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Abstract
It was once believed that large ecosystems with random interactions are unstable, limiting their complexity. Thus, large community size 
or numerous interactions are rare in nature. Later, a strict hierarchical complexity was revealed: competitive and mutualistic 
communities have the least complexity, followed by random ones, and then predator–prey communities. Recently, a hierarchy of 
recovery times for ecosystems with identical complexity was found, influenced by discrete time delays. A key question is whether this 
hierarchical complexity holds under noninstantaneous interactions. We surprisingly show that it does not. Specifically, the 
complexity of predator–prey communities is significantly affected by time delays, reordering the hierarchy at a critical threshold. 
These changes exhibit nonmonotonic behavior with continuous time delays, another realistic interaction type. We validated our 
findings in various realistic ecosystems. Our results indicate that incorporating factors like time delays and their appropriate forms 
can lead to correct and even deeper understanding about complexity of large ecosystems and other biophysical systems.
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Complexity and stability of ecosystems are of paramount importance to sustainability of the human society. Sir Robert May argued 
that sufficiently large ecosystems with random interactions are unstable. It was revealed later that various ecosystems can possess a 
strict hierarchical complexity. An open question is whether ecosystems can maintain the hierarchy of complexity under noninstan
taneous interactions. This study develops a rigorous analysis, revealing a reordered hierarchy of complexity in a large variety of real
istic ecosystems with time delayed interactions with the implication that it is unlikely to observe large, complex predator–prey type of 
ecosystems in nature. Our work provides fresh insights into the fundamental interplay between stability and complexity in ecosys
tems that are significantly more realistic than those studied previously.
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Introduction
Large and complex ecosystems are generally not susceptible to 
experiments, rendering analytic investigations through dynamic
al models fundamentally important for understanding and pre
dicting their behaviors. The stability bounds of equilibrium 
abundances for various ecological communities are of great sig
nificance and interests. Here, we refer to the stability as the local 
asymptotic stability of the equilibrium abundances that charac
terize the community’s ability to recover from external perturba
tions. Therefore, it is critical not only to the fundamental issues of 
persistence and extinction but also to practical problems encom
passing the admissible complexity, energy cost, recovery time, 

and their trade-off associated with certain control strategies. A 
seminal result is May’s stability bound: for large ecosystems 
with random communities, there is a maximal admissible com
plexity to maintain stable abundances (1, 2).

In a closely related work (3), different types of communities, 
such as predator–prey, mutualism or competition, were consid

ered with the analytic finding that different communities exhibit 

different stability bounds. A key result was the emergence of an 

ordering of the admissible complexities of different communities 

characterizing the capacity, the number and uncertainties of the 

interactions. Particularly, it was found (3) that predator–prey 

communities allow the largest complexity, while a mixture of 
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mutualistic and competitive interactions accommodate the least 
one, and the fully random ecosystems is somewhere in the mid
dle. May’s complexity–stability trade-off was demonstrated lately 
without knowing the underlying interactions (4, 5), and the sys
tem’s behavior beyond the transition to instability was addressed 
(6). Quite recently, an inverse approach to modeling food webs 
was articulated (7), where it was assumed that stable food webs 
exist and the goal was to identify the characteristics of such sys
tems. The work afforded comprehensive insights into how bio
diversity promotes ecological stability and how nature may 
respond to growing anthropogenic disturbances.

Besides complexity, time delay is also an ubiquitous and crit
ical factor impacting stability. Interactions among species are 
typically not instantaneous, such as a latency period of matur
ation in population dynamics (8) and delayed predation in eco
systems (9). The effect of delay is generally modeled as 
discrete or continuous time (10–13). An earlier work showed 
that continuous time delay delineating age-dependent predation 
alters the stability of a 2D ecosystem (14). Later, the significance 
of the variance of continuous delays for stabilizing the system 
was revealed (15). For large and complex ecosystems, a compre
hensive result on how time delay affects complexity–stability 
trade-off is still lacking, though there were works derived some 
related results.

