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Tomography of time-dependent quantum Hamiltonians with machine learning
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Interacting quantum Hamiltonians are fundamental to quantum computing. Data-based tomography of time-
independent quantum Hamiltonians has been achieved, but an open challenge is to ascertain the structures of
time-dependent quantum Hamiltonians using time series measurements taken locally from a small subset of
the spins. Physically, the dynamical evolution of a spin system under time-dependent driving or perturbation is
described by the Heisenberg equation of motion. Motivated by this basic fact, we articulate a physics-enhanced
machine-learning framework whose core is Heisenberg neural networks. In particular, we develop a deep
learning algorithm according to some physics-motivated loss function based on the Heisenberg equation, which
“forces” the neural network to follow the quantum evolution of the spin variables. We demonstrate that, from
local measurements, not only can the local Hamiltonian be recovered, but the Hamiltonian reflecting the
interacting structure of the whole system can also be faithfully reconstructed. We test our Heisenberg neural
machine on spin systems of a variety of structures. In the extreme case in which measurements are taken from
only one spin, the achieved tomography fidelity values can reach about 90%. The developed machine-learning
framework is applicable to any time-dependent systems whose quantum dynamical evolution is governed by the
Heisenberg equation of motion.
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I. INTRODUCTION

Quantum computation based on spin is a fundamental
component of quantum information science and technology
[1]. Recently, it has been demonstrated that manipulating 50
spins can generate a computational capability beyond any kind
of classical computers, leading to quantum supremacy [2,3].
From a network point of view, the information exchange be-
tween any pair of spins can be regarded as a link between the
two spins. When the interactions associated with all spin pairs
are taken into account, the end result is effectively a network,
giving rise to a subfield called a qubit or a spin system [4–6].
Experimentally, a multispin coupling system can be realized
using cavity quantum electrodynamics [7], ion traps [8], or
superconducting qubits [2,3].

There are two types of quantum Hamiltonians: time-
independent or time-dependent. In the former case, the system
can be decomposed into a sequence of quantum gates [9],
resembling a classical circuit structure. Since the Hamilto-
nian is constant over time, this effectively leads to quantum
adiabatic computing systems, where quantum computing al-
gorithms can be performed on the ground states [10]. For
time-dependent Hamiltonians, both spin coupling and an ex-
ternal, time-varying field [11] or an output control signal [12]
are present. It was argued that in time-varying spin systems,
the problem of switch off can be mitigated, and the compu-
tation speed can be enhanced [13]. In general, an external
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field can serve to increase the computational capacity even
for relatively simple spin system structures [12,14]. How-
ever, it is challenging to analyze and realize time-dependent
control of spin systems. Recently, the idea of embedding a
time-dependent Hamiltonian into a time-independent one was
studied, but the generality or universal applicability of this
approach remains unknown [15,16]. In addition, deep neural-
network-based techniques for quantum state classification and
reconstruction have been proposed [17,18].

In recent years, the inverse problem of spin systems has
attracted a great deal of attention. The basic question is,
given only limited access to the system, i.e., when only part
of the system can be measured, can the global structure of
the spin system be determined? Previous efforts focused on
monitoring the Hamiltonian as a function of time through the
eigensystem realization algorithm (ERA) [19,20], compres-
sive sensing [21,22], machine learning [15,16], or quantum
quench [23]. The basic idea is to find the coefficients of the
power series terms constituting the Hamiltonian in some basis.
However, when applied to time-dependent quantum Hamilto-
nians, these approaches are limited to systems of a single spin
or those with a special type of external field [22,24,25]. The
general difficulty is that the functional form of the time signal
generates an optimization problem in infinite dimensions [26],
rendering inapplicable any optimization algorithm designed
for finding a finite number of parameters. For the methods
based on the eigenstates, difficulties arise when the system
changes too fast with time [19,20,25]. Different inverse meth-
ods were tested using experimental data of time-independent
spin systems [27]. A method of unsupervised learning based
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on the principle of inheritance was proposed [28] to find the
coupling profile and coefficients for spin systems. In addition,
a method was proposed to find the local Hamiltonian from
local measurements [25]. The previous studies focused on
time-independent quantum Hamiltonian systems.

In this paper, we solve a general class of inverse prob-
lems in spin systems by exploiting machine learning [29].
Our work was partly inspired by the recent work on classi-
cal Hamiltonian neural networks (HNNs) [30–34], where the
basic idea is to introduce a physics-based, customized loss
function to “force” the dynamical evolution of the system to
follow that stipulated by the classical Hamilton’s equations.
However, the existing HNNs are not directly applicable to
quantum Hamiltonians, thereby requiring new approaches.
Our idea originates from the basic physical consideration that
the dynamical evolution of spin systems is governed by the
Heisenberg equations of motion. We are thus motivated to
develop a class of Heisenberg neural networks (HENNs) by
exploiting deep learning to predict the Hamiltonian but under
the constraint of the Heisenberg equations of motion. The
HENNs have the advantage of guaranteeing that the under-
lying quantum evolution possesses Hermitian structure. The
quantum Hamiltonians to be studied in this paper are assumed
to meet the following requirements: (i) they vary continuously
with time (a commonly encountered situation in experiments),
(ii) the measured spins are coupled with the rest of the spins
directly or indirectly, and (iii) there are no Pauli terms in the
Hamiltonian that commute with each other.

Our main results pertain to the original time-dependent
quantum Hamiltonians, whose structure is to be determined
based on incomplete local measurements, and the HENN,
which is an artificial neural network for predicting the
Hamiltonian of the original system. We treat the dynamical
evolution of the original system in terms of both Schrödinger
and Heisenberg pictures. We demonstrate that, with only lo-
cal measurements, the local Hamiltonian can be recovered,
similar to the solution of the local Hamiltonian learning
problem [25]. In particular, defining the tomography fidelity
as the ratio between the correctly predicted links and the
total possible number of links in the underlying spin sys-
tems, we find that the fidelity can reach 90% even when
the number of spins measured is much smaller than the
system size. In fact, the predicted Hamiltonian contains
global information about the coupling profile of the orig-
inal quantum Hamiltonians. We note that the problem of
network reconstruction or tomography has been well stud-
ied in classical nonlinear dynamical systems [35–39], and
there was also a study of structure identification for time-
independent quantum Hamiltonians [40]. Our work goes
beyond the relevant literature in that we have successfully
articulated and validated a general machine learning frame-
work of quantum tomography for time-dependent quantum
Hamiltonians.

Three remarks are in order.
Remark 1. It is worth noting that the problem of initial-

ization in quantum Hamiltonian tomography is challenging
and has not been solved. The current state of the field is that,
even when measurement is done locally, initial state prepa-
ration for the whole system is still required. This is the case
for algorithms such as the eigensystem realization algorithm

(ERA) [19,20]. Even for the problem of local Hamiltonian
recovery, the requirement is that initially the system must
be in an eigenstate [25]. To our knowledge, the only case
in which initial state preparation is not required is when the
spin system structure is already known [41]. The important
feature of our work is a machine-learning approach to to-
mography of time-dependent quantum Hamiltonians without
any prior knowledge about the network structure. As in the
existing studies treating time-independent quantum Hamilto-
nians [15,16,19–22], a large number of given initial states is
required. However, state preparation methods are currently
available [42–44].

Remark 2. A closely related approach is quantum process
tomography (QPT) [45,46], which has been investigated but
for time-independent quantum Hamiltonian systems. When
carrying out QPT, one prepares an initial quantum state,
performs observations, and repeats the process for different
initial states until the observations are sufficient for matrix
inversion. The advantage of the QPT approach is that only
local measurements are required. For a spin network of size
n, the required number of observations is 16n. There were
experimental results for systems of two or three spins [47–49].
In comparison with QPT, our HENN approach thus has two
advantages: applicability to time-dependent systems, and a
significant reduction in time complexity from 16n to 4n.

Remark 3. Recently, a recurrent neural network (RNN)
-based method was proposed to recover a time-independent
or a time-dependent Hamiltonian from a single spin measure-
ment in a spin system of up to seven spins [50]. There is
a fundamental difference between our work and Ref. [50].
In particular, in Ref. [50], it is required that the coupling
structure of the original Hamiltonian be pregiven, whereas our
HENN method does not require the structure of the quantum
Hamiltonian to be known a priori. In our work, the hidden
structure of the Hamiltonian is first obtained through HENN,
which can then be used to find the full Hamiltonian of the
target system, e.g., by using the method in Ref. [50].

In Sec. II, we describe the HENN learning framework. In
Sec. III, we test our machine-learning method using a variety
of time-dependent quantum Hamiltonians, which include net-
works with short- or long-range interactions and two quantum
gates. In Appendix A, we present analytic results with HENNs
for one- and three-spin systems.

