean curvature of the
truncated cone. For the quantum states corresponding to zero
angular momentum, the effective potential is attractive. The
inverse squared distance dependence in Eq. (9) makes this
type of geometry-induced “Coulomb impurity” much stronger
than a usual Coulomb potential, thereby leading to collapse
states with the classical picture of a particle falling into the
center of the cone. For positive energy states, due to the
reflection at ρ0, the particle will eventually escape to infinity.
More specifically, for α → 1, the geometry-induced attractive
potential vanishes, and the quantum states degenerate to those
described by the zeroth-order Bessel functions, which are
scattering states in the 2D plane with a hard hole around
the center. In this case, neither bound nor collapse states
are possible. In the opposite extreme α → 0, the depth of
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the attractive potential becomes infinite, so only the bound
states are possible. In between the two extreme cases where
0 < α < 1, collapse states can arise, which is promising to be
observed in experiments.
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APPENDIX A: GAUSSIAN AND MEAN CURVATURES OF A
CONIC SURFACE

From the Gauss-Bonnet theorem∫∫
int(γ )

KdA = 2π −
∫

γ

κgds = 2π (1 − α), (A1)

where the path γ is illustrated in Fig. 1, the Gaussian curvature
satisfies the equation

∞∫
0

Kαρdρ

∫ 2π

0
dϕ = 2π (1 − α). (A2)

The Gaussian curvature of a conic surface is thus given by

K =
(

1 − α

α

)
δ(ρ)

ρ
, (A3)

where the δ-function singularity originates from the apex of
the cone. The mean curvature, the average of the maximal and
minimal normal curvatures, is

KM =
√

1 − α2

2αρ
, (A4)

where k1 = 1/(αρ), k1,n = √
1 − α2/(αρ), and k2 = k2,n =

0.

APPENDIX B: SOLUTIONS OF THE SCHRÖDINGER
EQUATION IN THE ANGULAR MOMENTUM

REPRESENTATION

The general solution of Eq. (8) is

y(x) = AJν (x) + BYν (x), (B1)

where the orders ν and x are real or purely imaginary. The
series representation of Jν (x) is

Jν (x) =
∞∑

k=0

(−1)k

k!�(k + ν + 1)

( x

2

)2k+ν

, (B2)

which satisfies Eq. (8) regardless of whether the order and the
argument are real or purely imaginary.

For clarity, the quantities ν and x are defined to be real. If
ν is real, then ν � 0; if ν is purely imaginary, then write ν

as iν, ν > 0. Similarly, if x is real, we have x � 0, and if x is
purely imaginary we write x as ix, x > 0, respectively. Real
ν values correspond to quantum states of nonzero angular

momenta and purely imaginary ν values are associated with
the zero angular momentum states. Real and purely imagi-
nary x values are indicative of positive and negative energies,
respectively. In particular, if the order ν or the argument x is
purely imaginary, Jν (x) and Yν (x) may not be real. Hence, it
is necessary to give some extra definitions for the real Bessel
functions [49,74].

If both ν and x are real, the real solution is

y(x) = AJν (x) + BYν (x). (B3)

If ν is real but ix is purely imaginary, the real solution is

y(x) = AIν (x) + BKν (x). (B4)

For iν purely imaginary and x real, the real solution is

y(x) = AFiν (x) + BGiν (x). (B5)

If both iν and ix are purely imaginary, the real solution is

y(x) = ALiν (x) + BKiν (x). (B6)

All these solutions can be written as Jν (x), J−ν (x), Jν (ix),
J−ν (ix), Jiν (x), J−iν (x), Jiν (ix), J−iν (ix), or their combinations:

Iν (x) = i−νJν (ix), (B7)

Kν (x) = π [I−ν (x) − Iν (x)]/[2 sin (νπ )], (B8)

Fiν (x) = 1

2

{
e−πν/2H (1)

iν (x) + eπν/2H (2)
iν (x)

}
= 1

2
{AνJiν (x) + iBνYiν (x)}, (B9)