Previous works showed that May’s stability bound holds even 
when there are different types of time delay (16, 17), but there 
were studies providing the contrary result that, in oscillatory 
ecosystems, time delays change the stability criteria (18–20). 
Recently, it was demonstrated that the stability bound of a ran
dom community changes dramatically when considering de
layed self-interactions (21). More broadly, time delays can 
regulate collective dynamics in dynamical networks, such as 
synchronization (22, 23) and also yield oscillatory and chaotic 
phenomena (24–26). Regarding the hierarchical order, it was un
covered recently that a discrete-time delay modulates signifi
cantly the order of the heuristically estimated recovery time of 
different types of ecosystems (27). Specifically, when time delay 
is small, the communities with predator–prey interactions ex
hibit the least recovery time followed by the random commu
nity, and then those communities with purely competitive and 
mutualistic pairs. The order of recovery times changes as time 
delay increases (27). The recovery time is one of the metrics de
lineating the ecological stability. However, it does not inform us 
how admissible complexity of a particular ecosystem changes 
after introducing time delay, which may be very different from 
the behavior of the recovery rate. More importantly, how pro
longed effect such as “ecological memory” influence the stability 
of large ecosystems is still an open question.

Establishing rigorous stability bounds for large ecosystems 
with time delays presents significant analytical challenges. 
Actually, the complexity–stability interplay of different ecological 
communities with realistic time delays remained unknown, 
though such knowledge can be important for ecosystem manage
ment and preservation. A comprehensive analytic investigation in 
this direction is lacking. The aim of our work is to address these 
pressing questions through dynamical systems theories to derive 
admissible complexity for different types of ecosystems and time 
delays together with some realistic considerations. Our main 
result is that, time delays reorder the previously established hier
archical order of admissible complexity. The stability–complexity 
trade-off is a fundamental ecological issue. Our findings indicate 
that conclusions drawn without considering realistic factors can 
be misleading.

Results
Complexity, time delay, and correlated 
interactions
To unveil the effect of time-delayed interactions on the interplay 
between the stability and complexity of ecosystems, we consider 
the following continuous-time system that describes the evolu
tion of the abundances of S interacting species (21)

ẏi(t) = f (y(t), y(t − τ)), (1) 

where y(t) = [y1(t), y2(t), . . . , yS(t)]⊤ includes the abundance of spe
cies i to S, f ( · , · ) is smooth function, delineating the interactions, 
and τ⩾0 is a time delay. As we want to explore the local asymptotic 
stability of a strictly positive equilibrium y∗, we restrict our focus 
on the following linearized equation (28)

ẋi(t) = −dxi(t) +
􏽘S

j=1

aijx j(t − τ), i = 1, . . . , S, (2) 

where xi(t) : = yi(t) − y∗i delineates the fluctuation of the ith species 

from its equilibrium abundance, and aij characterizes the impact 

that species j has on i constituting a community matrix A. Those 
impacts are instantaneous when τ = 0 and delayed ones for τ > 0. 
Moreover, all species share the same strength of instantaneous 
self-interaction −d < 0. We note that, according to the recent 
work (21), this is the case where self-interaction matrix −dI is com
mute with A. In addition, such stabilizing interactions can also be 
noninstantaneous. Here, we do not incorporate any assumption 
on the diagonal terms of the community matrix A for simplicity.

Following previous works (2, 3), the community matrix has a 
sparsity parameter C, and every nonzero aij is assigned randomly 
from a given distribution with zero mean and variance σ. The com
plexity of an ecosystem then becomes α = σ

����
SC
√

. For a particular 
ecosystem, there is also a pairwise correlation ρ describing the 
type of community (Methods). May’s original model assumed fully 
random communities (Fig. 1A)  and established a stability bound 
with the critical admissible complexity α∗ = 1 under unit self- 
interaction and the absence of time delay. In such a case, the max
imal value of the sparsity parameter C is scaled as 1/S. Here, we 
regard them as two independent parameters. The model was later 
extended to other types of ecosystems including the mixed com
munity (mixture) whose interaction pairs are either mutualistic 
or competitive (Fig. 1B) and the predator–prey one with 
direct-negative-feedback pairs (Fig. 1C). It was revealed mathem
atically that different types of delay-free ecosystems have differ
ent admissible complexity, and therefore, there is a strict 
hierarchical order of complexity (3). Particularly, the mixed com
munities have the least admissible complexity, followed by the 
random one, and the predator–prey communities accommodate 
the highest complexity. Because time delay was not considered, 
it is not clear whether more realistic ecological communities in 
nature would follow such a hierarchy.