II. TIME-DEPENDENT QUANTUM HAMILTONIANS
AND HEISENBERG NEURAL NETWORKS

Consider a system of spins coupled by an external field.
The Hamiltonian is

H (t ) = h(1) + f (t )h(2), (1)

where h(1,2) represent the time-independent Hamiltonian and
f (t ) is a continuous function of time that is the result of the
application of a time-dependent electrical or magnetic field.
Suppose the system is initially in the state |ψ0〉 at t = 0. In the
Schrödinger picture where the state evolves with time but the
operators are time-invariant, at time t the expectation value
of an operator A is given by 〈A〉t . In the Heisenberg picture
where the state does not change with time but the operators
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do, an operator evolves according to the Heisenberg equation

dAH

dt
= i[HH (t ), AH (t )], (2)

where the superscript H specifies that the corresponding ma-
trix is in the Heisenberg picture, HH (t ) = U †

t,0H (t )Ut,0, and
Ut,0 and H (t ) do not commute with each other due to the
time dependence. Once HH (t ) is known, the corresponding
Hamiltonian in the Schrödinger picture H (t ) can be deter-
mined. The goal is to solve the Heisenberg equation based
on the observations of A.

Since Eq. (2) is a set of linear equations in HH (t ), for any
time t the equations are solvable if the number of nonequiv-
alent equations is no less than the number of unknown
elements. That is, the noncommutative operators at all times,
AH (t ), are required to be known. This is a key difference
from time-independent systems, where HH (t ) = H , so one
operator at any time, AH (t ), can be used as the noncommu-
tative operator. In this case, once the observations (e.g., time
series) are sufficient, the Hamiltonian can be fully determined
[19,20].

The number of independent elements in the Hamiltonian
matrix provides another angle to appreciate the complexity of
the problem. In particular, for a system with n spins, at a spe-
cific time t , the Hamiltonian in Eq. (1) can be represented by
a Hermitian matrix in terms of the N = 2n linearly indepen-
dent states. There are altogether N2 = 4n bases for an N × N
Hamiltonian matrix that is Hermitian. To fully solve Eq. (2)
will thus require all the 4n measurements at a given time.
For example, for a two-spin system, there are four linearly
independent states, so in principle 16 observations are needed.
These observations can be generated by the direct product of
the Pauli matrices Sα,β = σ 1

α ⊗ σ 2
β , where α and β are integers

ranging from 0 to 3, which correspond to the identity and the
three Pauli matrices σx, σy, σz. For these 16 matrices, one is an
identity that commutes with all other matrices. Consequently,
we need at least 2N − 1 = 4n − 1 measurements to fully de-
termine the Hamiltonian.

When the quantum states of all spins can be measured, it
is straightforward to obtain the Hamiltonian matrix through
Eq. (2). A difficult situation is that only a small fraction of
the spins in the network, e.g., one or two, can be measured.
Experimentally, measurements or observations have been re-
ported for one-, two-, and three-spin systems [51–53]. The
pertinent question is, what can we learn about the whole net-
work system when only local measurements in some subspace
of the full space are available? To address this question, we
decompose the Hamiltonian as

H = Ho + Hi︸ ︷︷ ︸
Ho′

+Hh, (3)

where Ho is the subspace Hamiltonian for the observed
spins, Hi represents the interaction between the observed and
the nonobservable spins, and Hh is the Hamiltonian for the
nonobservable spins. Let Ho′ ≡ Ho + Hi, which is the sub-
Hamiltonian that contains information directly related to the
observed spins.

Take a three-spin system as an example, as shown in
Fig. 1(a). The three spins are labeled with 1,2,3, and we as-
sume that only the first spin can be measured. The subspace of

1

2 3

FIG. 1. Three- and four-spin systems and the machine-learning
architecture. (a) Schematic illustration of the local observation of the
Hamiltonian in a three-spin system. Say only one node or spin (spin
no. 1) can be observed, which corresponds to the Hamiltonian Ho.
The Hamiltonian for the nonobservable nodes and their interactions
are labeled as Hh. (b) Machine-learning (neural network) architec-
ture, where the nodes in the hidden layers are represented by black
squares, the input and output are denoted by open squares, and the
various weighted links (solid line segments) connect the input to the
output. The input is one-dimensional: it is simply the time variable t .
The output constitutes the elements of the matrix HH (t ) whose size is
determined by the size of the spin system. The weight associated with
each link is calculated by the autogradient method to minimize the
custom loss Eq. (4). (c1)–(c3) Possible architectures of a four-spin
system, where the filled circle represents the observable spin in the
network. The networks in (c1)–(c3) have a chain, a cyclic, and a tree
structure, respectively. For n = 3 and 5, structures similar to those in
(c1)–(c3) exist.

Ho contains three bases corresponding to the Pauli matrices for
the first spin Ho = σ 1, and Hi contains two-body interactions
between the first spin and the second or the third spin and the
three-body interaction:

Hi = σ 1(σ 2 + σ 3 + σ 2σ 3).

The subspace Hamiltonian Hh contains the Pauli matrices for
the second and third spins as well as the two-body interac-
tion between them: Hh = σ 2 + σ 3 + σ 2σ 3. Overall, this is a
three-node spin system, where the nodal interactions represent
different links. For each node, three independent quantities
(the three Pauli matrices) are needed to characterize the spin
polarization, which generate different combinations of cou-
pling. A unique feature of spin systems, which is not present in
classical complex networks, is that one link can couple more
than two nodes.

The decomposition scheme in (3) is valid only in the
Schrödinger picture. In the Heisenberg picture, different sub-
spaces are mixed together in the time evolution, so all the
subspace must be simultaneously determined. For limited ob-
servations, the solutions of the Heisenberg equation can be
nonunique. To overcome this difficulty, we exploit machine
learning to predict the Hamiltonian. Inspired by the work of
HNN, whose loss function is based on the Hamilton’s equa-
tions of motion [30–34] for time-independent spin systems,
we articulate a general class of HENNs that conform with the
Heisenberg equations of motion with broad applicability to
both time-dependent and time-independent spin systems.
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TABLE I. Training parameters for HENN.

Description Values

Number of initial states for n = 3, 4, 5 100, 300, 1100
Number of observations for one or two spins 3, 15
Number of discrete-time points 100

Figure 1(b) shows our neural network architecture with two
hidden layers. The input is one-dimensional: it is simply the
time t . Each layer is a convolution of the preceding layer:
al = τ (Wl · al−1 + bl ), where al is the state vector of the
lth layer, W is the weighted matrix connecting layers l and
l − 1, bl is the bias vector of layer l , and τ is a nonlinear
activation function, e.g., τ = tanh. The matrix W and the
bias vector bl are to be determined through training based
on spin measurements. The output is the Hamiltonian matrix
in the Heisenberg picture. In our study, we use two hidden
layers, each with 200 nodes. The neural network is built
by TENSORFLOW and the KERAS package [54]. We use the
stochastic gradient descent (SGD) and adaptive momentum
(Adam) methods to determine the optimal weighted matrix
Wl and the bias vector bl by minimizing an appropriate loss
function [55]. In particular, we define our loss function as the
mean-square error in the time derivatives of the observation as

L =
∑

observations

|〈Ȧ(t )〉real − 〈Ȧ(t )〉pred|2, (4)

where Ȧpred(t ) = i[HH (t ), A(t )], and the matrix HH (t ) is the
output of the HENN. Once the time derivatives for some given
observations are known, we input them to the loss function as
the target to train the HENN and subsequently to predict the
Hamiltonian. Due to incomplete measurement and finite opti-
mization steps, the predicted Hamiltonian varies over different
rounds of training. It is thus necessary to take the statistical
average of the prediction and to calculate the variance.

The training data are measured time series, from which the
corresponding derivative of the loss function can be estimated.
The total amount of training data depends on three factors: the
number of linearly independent states, the number of observa-
tions, and the number of time discrete points. In Table I, we
list the amount of training data required for different exam-
ples. For example, for a chain structure of n = 4 spins with
one spin observed, the required number of training data points
is 300 × 3 × 100 = 90 000. Since the HENN is trained for a
specific structure, for a different Hamiltonian the deep neural
network needs to be retrained.

It can be shown that the sub-Hamiltonian Ho′ in Eq. (3)
containing information directly related to the observed spins
can be recovered [25]. For the subsystem not directly related
to the observed spin, its Hamiltonian Hh cannot be fully re-
covered. However, we can show that, in the subspace of Hh,
if the machine-predicted coupling value between two nodes is
smaller than some threshold, then it effectively indicates null
coupling. This means that our HENN is capable of determin-
ing the coupling configuration for the quantum Hamiltonian
based on whether the predicted Hamiltonian matrix elements
are zero or finite, providing a solution to the tomography
problem for the whole system. In particular, the tomography

contains two types of information: whether the spins are cou-
pled, and if so, how they are coupled. The first one is related to
the spatial structure of the network, as exemplified in Fig. 1(a),
where spin 1 is coupled to spins 2 and 3. The second type
of information gives the type of coupling among all possible
coupling configurations determined by the spin polarization
vector at each node.