Giν (x) = 1

2i

{
e−πν/2H (1)

iν (x) − eπν/2H (2)
iν (x)

}
= 1

2i
{BνJiν (x) + iAνYiν (x)}, (B10)

Liν (x) = iCν{I−iν (x) + Iiν (x)}
= iCν

{
iiνJ−iν (ix) + i−iνJiν (ix)

}
, (B11)

Kiν (x) = Cν{I−iν (x) − Iiν (x)}
= Cν

{
iiνJ−iν (ix) − i−iνJiν (ix)

}
, (B12)

where

Aν = e−πν/2 + eπν/2,

Bν = e−πν/2 − eπν/2,

Cν = π/[2 sin (iνπ )].

The power series representations of Fiν (x), Giν (x), Liν (x), and
Kiν (x) are given by [49]

Fiν (x) = Dν

∞∑
s=0

(−1)s cos [αν,s(x)]

βν,s

( x

2

)2s
, (B13)

Giν (x) = Eν

∞∑
s=0

(−1)s sin [αν,s(x)]

βν,s

( x

2

)2s
, (B14)

Liν (x) = Mν

∞∑
s=0

cos [αν,s(x)]

βν,s

( x

2

)2s
, (B15)
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Kiν (x) = −Mν

∞∑
s=0

sin [αν,s(x)]

βν,s

( x

2

)2s
, (B16)

where

αν,s(x) = ν ln (x/2) − φν,s,

βν,s = s![(ν2)(12 + ν2) · · · (s2 + ν2)]1/2,

Dν =
(

2ν tanh (νπ/2)

π

)1/2

,

Eν =
(

2ν coth (νπ/2)

π

)1/2

,

Mν =
(

νπ

sinh (νπ )

)1/2

,

and φν,s = arg{�(1 + s + iν)}, where φν,s is continuous for
0 < ν < ∞, with limν→0 φν,s = 0.

For x → 0+, we have

Fiν (x) → Dν cos [ν ln (x/2) − φν,0]/ν, (B17)

Giν (x) → Eν sin [ν ln (x/2) − φν,0]/ν, (B18)

Liν (x) → Mν cos [ν ln (x/2) − φν,0]/ν, (B19)

Kiν (x) → −Mν sin [ν ln (x/2) − φν,0]/ν. (B20)

For x → +∞, we have

Fiν (x) → J0(x), (B21)

Giν (x) → J1(x), (B22)

Kiν (x) ∼
( π

2x

)1/2
e−x, (B23)

Liν (x) ∼ 1

sinh (νπ )

( π

2x

)1/2
ex. (B24)

For ν → 0+ and any definitive x we have,

Fiν (x) ∼ lim
ν→0+

∞∑
s=0

J0(s, x) cos (φν,s) = J0(x), (B25)

lim
ν→0+

Giν (x) → Y0(x) (B26)

where

Jν (x) ≡
∞∑

s=0

Jν (s, x) =
∞∑

s=0

(−1)s

s!�(s + ν + 1)

( x

2

)2s+ν

. (B27)

For x → 0+ and ν → 0+, the amplitudes of Fiν and Giν tend
to 1 and ∞, respectively. In this case, the function Giν can be
neglected.

For x → +∞, we have

Fiν (x) →
(

2

πx

)1/2

{ζ (iν) cos α − η(iν) sin α}, (B28)

Giν (x) →
(

2

πx

)1/2

{ζ (iν) sin α + η(iν) cos α}, (B29)

Jν (x) →
(

2

πx

)1/2

cos β, (B30)

where α ≡ x − π/4 and β = α − νπ/2, and for x → +∞

ζ (iν) ≡
∞∑

s=0

(−1)s A2s(iν)

x2s
→ 1

η(iν) ≡
∞∑

s=0

(−1)s A2s+1(iν)

x2s+1
→ 0,

As(iν) = (4(iν)2 − 12) · · · [−4(iν)2 − (2s − 1)2]

s!8s
,

which lead to Eqs. (B21) and (B22).
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