Discrete time delay changes the admissible 
complexity
Time delay mitigates the admissible complexity of the 
predator–prey systems
Throughout this study, we assess the stability of a given commu
nity in a binary sense. Particularly, the community is either stable 
or unstable when its complexity changes. The critical admissible 
complexity is the place where the transition occurs. This binary 
measure is different from the previously studied one where the re
covery rate of a community is considered (27), and thus, we can 
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now discuss how time delay affects the admissible complexity. 
Mathematically, local asymptotic stability is guaranteed when 
all eigenvalues z of the characteristic equation have negative 
real part. This criteria is equivalent to examining the position of 
the eigenvalues λ of the community matrix (Fig. 1D) and the stabil
ity region of the ecosystem (Fig. 1E, Methods). Specifically, the 
community is stable if all λ lie inside the stability region.

When time delay is introduced, the stability region changes 
from an open region (τ = 0) to a closed leaf-shaped one (τ > 0). A re
cent work showed that the recovery rate of the ecological commu
nity is altered by time-delayed effects (27). Here, we found that 
introducing time delay also changes the critical admissible com
plexity of the predator–prey community whose eigenvalues λ are 
distributed in a vertically stretched ellipse (Fig. 1D). The size of 

A

D.1 D.2 E.2

B

G.1 G.2 G.3 G.4

H.1 H.2 H.3 H.4

F

C

Fig. 1. Delayed interactions change the critical admissible complexity of the predator–prey communities. A) An ecosystem with fully random community 
and its possible pairwise interactions (arrow: activation; T-shape: inhibition). Node size corresponds to the strength of total regulation it experiences. B) A 
mixed community includes two types of pairwise interaction: mutualism or competition. C) A predator–prey community. D.1) The interaction topology of 
a predator–prey community. D.2) The corresponding community matrix A with color-coded weights as defined by the color bar. D.3) All the eigenvalues of 
A (crosses) and the predicted distribution (solid ellipse). E.1) The stability region (gray) determined by the characteristic equation associated with Eq. 2 for 
τ = 0. E.2) The stability region for τ = 1. F) Four predator–prey communities with increasing complexity (from left to right), with the respective parameter 
values (S, σ, C) = (40, 0.2, 0.1), (60, 0.35, 0.0879), (80, 1.1, 0.0782), and (100, 1.8, 0.0494). G) For τ = 0, the eigenvalues of the community matrices (crosses), 
corresponding to the ecosystems in (F), together with the stability region. Solid ellipses are theoretical prediction of the distribution of the community 
eigenvalues. G.3) This panel corresponds to the predicted critical admissible complexity α∗ = 2.7519. In G.4), there are some eigenvalues (red crosses) 
outside the stability region. H) For τ = 1, the eigenvalues of the community matrices (crosses: simulation; solid ellipses: theory) together with the stability 
region. H.2) The case associated with the critical admissible complexity α∗ = 0.8040. In H.3) and H.4), there are eigenvalues (red crosses) outside the 
stability region is shown. The self-interaction d = 1 is used for all panels.
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the ellipse grows monotonically as the complexity of the commu
nity increases. After introducing time delay, the stability region 
shrinks (Methods), the critical admissible complexity is then 
changed because some eigenvalues stay outside the region in 
the vertical direction (Fig. 1F–H). Therefore, the admissible com
plexity of the predator–prey community is mitigated by time- 
delayed effects. From a viewpoint of ecology, when τ > 0, there is 
a phase shift on the effect of the direct-negative-feedback loop. 
If the abundance of species increases (or decreases), it is not sup
pressed (promoted) immediately but needs a period of time lag. 
Consequently, the time-delayed effects make the abundances 
fluctuate around their equilibrium, and thus, yield an unstable 
community.