The prediction phase of our HENN thus consists of the
following steps:

First, for a given quantum spin system, we take mea-
surement A from some part of the system and calculate the
corresponding matrix elements AH (t ) based on the linear
equation

〈ψ0|AH (t )|ψ0〉 = 〈A〉t .

To obtain the matrix elements, the number of linearly in-
dependent initial states must be larger than the number of
independent elements of the matrix. Specifically, for a spin
system with n spins, at least 4n linearly independent initial
states are needed.

Second, we build up a neural network as in Fig. 1(b) with
input time t and output as the matrix elements HH (t ). We train
the network using the loss function defined in Eq. (4). After
the HENN is properly trained, we evaluate the Hamiltonian
for a given time series, and we convert it into the Schrödinger
picture. The coupling among the nodes can be obtained from
the decomposition

H(t ) = c0(t )I +
∑
i, j

ci j (t )σ i
j,

+
∑

i, j,k,m

ci jkm(t )σ i
jσ

k
m + · · · ≡

∑
i

ci(t )Si, (5)

where Si is the basis of the N-dimensional Hamiltonian ma-
trix, and ci(t ) is the corresponding coupling coefficients at
time t . We choose Si to be the direct product of the Pauli ma-
trices plus the identity matrix. The coefficients ci(t ) determine
the coupling configuration of the system.

Third, after obtaining the time series of the coupling
coefficients, we take the time average for each basis ci =∫ t

0 |ci(t )|dt and normalize them by their maximum value. We
set some threshold: any value above which an existent cou-
pling is indicated between the corresponding spins.

To better illustrate our HENN-based machine-learning pro-
cedure, in Appendix A we present two explicit examples for a
HENN-predicted Hamiltonian: a one-spin system and a three-
spin system.

III. RESULTS

We test the predictive power of the proposed HENNs for a
number of spin systems. As noted, in a quantum spin system
the concept of links can be quite different from those in classi-
cal networks. In particular, one link is referred to as a specific
way of coupling in the underlying spin system. For a system
with n spins, the total number of linearly independent states is
2n. The total number of independent elements in the Hamilto-
nian matrix is 4n, which is the total number of possible ways
of coupling in the system. The links are generated by the direct
products of the Pauli and identity matrices. The types of links
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include self-coupling, two-body interactions, and long-range
interactions. A quantity to characterize the machine-learning
performance is the tomography fidelity, defined as the ratio
between the number of correctly predicted links and the total
possible number of links. Disregarding the identity matrix, we
define the tomography fidelity as

Ft = 4n − 1 − (no. of missing links)

4n − 1
, (6)

where the tomography is meaningful for Ft > 50%. A more
useful characterizing quantity is the success in identifying the
structure of Hh, as this is proof that the method can not only
yield the structure of the subsystem from which measurements
are taken (Ho′ ), but also information about the complementary
subsystem from which no observations are made (Hh), so that
information about the whole system can be obtained. This
alternative fidelity measure is defined as

Ft ′ = 4n′ − 1 − (no. of missing links)

4n′ − 1
, (7)

where n′ = n − nobs, and nobs is the number of spins from
which observations are taken.

Another quantity is the fidelity measure for local Hamilto-
nian Fo′ defined as

Fo′ = 1 − ‖Ho′(pred) − Ho′(real)‖
‖Ho′(real)‖ , (8)

where Ho′(real) and Ho′(pred) are the real and predicted local
Hamiltonians, respectively.

A. Tomography of spin systems based on two-body interactions

The sub-Hamiltonians h(1) and h(2) in (1) of a spin system
with two-body interactions are given by

h(1,2) =
n∑

i=1

3∑
j=1

c(1,2)
i j σ i

j

+
n∑

i=1

n∑
j=i+1

3∑
m=1

3∑
l=1

wi jc
(1,2)
i jml σ

i
mσ

j
l ,

(9)

where c’s are random numbers between 0 and 1. The super-
script of σ indicates the number of spins, which varies from
1 to n, the subscripts 1,2,3 denote the x, y, and z components
of the spin, respectively, wi j is the i jth element of the adja-
cency matrix as in a conventional, undirected network, where
wi j = 1 indicates there is coupling between spin i and spin j,
otherwise wi j = 0. The first term of h contains self-couplings,
and the second term contains two-body couplings. Due to
the exponential growth of the computational overload with
the number of spins in the network, we limit out study to
networks with n � 5 spins. The Hamiltonian (9) arises in a
variety of physical situations such as the Heisenberg model
or spin glass systems [56,57]. The time dependence in the
general Hamiltonian (1) is introduced into the network with
the following “driving” function of time:

f (t ) = sin(ωt + 2πφ), (10)

where ω and φ are random numbers whose values are taken
between 0 and 1.

We test HENNs with the three structures shown in
Figs. 1(a) and 1(c1)–1(c3). The main difference among them
lies in the degree of the observed node. For example, for the
networks in Figs. 1(c1)–1(c3), the degree of the observed spin
is 9, 18, and 27, respectively. To generate the data, we choose
100, 300, and 1100 random initial conditions for n = 3, 4,
and 5. For each initial condition, we numerically integrate the
Heisenberg equation (2) for 0 < t < 5, and we extract from
this time interval 100 equally spaced points as the measure-
ment data. The calculated time series for a given initial state
correspond to observations of σx, σy, and σz for the specific
local spin in the network from which measurements are taken.
We take the time derivative defined in Eq. (4) as the loss
function for training the HENN. Following the steps described
in Sec. II, we obtain the predicted interaction structure of
the network. Comparing with the actual structure gives the
tomography fidelity. Since the fidelity may vary for a different
Hamiltonian, for each specific type of networks, we repeat this
process 100 times.

Figure 2(a) shows the results of reconstructing the cyclic
network of three spins in Fig. 1(a), where the degree of each
node is 18 (excluding self-interactions) and there are 64 dis-
tinct links in the network. What is displayed is the average
predicted coupling value c versus the link index, and the blue
squares and red circles denote the existent and null links,
respectively. The dashed horizontal line defined at 10% of
the maximum coupling value can separate the majority of the
existent links from the majority of the null links. Figures 2(b)
and 2(c) show the results from similar cyclic networks but
with four and five spins, respectively, with the same legends
as those in Fig. 2(a). These results indicate that, even when
measurements are taken from only one spin, the coupling
structure of the time-dependent Hamiltonian can be predicted
by our HENN with a reasonably high accuracy.

A heuristic reason that the HENN is able to predict the
structure of the spin system correctly from only local measure-
ments is as follows. Recall that the input to the HENN is time,
a continuous variable. The differential property of the neural
network guarantees that the predicted Hamiltonian must be
continuous and the time change for the predicted Hamiltonian
must follow the Heisenberg equation as stipulated by the
physically meaningful loss function. With these constraints,
data from different time will instill the correct physical re-
lationships among the dynamical variables into the neural
network. As a result, the difficulty of the nonuniqueness of
the solutions when solving the linear equations is overcome.

To further characterize the performance of HENNs for
different network structures, we calculate the average fidelity
measures for nine distinct networks that include the chain,
cyclic, and tree structures in Figs. 1(c1)–1(c3), respectively,
each with n = 3, 4, and 5 spins, as shown in Figs. 3(a), 3(b),
and 3(c) for the measures Ft , Ft ′ , and Fo′ , respectively. For
the network structures in Figs. 1(c1)–1(c3), the degrees of the
measurement spin are 9, 18, and 27, respectively. For a fixed
number of spins in the network, the fidelity value decreases
with the degree of the measurement spin.

The results in Fig. 3 can be explained as follows. In gen-
eral, a higher degree of the observed spins means that the
measured time series are more complicated. Our calculation
shows that the accuracy for the predicted Hamiltonian directly
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FIG. 2. Tomography performance of HENN for cyclic networks
of n = 3, 4, and 5 spins. The network structure is given in Fig. 1(a).
(a) Reconstructed coupling value c vs the total number of possible
links. The result is for one of the spin systems with the average
tomography fidelity value from 100 random realizations. The ab-
scissa represent the number of possible links for n = 3, where the
basis ranges from σ 1

0 ⊗ σ 2
0 ⊗ σ 3

1 to σ 1
3 ⊗ σ 2

3 ⊗ σ 3
3 , where the total

number of possible links is 4n − 1 = 63 (with the identity matrix
taken away). The blue squares represent the true, existent links, while
nonexistent or null links are denoted by red circles. The horizontal
dashed line is taken at 10% of the predicted maximum coupling
value. (b,c) Results from n = 4 and 5, respectively, with the same
legends. In all cases, the horizontal dashed line can serve as a
threshold for separating the majority of the existent links from the
majority of the null links, attesting to the ability of the machine-
learning scheme to infer the whole network structure from local
measurements only.

connected to the observed node Fo′ remains approximately
the same, but the prediction accuracy of the hidden structure
decreases with the degree of the observed spin. Note that, for
n = 3, a cyclic structure and a tree structure have the same
degree. For the tree structure, the HENN reveals a coupling
between two nonobserved nodes that does not exist in the orig-
inal system. This is the reason that the tomography fidelity is
smaller for the tree structure than that for the cyclic structure.

Note that the measure Ft is defined for the whole net-
work, which takes into account not only the links between
the measurement spin and the nonobservable spins, but also

FIG. 3. Tomography fidelity measure. (a) Average tomography
fidelity Ft and the standard deviation for nine distinct networks of
three types of structures in Figs. 1(c1)–1(c3), respectively, each with
n = 3, 4, and 5 spins. In all cases, local measurements from only
one spin are taken. (b) Average alternative tomography fidelity Ft ′ for
n = 4 and 5, corresponding to n′ = 3 and 4, respectively. (The results
from n = 3 contain large statistical errors because of the relatively
small size of the system, and thus they are not shown so that the
results for n = 4 and 5 can be seen clearly.) In all cases, the fidelity
values are above 80%, indicating the predictive power of HENN.
(c) The accuracy for the sub-Hamiltonian that contains information
directly related to the observed spins Ho′ for n = 3, 4, and 5 spins
with 48, 192, and 768 time series, respectively.

the links among the nonobservable spins, where the latter are
characterized by the alternative tomography fidelity measure
Ft ′ . Since this measure is purely for the nonobservable spins
from which no measurements are taken, we expect its value
to be lower than that of Ft , as shown in Fig. 3(b). In spite
of the reduction in comparison with Ft , the values of Ft ′ for
n = 4 and 5 are still relatively high: approximately 80% and
larger, attesting to the power of our HENN scheme to extract
information from the nonobservable spins.

The accuracy for the predicted Hamiltonians directly re-
lated to the observed spin is shown in Fig. 3(c). Take a
four-spin system as an example. There are three self-coupling
terms: 27 two-body interactions, 81 three-body interactions,
and 81 four-body interactions. For comparison, we use 192
time series. As shown in Fig. 3(c) for different structures and
different numbers of spins, the values of Fo′ are larger than
90%. For spin systems with a tree structure, the fidelity is
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TABLE II. Tomography fidelity measures under different driving
functions.

f (t ) =
f (t ) = t/5 f (t ) = sin( π

5 t ) exp[−(t − 2.5)2]

Ft 97.4% ± 1.7% 96.7% ± 1.7% 96.3% ± 2.4%
Ft ′ 90.7% ± 6.4% 88.3% ± 6.5% 87.9% ± 7.3%
Fo′ 98.0% ± 1.0% 96.6% ± 1.3% 95.5% ± 1.9%

slightly lower than that for the other two structures. As the
system size increases, the variance becomes larger. However,
the overall fidelity values are uniformly high.

Another issue is the effects of the type of driving functions
on the tomography fidelity. To be illustrative, we choose three
different driving functions: f (t ) = t/5, f (t ) = sin(πt/5), and
f (t ) = exp[−(t − 2.5)2] for t ∈ [0, 5], representing linear, si-
nusoidal, and Gaussian pulse behaviors, respectively. Using
the cyclic structure of four spins with measurement obtained
from one spin as shown in Fig. 1(c2), we calculate the fidelity
measures Ft , Ft ′ , and Fo′ and list the results in Table II. These
results indicate that the fidelity is generally higher for the
relatively simple driving function f (t ) = t/5. In Table II, the
sinusoidal driving and Gaussian pulse contain one period. For
random frequency ω between 0 and 1, and for two oscillation
periods, the accuracy decreases slightly, indicating that for
more complex time series containing multiple oscillations, the
error will increase. Also, in our setting, the time series start
from t = 0, since the Hamiltonian to be predicted is in the
Heisenberg picture. However, to obtain the coupling profile
of the spin system, we need to change the Hamiltonian into
the Schrödinger picture, a task that will become difficult if an
initial period of the time series is missing.

Utilizing two-body coupling spin systems to evaluate the
performance of the HENNs has certain limitations. In par-
ticular, for a given network structure, when the number of
spins increases, the error appears to decrease, due mostly to
the exponential growth in the total possible number of links
in the network, which is an artifact. In some cases, the pre-
diction results can be trivial as the system size increases. For
example, if all the two-body couplings are null, then for n = 3
the tomography fidelity value will be about 40% because
approximately 60% of the links are of the two-body type.
Similarly, for n = 4 and 5, approximately 20% and 5% of
the links are of the two-body type, leading to artificial fidelity
values of about 80% and 95%, respectively. Comparing with
the results in Fig. 3, for n = 3 and 4, the trivial prediction
gives lower fidelity values, but the difference diminishes for
n = 5. Consequently, based solely on two-body interactions,
the fact that the tomography fidelity increases with the sys-
tem size is not synonymous with a better performance of
the algorithm for larger systems. For accurate tomography
of quantum spin systems, long-range interactions must be
included.

B. Tomography of quantum spin systems
with long-range interactions

We consider the more general Hamiltonian that contains all
short- and long-range interactions. Physical applications in-

clude the development of quantum gates such as the Toffoli or
the Fredkin gate that requires three-body interaction [58], spin
glass with infinite-range interactions [57], and quantum com-
puting that requires high coherence [53,59]. We decompose
the Hamiltonian into two components, h(1,2), as in Eq. (1),
which are given by

h(1,2) =
3∑

i1,i2,...,in=0

rc(1,2)
i1i2···inσ

1
i1σ

2
i2 · · · σ n

in , (11)

where c(1,2)
i1i2···in are random numbers between 0 and 1, and r

takes on the values of 1 or 0 with equal probabilities. The
network comes into existence only for r = 1. The function
f (t ) rendering the system time-dependent is chosen according
to Eq. (10).

We consider systems with n = 3, 4, or 5 spins with 100,
300, and 1100 random initial conditions, respectively. Observ-
ing one spin leads to time series of σx, σy, and σz from this
spin. If two spins can be measured, we choose the observation
variable to be σ 1

α ⊗ σ 2
β , where α and β are integers from 0 to

3, corresponding to the identity and the three Pauli matrices,
respectively. Excluding the identity operation, we have 15
measured time series of 100 equally spacing points in the time
interval 0 < t < 5.

Following the procedure described in Sec. II, we train
the HENN to predict the coupling configurations of the spin
systems with long-range interactions. Unlike the case in which
only two-body interactions are taken into account, here the
links are chosen randomly: we consider all possible links,
and any specific link does or does not exist with equal prob-
abilities. Figure 4 shows the prediction performance for a
network of n = 4 spins, where panels (a) and (b) correspond
to the cases of measuring one and two spins, respectively.
When only one spin is measured [Fig. 4(a)], most of the
existent and nonexistent links can be distinguished by the
10% threshold line, yet there are still quite a few links that
are on the “wrong” side. When two spins are measured, the
prediction accuracy is higher as there are far fewer incorrectly
predicted links. This is intuitively reasonable, as measuring
more spins is equivalent to imposing more constraints on
the predicted Hamiltonian so as to improve the prediction
accuracy.

Figure 5 shows the fidelity measure of predicting random
networks of n = 3, 4, and 5 spins from observing one spin
or two spins. As shown in Fig. 5(a), the fidelity value de-
creases as the number of spins increases. This is expected
because, when observing a fixed number of spins, a larger
system means more nonobservable spins and leads to larger
prediction uncertainties. Another expected feature is that, for
a fixed system size, observing two spins leads to higher
fidelity values [about 95% in Fig. 5(a)] as compared with
the case of observing one spin [about 85% in Fig. 5(a)].
Figure 5(b) shows that the fidelity measure with respect to
the hidden structure exceeds 50%, indicating that the interac-
tions among the nonobservable spins can be predicted with
statistical confidence. In fact, as stipulated by Eq. (11), our
HENN can predict not only the existence of the interactions,
but also their strength as characterized by the coefficients
c(1,2)

i1i2···in .
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FIG. 4. Prediction performance of HENN for a network of four
spins with long-range interactions. (a) Reconstructed coupling coef-
ficients vs those based on time series measured from one spin only.
The results are from one realization of the spin system with the
fidelity value equal to the average fidelity value over 100 random
realizations. The legends are the same as those in Fig. 2. (b) The
corresponding results when two spins are observed with the time
series as described in the text.