The hierarchical complexity is reordered by time delay
In the absence of time delay, predator–prey communities possess 
the greatest admissible complexity compared with fully random 
and mixed ones (Fig. 2A). Does the reduced admissible complexity 
of the predator–prey community induced by time delay change 
the hierarchical order? To address this question, we also analyzed 
the critical admissible complexity of the fully random and mixed 
communities. The difference among the three types of communi
ties is the pairwise correlation ρ of the community matrix. It 
makes the distributions of the eigenvalues λ different (Methods). 
The eigenvalues of the fully random and the mixed community 
matrix are distributed respectively in a circle and a horizontally 
stretched ellipse (Fig. 2A).

It was already shown that the recovery rates of the fully ran
dom and the mixed communities are altered by time-delayed ef
fects (27). Our analysis revealed a quite different conclusion that 
introducing time delay does not alter the critical admissible com
plexity of both communities, because the stability measure that 
we consider is a binary one. The mathematical underpinning is 
that the monotonically decreasing stability region yielded by 
time delay changes greatly in the vertical direction, and therefore, 
it does not affect the stability criterion in the horizontal direction 
(Fig. 2B and C). The conclusion can also be explained intuitively 
from a viewpoint of ecology. We note that both fully random 
and mixed communities have mutualistic or competitive interac
tions. For those pairs, though there is a phase shift, the effect of 
mitigation or promotion on the abundance of species remains 
consistent with the delay-free one. Consequently, those influen
ces of direct-positive-feedback loops keep the same. The conse
quence of any perturbation yielding extinction or explosion of 
the fully random and mixed communities thus does not depend 
on the presence of time delay. We remark that the conclusion is 
valid when there is no more consideration on the community ma
trix A. If there are some assumptions like incorporating delayed 
self-interactions (i.e. restriction on the diagonal elements of A), 
the results may be changed.

Analyzing the critical complexity for the three types of eco
logical communities leads us to an interesting result. 
Introducing time delay breaks down the previously found hier
archy (3) and a new order emerges when the amount of time delay 
exceeds a threshold τ∗ (Fig. 2B and C): fully random communities 
allow the greatest admissible complexity but the predator–prey 
ones belong to the middle and is never less than the mixed com
munity for even longer delays (Fig. 2D and E). The implication is 
that, because of the ubiquity of time delay in nature, there is a sig
nificantly reduced chance that purely predator–prey communi
ties with large community size or interactions could exist. Our 
result also suggests that the communities with mutualistic and 

competitive interactions are the most vulnerable ones among 
the three representative ecosystems.

The effect of positive and negative feedback loops
Our results so far have indicated that an increasing time delay can 
make an originally stable predator–prey community unstable at a 
critical time delay τcr, while the stability of the other two types of 
communities remain unchanged. This is caused by different ef
fects of negative- and positive-feedback loops. We now demon
strate an overview picture in Fig. 3 to see how the strength of 
those feedback loops influence the results, where the sign of ρ de
termines the type of community and its magnitude delineates the 
strength of feedback loops.

The diagram is divided into three regions. The community in 
regions I and II is respectively always stable or unstable regardless 
of the time delay, while in region III, the stability depends on the 
amount of time delay (color coded). The time delay affects the sta
bility only when direct-negative-feedback loops involve (Fig. 3B). 
Additionally, the predator–prey communities with larger com
plexity are vulnerable to time-delayed effects. For the mixed com
munities (ρ > 0), the admissible complexity decreases as the 
strength of positive-feedback loops increases. Analogous phe
nomenon is also observed for the predator–prey community 
(ρ < 0). Moreover, for a particular complexity, as the strength of 
negative-feedback loops increasing, the community losses its sta
bility at a lower amount of time delay (Fig. 3C). Those conclusion 
inform us that the stability can be hardly maintained when the 
type of pairwise interactions in the community becomes extreme 
(|ρ| → 1).