C. Tomography of quantum gates

We apply our HENN framework to a class of systems
that are fundamental to quantum computing: quantum logic
gates. Such a gate typically consists of two or three coupled
spins [1]. To be concrete, we consider the Toffoli and Fredkin
gates with three spins [58], and we demonstrate that HENN
can perform the tomography. Experimentally, these quantum
logic gates can be implemented with optical devices [60,61]
or superconducting qubits [62].

The Toffoli gate is a Control-Control Not gate, i.e., when
the first and second spins have the signal |11〉, the third spin
will flip [58], which requires a certain time, e.g., t = 1. By
this time, the evolution operator is

UToffoli =
(
I6

X(t = 1)

)
, (12)

where I6 is the 6 × 6 identity matrix,

X(t = 1) =
(

0 1
1 0

)
(13)

flips the third spin, and the off-diagonal blocks are zero. Sim-
ilarly, the time evolution operator for the Fredkin gate is

UFredkin =
⎛
⎝I5

X(t = 1)
1

⎞
⎠. (14)

(a)

(b)

FIG. 5. Fidelity of predicting random spin systems from observ-
ing one spin or two spins. (a) Average tomography fidelity Ft and the
standard deviation. Each data point is the result of averaging over 100
random initial-condition realizations. (b) The corresponding results
for Ft ′ . In the case of observing one spin, results for n = 3 contain
large fluctuations. When two spins are observed, only the five-spin
system generates reasonable values of Ft ′ . In general, observing two
spins leads to higher fidelity values.

A physical constraint for X(t ) is that, at t = 0, the system
does not evolve, so X(t = 0) = I2. To build such a time evo-
lution operator, one can use the underlying time-independent
Hamiltonian as a base (Appendix B), where the elements of
X(t ) are periodic functions, with the fundamental frequency
as the flipping rate. Searching for possible forms of X(t ) is a
basic issue in designing quantum logic gates [15,16].

To demonstrate the applicability of HENN to quantum
logic gates in a concrete manner, we choose X(t ) as

X(t ) = 1

2

(
1 + exp(iπt ) 1 − exp(3iπt )

1 − exp(3iπt ) 1 + exp(iπt )

)
(15)

to generate the time-dependent Hamiltonian. For training, we
generate time series from t = 0 to 1 with the time step dt =
0.01 from 100 random initial conditions, and the time evolu-
tion of the dynamical variables of the third spin is taken as the
measurements. For comparison, we calculate the tomography
fidelity for both the time-dependent and the corresponding
time-independent systems.

Table III lists the values of the tomography fidelity for
both Toffoli and Fredkin gates. It can be seen that the average

TABLE III. Tomography fidelity for Toffoli and Fredkin gates.

Toffoli gate Fredkin gate

Time-dependent 81% ± 3% 87% ± 3%
Time-independent 85% ± 4% 92% ± 3%
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FIG. 6. Network tomography fidelity under Gaussian noise. The
system is a cyclic network of four spins constructed according to
Eq. (9), where measurements are taken from one node. The additive
white Gaussian noise has the variance σ = 0.06, which is approxi-
mately one-third of the average variation of the measured time series.
The two sets of data represent the two fidelity measures Ft and Fo′ vs
the noise amplitude, where Fo′ characterizes the difference between
the recovered local Hamiltonian and the true one.

tomography fidelity for the Fredkin gate is larger than that for
the Toffoli gate. Both gates have seven links, but the Fredkin
gate has more three-body coupling terms than the Toffoli gate.
This means that, for the Fredkin gate, more links are directly
connected to the observed spin. When the system becomes
time-independent, the fidelity values are slightly higher.

D. Quantum tomography under noise

Noise arising from random coupling with the environment
will impact the quality of quantum tomography. Previously,
the issue of noise was studied in the context of Hamiltonian
learning [19,25]. Here, we study the effect of noise on our
HENN-based quantum tomography. A relevant point is that
HENN can predict the correct form but only of the local
Hamiltonian, so the Hamiltonian for the whole spin system
cannot be uniquely determined. This is similar to obtaining
the local Hamiltonian from local observations [25].

As a concrete example, we study a cyclic network of four
spins, where measurements are taken from only one spin,
which are subject to additive white Gaussian noise. The local
Hamiltonian Ho constitutes the three Pauli matrices for the
observed spin, giving rise to three measured time series. The
Hamiltonian Ho′ consists of the three Pauli matrices for the
observed spin and all the interactions that involve the observed
spin. In particular, there are 27 two-body interactions, 81
three-body interactions, and 81 four-body interactions. As a
result, Ho′ can generate a total of 192 time series. From a
different perspective, for a four-spin system, the total number
of dynamical variables is 256. When we measure one spin
so that the other three spins are not observed, Hh contains
one-fourth of the dynamical variables (43) while Ho′ has the
remaining variables.

Figure 6 shows that the fidelity value decreases, albeit
slowly, as the noise amplitude increases. The robustness of
HENN against weak noise is rooted in the goal of HENN:
finding one Hamiltonian that minimizes the loss function.
However, for strong noise, the derivatives in the Heisenberg

equation will generate unstable solutions. Figure 6 also re-
veals the similarity between local Hamiltonian recovery and
the tomography of the whole system. In particular, it demon-
strates that HENN can recover not only the local Hamiltonian,
but also the hidden structure of the spin system, which is not
a simple extension of the local Hamiltonian.

IV. DISCUSSION

In quantum tomography, learning time-dependent systems
from partial and limited measurements remains a challenge, as
it requires optimization in an infinite-dimensional space. Ma-
chine learning provides a potentially viable solution. Because
of the underlying physics of the spin systems, it is necessary
to incorporate the physical constraints into the learning algo-
rithms. Historically, the idea of developing physics-informed
artificial neural networks was conceived almost three decades
ago [30], but it has recently attracted revived attention, partic-
ularly in the context of Hamiltonian neural networks (HNNs)
[31–34]. Our idea is that, for time-dependent quantum sys-
tems, the Heisenberg representation is natural in which the
operators evolve with time as governed by the Heisenberg
equation. Neural networks taking into account the physical
constraints manifested as the Heisenberg equation should
provide an approach to tomography of time-dependent quan-
tum systems. Using spin systems that have been exploited
extensively in quantum computing as a paradigm, we have
developed a class of Heisenberg neural networks (HENNs)
and demonstrated that, based on the time series measurements
of local spin variables, not only the local Hamiltonian but that
of the whole spin system can be faithfully determined. The
method is effective even when measurements are conducted
on a small part of the system, e.g., measuring one spin in
a five-spin system. Considering that the existing algorithms
on quantum tomography of spin systems were designed for
networks whose structures are completely known [41,63,64],
our work represents a useful complement.

For quantum tomography of time-dependent interacting
spin systems, we have tested a variety of network structures.
In general, the tomography fidelity depends on the interacting
structure of the network. For example, it is inversely propor-
tional to the degree of the spin from which measurements
are taken (Fig. 3) when the spin system is relatively dense,
as a large degree means more interactions with the nonob-
servable spins. The fidelity value also depends on the number
of observed spins relative to the total number of spins in the
network, where, naturally, measuring more spins can lead to
higher fidelity values (e.g., Fig. 5). Indeed, a comparison of
the tomography results from the Toffoli gate with those from
the Fredkin gate reveals explicitly that more coupling links
with the spin being measured lead to increased fidelity values
when the spin system is relatively sparse.

A number of factors can affect the tomography accuracy.
For the spin systems studied, the choices of the coupling and
the time dependence as characterized by the driving function
f (t ) are arbitrary. Our study has revealed that the tomography
quality does not depend on the time signal insofar as the
length of the measured time series is proper, but the HENN
predicted Hamiltonian tends to deviate from the true one after
approximately half of the driving period. If the time series
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are too short, e.g., a fraction of the driving period, or if the
time series are too long, e.g., more than a few driving periods,
the resulting fidelity value would decrease. Another factor
that can affect the fidelity is heterogeneity in the couplings
in the network. For the results in this paper, the distribution of
the couplings in the spin system is assumed to be uniform,
where the typical fidelity value achieved is about 90%. How-
ever, we find that large variations in the coupling strengths
can make the HENN ineffective. The ratio between self- and
mutual couplings can also affect the tomography, where if the
former dominate the latter, the errors in the tomography can
be reduced.

Possible extensions of this work are as follows. When
implementing the HENN, the initial states must be specified
subject to a number of constraints. That is, it is necessary
to know the initial quantum state of each spin. For time-
independent systems, quantum tomography of spin networks
is possible even if the initial states are not completely specified
[41] or if the dimension of the system with a given coupling
structure needs to be determined [65,66]. However, to our
knowledge such methods are applicable to time-independent
systems only. For example, in Ref. [41], a time-independent
Hamiltonian with a specified structure was reconstructed.
Since the structure is known a priori, the matrix represen-
tation of the observables can be expanded to have a few
unknown parameters. For sufficiently long time series, the
original Hamiltonian can be constructed. At present, quantum
tomography of time-dependent systems with partial initial
conditions or incomplete information about the system is an
open problem.

The second issue is scalability. For a spin system of size n,
HENN requires 4n measurements. Calculating the matrix rep-
resentation of the observable A(t ) can thus be time-consuming
for large systems. In the prediction phase, another potential
issue could arise: the predicted Hamiltonian can contain many
terms, requiring the neural network to be extraordinarily large.
Recently, neural networks with more than 100 billions param-
eters have been constructed [67], with applications to large
systems with 100 spins [25]. The scalability of our HENN al-
gorithm to large time-dependent spin systems is an important
open issue worth further investigation.

The third issue concerns the effects of noise. In the study of
noisy intermediate-scale quantum (NISQ) computing [68,69],
a goal is to extract the maximum quantum computational
power from the current devices. In the recent work on quan-
tum supremacy [3], for a two-spin quantum gate, a fidelity
value higher than 99% was achieved, but it decreases when
the computing runs through multiple cycles. In our work,
the noise effect is relatively severe due to the necessity to
estimate derivatives from noisy time series. To partially reduce
the noise, some basic signal processing techniques such as
low-pass filtering can be exploited. Another method is to
modify the loss function, since the noise is associated with
the derivative term 〈Ȧ(t )〉real. For example, we can change it
into a matrix form

L =
∑

observations

‖Ȧ(H )(t )real − Ȧ(H )(t )pred‖2

and use matrix inversion to calculate A(H )(t ) and its time
derivative Ȧ(H )(t ). For matrix inversion, when the number of

initial states is sufficiently large, the computed matrix AH (t )
will converge to the true one. That is, the noise effect can be
mitigated by taking more observations on linearly indepen-
dent states for unbiased Gaussian noise.

The fourth issue is the numerical integration of Hamil-
tonian systems. In classical mechanics, the velocity field
governing the Hamilton’s equations of motion can be stiff,
requiring unusually small time steps of integration to keep the
numerical solutions stable [70]. In the literature, symplectic
integrators guaranteeing the conservation of energy are often
used to obtain numerical trajectories of Hamiltonian systems.
The simplest symplectic integrator is the leapfrog method,
also known as the Stömer-Verlet integrator [71]. However,
even for the best integrators, severe forms of stiffness as
characterized by mechanical rebounds or slingshot effects
can compromise the numerical solutions. These issues rep-
resent a significant challenge in the development of learning
algorithms based on the principles of Hamiltonian systems.
Recently, symplectic recurrent neural networks (SRNNs) have
been proposed [72]. For example, for the three-body problem,
the SRNN-trained Hamiltonian is able to compensate for the
discretization errors. The SRNNs can even outperform the
symplectic methods for integrating Hamiltonian systems. In
our work, the Baker-Campbell-Hausdorff formula was em-
ployed to convert the time-dependent Hamiltonian from the
Heisenberg to the Schrödinger picture [73]. It is worthwhile
to pursue extending the SRNN idea to quantum systems.

Recently, there have been efforts in understanding ma-
chine learning (the field of explainable machine learning),
and physics-enhanced machine learning represents a useful
perspective [74]. The HENN articulated in this paper, which
includes time correlation, provides an effective way to as-
certain and understand the hidden structures in the neural
network. As such, our HENN may be exploited as a paradigm
for explainable machine learning.
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APPENDIX A: EXAMPLES OF HEISENBERG
NEURAL NETWORKS

We present a number of examples for which the HENN can
be explicitly constructed.

1. One-spin system

The Hamiltonian of a single-spin system under a periodic
driving is

H (t ) = σx sin(t ). (A1)

We use the convention σx = σ+ + σ− and σy = i(−σ+ + σ−),
where σ+,− correspond to the creation and annihilation op-
erators, respectively. In the basis |1〉 and |0〉, the matrix

062404-10



TOMOGRAPHY OF TIME-DEPENDENT QUANTUM … PHYSICAL REVIEW A 104, 062404 (2021)

expressions of σx and σy are

σx =
(

0 1
1 0

)
and σy =

(
0 −i
i 0

)
. (A2)

The third spin operator is defined by σz|1〉 = |1〉 and
σz|0〉 = −|0〉.

The HENN for the one-spin system can be constructed by
following the three steps described in Sec. II as follows.

Step 1: We generate random initial conditions |ψ0〉 given
by

ψ0 = 1

r1 + r2

(√
r1 exp(i2πθ1)√
r2 exp(i2πθ2)

)
=

(
φ11 + iφ12

φ21 + iφ22

)
, (A3)

where r1,2 are the initial probabilities in the respective state,
θ1,2 are the corresponding phase variables, and both r1,2 and

θ1,2 are uniform random numbers between 0 and 1. In the
machine-learning algorithm, all quantities are real, so it is
necessary to convert the wave function into the summation
for the real and imaginary parts.

The time evolution of ψ0 is governed by the Schrödinger
equation. The expectation value of operator A is given by
〈ψt |A|ψt 〉. In the Heisenberg picture, the states do not change
but the operators change with time. We expand the operator
AH (t ) in the basis |1〉 and |0〉 with the corresponding matrix
AH (t ). The Hermitian property of AH stipulates that it must
contain four independent elements

AH (t ) =
(

AH
1 (t ) AH

2 (t ) + iAH
3 (t )

AH
2 (t ) − iAH

3 (t ) AH
4 (t )

)
. (A4)

Both the Schrödinger and Heisenberg pictures should give the
same physical results. We have

(φ11 − iφ12, φ21 − iφ22)

(
AH

1 (t ) AH
2 (t ) + iAH

3 (t )
AH

2 (t ) − iAH
3 (t ) AH

4 (t )

)(
φ11 + iφ12

φ21 + iφ22

)
= 〈ψt |A|ψt 〉. (A5)

The unknown elements AH (t ) appear in the equation in a linear fashion:

AH
1 (t )

(
φ2

11 + φ2
12

) + AH
2 (t )(2φ11φ21 + 2φ12φ22) + AH

3 (t )(2φ12φ21 − 2φ11φ22) + AH
4 (t )

(
φ2

21 + φ2
22

) = 〈ψt |A|ψt 〉. (A6)

At least four different initial conditions are required to solve
this equation, and a further increase in the number of states
changes the result only a little. We take A to be a Pauli matrix.
Its expectation value versus time for a given initial state is
illustrated in Fig. 7(a).

Step 2: Let the Hamiltonian of the unknown system be
H (t ). The corresponding operator in the Heisenberg picture
is HH (t ). Expanding the operator in the basis, we get

HH (t ) =
(

HH
1 (t ) HH

2 (t ) + iHH
3 (t )

HH
2 (t ) − iHH

3 (t ) HH
4 (t )

)
. (A7)

The quantum evolution is governed by the Heisenberg equa-
tion

dAH (t )

dt
= i[HH (t ), AH (t )]. (A8)

For a given initial state, the Heisenberg equation can be writ-
ten in matrix form as

d

dt
〈A〉t = iψ†

0 [HH (t )AH (t ) − AH (t )HH (t )]ψ0. (A9)

Expanding the right side, we get a summation of 24 terms.
As the system size is increased, the number in the summation
grows quickly. Through the matrix product, we get

d

dt
〈A〉t = TφφA(t )H(t ), (A10)

where

φ = [φ11, φ12, φ21, φ22]T ,

A(t ) = [
AH

1 (t ), AH
2 (t ), AH

3 (t ), AH
4 (t )

]T
,

H(t ) = [
HH

1 (t ), HH
2 (t ), HH

3 (t ), HH
4 (t )

]T
,

and T is tensor of rank 4 (with dimension 4 × 4 × 4 × 4),
which depends only on the dimension of the system and is
defined as

TφφA(t )H(t ) =
∑

i, j,m,n

Ti jmnφnφmAj (t )Hi(t ). (A11)

The left side of Eq. (A9) contains the derivatives of the
measurements, which can be determined from the observa-
tions. On the right side, A(t ) and φ are known, so the unknown
quantity is H(t ).

In the HENN, we set the input dimension as 1 and the
output is H(t ). We choose the batch size to be the number
of measurement points times the number of different initial
states. The loss function is

L =
∑

A=σx,σy,σz

|〈Ȧ(t )〉real − TφφA(t )H(t )|2. (A12)

We build the neural network from the KERAS TENSORFLOW

package [54], where the input is connected to two dense lay-
ers. Constructing this customized loss function is equivalent
to designating a loss function with different weights.

Step 3: After the HENN is trained, we input a time series
from 0 to 5 and predict the Hamiltonian. The prediction is
carried out in the Heisenberg picture, which can be converted
into the corresponding Hamiltonian in the Schrödinger pic-
ture. This can be done through an iteration process.

From the Hamiltonian in the Schrödinger picture, we can
get the coefficients in each base through

H (t ) = c0(t )I2 + c1(t )σx + c2(t )σy + c3(t )σz. (A13)

Writing it in a general form H (t ) = ∑
i Sici(t ), where S =

I2, σx, σy, σz, we have that ci(t )’s contain all the information
about the Hamiltonian. The predicted ci(t ) in a given basis are
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FIG. 7. HENN-based tomography of a single-spin system.
(a) Time series of σx , σy, and σz, where the initial state is (|1〉 +
i|0〉)/

√
2. The dots correspond to the sampled measurements. (b) The

predicted Hamiltonian in the Schrödinger picture, where the three
curves correspond to the decomposition in the three base states, and
the dashed curves are the true values. (c) Time average of the absolute
value of ci(t ) in different base states. The existent links are marked
by the solid blue bars, and the nonexistent ones by the red bars with
parallel lines, where the threshold for determining the existent links
is 10% of the maximum value.

shown Fig. 7(b). The agreement between the solid (predicted)
and dashed (true) curves is proof that the HENN can recover
the Hamiltonian of the original system through observations.

The coupling configuration can be determined through

ci =
∫

|ci(t )|dt . (A14)

If there exists a coupling between the spin components,
the corresponding coefficient ci(t ) should be nonzero, giv-
ing rise to a nonzero value of ci. Figure 7(c) shows
the time-averaged result of ci(t ), which has a pro-
nounced value in σx, in agreement with the original
Hamiltonian (A1).

2. A three-spin chain

We consider three interacting spins on a chain, with mea-
surements taken from the first spin, as shown in Fig. 8. The
Hamiltonian is

H (t ) = sin(t )

(
3∑

i=1

2∑
j=1

σ i
j +

2∑
i=1

3∑
l=1

2∑
m=1

σ i
l σ

i+1
m

)
. (A15)

There are couplings between spins 1 and 2, and between spins
2 and 3. For each coupling, there are six links.

The HENN can be constructed following the three steps.
Step 1: The system contains 23 independent states:

|111〉, |110〉, |011〉 · · · |000〉. The initial conditions are chosen
according to Eq. (A3), with the difference that here there
are eight dimensions. Since observations are taken from the
first spin, we write σ 1

x = σ 1
+ + σ 1

−, where the creation and
annihilation operators act only on the first spin. The matrix
expression for σ 1

x is

σ 1
x = σx ⊗ I4.

Similarly, we can get the matrices for σ 1
y and σ 1

z . For a given
initial state, we calculate the expectation values of the three
observables on the first spin, as shown in Fig. 8(b).

Step 2: Similar to the one-spin system, the Heisenberg
equation is

d

dt
〈A〉t = TφφA(t )H(t ), (A16)

where φ is a vector of 2 × 23 = 16 elements, A(t ) and H(t )
contain 43 = 64 elements, and T is a tensor of rank 4 with the
dimension 64 × 64 × 16 × 16:

TφφA(t )H(t ) =
∑

i, j,m,n

Ti jmnφnφmAj (t )Hi(t ). (A17)

We build up the HENN according to the same loss function
as in the case of a single-spin system, predict the Hamiltonian,
and convert it to the Schrödinger picture. The Hamiltonian can
be decomposed as

H(t ) = c0(t )I +
∑
i, j

ci, j (t )σ i
j +

∑
i, j,m,n

ci jmn(t )σ i
jσ

m
n

+
∑

i, j,m,n,k,l

ci jmnkl (t )σ i
jσ

m
n σ k

l . (A18)

The decomposition becomes cumbersome for systems with
more than one spin. We thus write this as the direct product
of the Pauli matrices plus the identity matrix. For example,
the two-body coupling σ 1

1 σ 2
2 can be written as σ 1

1 ⊗ σ 2
2 ⊗ σ 3

0 .
Figure 8(c) shows the predicted Hamiltonian in several

base states. The Hamiltonian for the coupling σ 1
x σ 2

x can be
compared with the sinusoidal function sin(t ). The coupling
term σ 1

x σ 3
x is nonexistent in the original system, so it should

be compared with zero. The agreement indicates that the local
Hamiltonian between the observed spin and the nonobserv-
able spins can be recovered. Note that σ 2

x σ 3
x represents a

coupling between the two nonobservable nodes, whose true
value is sin(t ), but the predicted Hamiltonian is not close to it.
Nonetheless, the nonzero value of the predicted term indicates
the existence of the coupling term σ 2

x σ 3
x .

Step 3: After decomposing the Hamiltonian in different
terms, we take the time average of each and normalize them,
as shown in Fig. 8(d). The ideal case is that all the true
interactions have the value 1, and all the nonexistent couplings
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FIG. 8. HENN-based tomography of a three-spin chain system. (a) Schematic illustration of the chain, where measurements are taken from
the left spin. (b) Time series of σ 1

x , σ 1
y , and σ 1

z from the initial state |1〉+i|0〉√
2

|11〉, where the dots correspond to the sampled measurement time

series. (c) Predicted Hamiltonian in the Schrödinger picture after decomposition into different interaction terms, where σ 1
x σ 2

x and σ 1
x σ 3

x are the
couplings between the observed node and the nonobservable nodes, which agree with the true Hamiltonian terms (dashed traces). The term
σ 2

x σ 3
x specifies the coupling between the two nonobservable nodes, and the predicted Hamiltonian is not similar to the true function sin(t ) but

is not zero either, so the HENN does predict the existence of this interaction. (d) Time average of the absolute value of the coefficients ci(t )
associated with different interaction terms, where the existent links are marked by filled blue bars, and the nonexistent ones by red bars with
parallel lines. The threshold for distinguishing the existent from the nonexistent links is set to be 10% of the maximum coefficient value, as
indicated by the horizontal dashed line.

correspond to 0. First, the Hamiltonian Eq. (A15) contains
self-couplings in x and y but not in z, which are indicated
by the first three bars in Fig. 8(d). For the nonobservable
spins, there are errors in predicting the self-coupling terms.
Second, there are two-body interactions between spins 1 and
2, and between spins 2 and 3, but not between 1 and 3,
where each existent interaction has six terms of coupling. The
predicted results for the couplings involving the first spin are
more accurate than those between the nonobservable spins.
Third, the true Hamiltonian does not include any three-body
interactions, so all such terms should be zero.

The results in Fig. 8 indicate that our HENN can perform
accurate tomography of the three-spin chain.

APPENDIX B: TIME-INDEPENDENT TOFFOLI
AND FREDKIN GATES

The Hamiltonian for the time-independent Toffoli gate is

HToffoli = π

8

(
I2 − σ 1

3

)(
I2 − σ 2

3

)(
I2 − σ 3

1

)
. (B1)

The corresponding time evolution operator is

UToffoli =
(
I6

X0(t )

)
, (B2)

where

X0(t ) = 1

2

(
1 + exp(iπt ) 1 − exp(iπt )
1 − exp(iπt ) 1 + exp(iπt )

)
. (B3)

The Hamiltonian for the time-independent Fredkin gate is

HFredkin = π

8

(
I2 − σ 1

3

)[
I4 −

3∑
α=1

σ 2
ασ 3

α

]
, (B4)

with

UFredkin =
⎛
⎝I5

X0(t )
1

⎞
⎠. (B5)
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learning Hamiltonian systems from data, Chaos 29, 121107
(2019).

[33] A. Choudhary, J. F. Lindner, E. G. Holliday, S. T. Miller, S.
Sinha, and W. L. Ditto, Physics-enhanced neural networks learn
order and chaos, Phys. Rev. E 101, 062207 (2020).

[34] C.-D. Han, B. Glaz, M. Haile, and Y.-C. Lai, Adaptable Hamil-
tonian neural networks, Phys. Rev. Res. 3, 023156 (2021).

[35] M. Timme, Revealing Network Connectivity from Response
Dynamics, Phys. Rev. Lett. 98, 224101 (2007).

[36] S. G. Shandilya and M. Timme, Inferring network topology
from complex dynamics, New J. Phys. 13, 013004 (2011).

[37] R.-Q. Su, W.-X. Wang, and Y.-C. Lai, Detecting hidden nodes in
complex networks from time series, Phys. Rev. E 85, 065201(R)
(2012).

[38] X. Han, Z. Shen, W.-X. Wang, and Z. Di, Robust Reconstruc-
tion of Complex Networks from Sparse Data, Phys. Rev. Lett.
114, 028701 (2015).

[39] W.-X. Wang, Y.-C. Lai, and C. Grebogi, Data based identi-
fication and prediction of nonlinear and complex dynamical
systems, Phys. Rep. 644, 1 (2016).

[40] Y. Kato and N. Yamamoto, Structure identification and state
initialization of spin networks with limited access, New J. Phys.
16, 023024 (2014).

[41] C. Di Franco, M. Paternostro, and M. S. Kim, Hamiltonian
Tomography in an Access-Limited Setting Without State Ini-
tialization, Phys. Rev. Lett. 102, 187203 (2009).

[42] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G.
Kwiat, Remote State Preparation: Arbitrary Remote Control of
Photon Polarization, Phys. Rev. Lett. 94, 150502 (2005).

[43] X.-Q. Xiao, J.-M. Liu, and G. Zeng, Joint remote state prepa-
ration of arbitrary two-and three-qubit states, J. Phys. B 44,
075501 (2011).

[44] P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M.
Lobino, J. C. Matthews, M. G. Thompson, and J. L. O’Brien,

062404-14

https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1103/PhysRevLett.92.187902
https://doi.org/10.1103/PhysRevLett.71.3095
https://doi.org/10.1103/RevModPhys.82.1209
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1137/080734479
https://doi.org/10.1103/PhysRevLett.90.247901
https://doi.org/10.1103/PhysRevA.81.040303
https://doi.org/10.1088/1367-2630/14/10/103035
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1038/npjqi.2016.19
https://doi.org/10.1088/1367-2630/ab8aaf
https://doi.org/10.1103/PhysRevLett.127.140502
https://doi.org/10.1103/PhysRevResearch.3.033278
https://doi.org/10.1103/PhysRevLett.113.080401
https://doi.org/10.1103/PhysRevA.91.052121
https://doi.org/10.1103/PhysRevA.84.012107
https://doi.org/10.1103/PhysRevA.88.062109
https://doi.org/10.1103/PhysRevLett.124.160502
https://doi.org/10.1038/ncomms11218
https://doi.org/10.1103/PhysRevLett.122.020504
https://doi.org/10.1103/PhysRevA.99.022128
https://doi.org/10.1103/PhysRevA.103.052403
https://doi.org/10.1038/s41567-021-01201-7
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/PhysRevE.47.1392
http://arxiv.org/abs/arXiv:1906.01563
https://doi.org/10.1063/1.5128231
https://doi.org/10.1103/PhysRevE.101.062207
https://doi.org/10.1103/PhysRevResearch.3.023156
https://doi.org/10.1103/PhysRevLett.98.224101
https://doi.org/10.1088/1367-2630/13/1/013004
https://doi.org/10.1103/PhysRevE.85.065201
https://doi.org/10.1103/PhysRevLett.114.028701
https://doi.org/10.1016/j.physrep.2016.06.004
https://doi.org/10.1088/1367-2630/16/2/023024
https://doi.org/10.1103/PhysRevLett.102.187203
https://doi.org/10.1103/PhysRevLett.94.150502
https://doi.org/10.1088/0953-4075/44/7/075501


TOMOGRAPHY OF TIME-DEPENDENT QUANTUM … PHYSICAL REVIEW A 104, 062404 (2021)

Generating, manipulating and measuring entanglement and
mixture with a reconfigurable photonic circuit, Nat. Photon. 6,
45 (2012).

[45] I. L. Chuang and M. A. Nielsen, Prescription for experimental
determination of the dynamics of a quantum black box, J. Mod.
Opt. 44, 2455 (1997).

[46] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D.
Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen, Self-
consistent quantum process tomography, Phys. Rev. A 87,
062119 (2013).

[47] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K.
Langford, T. C. Ralph, and A. G. White, Quantum Process
Tomography of a Controlled-Not Gate, Phys. Rev. Lett. 93,
080502 (2004).

[48] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt, T. K.
Körber, W. Hänsel, H. Häffner, C. F. Roos, and R. Blatt, Process
Tomography of Ion Trap Quantum Gates, Phys. Rev. Lett. 97,
220407 (2006).

[49] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P.
Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Realization
of the Quantum Toffoli Gate with Trapped Ions, Phys. Rev. Lett.
102, 040501 (2009).

[50] L. Che, C. Wei, Y. Huang, D. Zhao, S. Xue, X. Nie, J. Li, D. Lu,
and T. Xin, Learning quantum Hamiltonians from single-qubit
measurements, Phys. Rev. Res. 3, 023246 (2021).

[51] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock,
M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M.
Steane, and D. M. Lucas, High-Fidelity Readout of Trapped-Ion
Qubits, Phys. Rev. Lett. 100, 200502 (2008).

[52] J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, L. S.
Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Detecting highly entangled states with a joint qubit
readout, Phys. Rev. A 81, 062325 (2010).

[53] M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M.
Mariantoni, A. O’connell, D. Sank, H. Wang, M. Weides, J.
Wenner et al., Generation of three-qubit entangled states us-
ing superconducting phase qubits, Nature (London) 467, 570
(2010).

[54] F. Chollet et al., Keras, https://keras.io.
[55] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-

mization, arXiv:1412.6980.
[56] R. J. Baxter, Exactly Solved Models in Statistical Mechanics

(Elsevier, Amsterdam, 2016).
[57] H. Nishimori, Statistical Physics of Spin Glasses and Infor-

mation Processing: An Introduction (Oxford University Press,
Oxford, 2001).

[58] E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theor.
Phys. 21, 219 (1982).

[59] L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow,
J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and
R. J. Schoelkopf, Preparation and measurement of three-qubit
entanglement in a superconducting circuit, Nature (London)
467, 574 (2010).

[60] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C.
Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist,
and A. G. White, Simplifying quantum logic using higher-
dimensional Hilbert spaces, Nat. Phys. 5, 134 (2009).

[61] R. B. Patel, J. Ho, F. Ferreyrol, T. C. Ralph, and G. J.
Pryde, A quantum Fredkin gate, Sci. Adv. 2, e1501531
(2016).

[62] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff,
Implementation of a Toffoli gate with superconducting circuits,
Nature (London) 481, 170 (2012).

[63] D. Burgarth, K. Maruyama, and F. Nori, Coupling strength
estimation for spin chains despite restricted access, Phys. Rev.
A 79, 020305(R) (2009).

[64] E. H. Lapasar, K. Maruyama, D. Burgarth, T. Takui, Y. Kondo,
and M. Nakahara, Estimation of coupling constants of a three-
spin chain: a case study of Hamiltonian tomography with
nuclear magnetic resonance, New J. Phys. 14, 013043 (2012).

[65] A. Sone and P. Cappellaro, Exact dimension estimation of in-
teracting qubit systems assisted by a single quantum probe,
Phys. Rev. A 96, 062334 (2017).

[66] H. Haehne, J. Casadiego, J. Peinke, and M. Timme, Detecting
Hidden Units and Network Size from Perceptible Dynamics,
Phys. Rev. Lett. 122, 158301 (2019).

[67] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G.
Hinton, and J. Dean, Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer, arXiv:1701.06538.

[68] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[69] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke et al., Noisy intermediate-scale quantum (NISQ) algo-
rithms, arXiv:2101.08448.

[70] J. D. Lambert et al., Numerical Methods for Ordinary Differen-
tial Systems (Wiley, New York, 1991), Vol. 146.

[71] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics
(Cambridge University Press, Cambridge, England, 2004).

[72] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou, Symplectic
recurrent neural networks, arXiv:1909.13334.

[73] J. J. Sakurai and E. D. Commins, Modern Quantum Mechanics
(Addison-Wesley, Reading, MA, 1995).

[74] R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner,
Discovering Physical Concepts with Neural Networks, Phys.
Rev. Lett. 124, 010508 (2020).

062404-15

https://doi.org/10.1038/nphoton.2011.283
https://doi.org/10.1080/09500349708231894
https://doi.org/10.1103/PhysRevA.87.062119
https://doi.org/10.1103/PhysRevLett.93.080502
https://doi.org/10.1103/PhysRevLett.97.220407
https://doi.org/10.1103/PhysRevLett.102.040501
https://doi.org/10.1103/PhysRevResearch.3.023246
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1103/PhysRevA.81.062325
https://doi.org/10.1038/nature09418
https://keras.io
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1007/BF01857727
https://doi.org/10.1038/nature09416
https://doi.org/10.1038/nphys1150
https://doi.org/10.1126/sciadv.1501531
https://doi.org/10.1038/nature10713
https://doi.org/10.1103/PhysRevA.79.020305
https://doi.org/10.1088/1367-2630/14/1/013043
https://doi.org/10.1103/PhysRevA.96.062334
https://doi.org/10.1103/PhysRevLett.122.158301
http://arxiv.org/abs/arXiv:1701.06538
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/arXiv:2101.08448
http://arxiv.org/abs/arXiv:1909.13334
https://doi.org/10.1103/PhysRevLett.124.010508