Distributed time delays induce nonmonotonicity
In practice, discrete time delay may not fully characterize the de
layed effects among the species. Actually, the “waiting time” or 
the occurrence of an action (e.g. predation) can be better described 
by a statistical distribution k(τ) (21) (Methods). Then, the evolution 
of the abundance depends on the past over a continuous time pe
riod (11–13) yielding the following linearized model (see Fig. 4A for 
the matrix form)

ẋi(t) = −dxi(t) +
􏽘S

j=1

aij∫
∞
0 k(τ)x j(t − τ)dτ. (3) 

Intuitively, distributed delays are effectively normalized weighted 
time delays.

We studied analytically the representative distributed delays 
where k(τ) is the Gamma function (Methods). The only difference 
between discrete and distributed delays is the size of the stability 
region. For discrete one, the region shrinks monotonically as the 
time delay increases. But, we surprisingly found that the region 
changes in a nonmonotonic behavior for the distributed case as 
the average delay 〈τ〉 increases (Fig. 4C and D, Methods). It first 
shrinks and then expands. Accordingly, the critical admissible 
complexity of the predator–prey community depends also non
monotonically on the average delay (Fig. 4E). Intuitively, we may 
regard the delay effect as an “ecological memory.” As the average 
“memory” increases slightly, its effect becomes stronger and thus 
the tendency is analogous to a discrete one. Further increasing the 
average delay akin to putting the “memory” at every moment in 
the past but with very little amount. The consequence is however 
like the ecosystem forgetting everything happened before.

A direct and interesting consequence of the distributed delays 
is that the variation in the hierarchical order of communities’ 
complexity is also nonmonotonic. We considered three Gamma 
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distributions with different average (Fig. 4F). As expected, 
when the average delay increases, the stability region and the 
critical complexity of the predator–prey community changes 

nonmonotonically (Fig. 4G and H). We also showed that the stabil
ity of the fully random and the mixed communities are not altered 
by the distributed delays (Methods). Therefore, as average delay 

B.1

C.2 C.3 C.4

C.1

D

E

A.1

B.2 B.3 B.4

A.2 A.3 A.4 A.5

Fig. 2. Reordered hierarchical complexity of three representative ecosystems. A.1) Probability of stability for three ecological communities (red: mutualism 
and competition; yellow: fully random; blue: predator–prey). Dots and dashed curves show the numerical results obtained from 100 runs for each complexity 
value α. The vertical lines indicate the predicted critical admissible complexity α∗. A.2–A.5) Theoretical distribution of the eigenvalues of A for the three 
communities (circle and ellipses), where the stability region (gray) is also indicated. The panels from left to right correspond to α = 0.5 and the three ordered 
critical admissible complexity, as indicated by the dashed arrows. For each critical case, the associated circle or ellipse is tangent to the vertical line <(λ) = 1. B.1) 
The probability of the three ecosystems for τ = τ∗ = 0.0496, where the predicted critical admissible complexity of the fully random and predator–prey 
communities are identical. B.2–B.4) Three distributions of the eigenvalues of A together with the stability region (gray) for different complexity α. In B.4), the 
distributions of fully random and predator–prey communities are both tangent to the boundary of the stability region (Methods). C.1) The probability of the 
three ecosystems for τ = 1, where the critical admissible complexity of the predator–prey community is less than that of the fully random one. C.2–C.4) Three 
distributions of the eigenvalues of A together with the stability region (gray) for the reordered critical admissible complexity. D) Critical admissible complexity 
of the predator–prey community (blue) decreases as τ increases and becomes the same as that of the fully random one (yellow) for τ = τ∗. E) As τ increases 
further, the hierarchy of complexity for the three ecosystems are reordered. Other parameters are d = 1, S = 200, and C = 0.2.
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increases, the hierarchical order alters twice (Fig. 4H). Compared 
with the delay-free case, the hierarchy is reordered with a moder
ate average delay, but eventually recovers (Fig. 4I). Such a behav
ior is characteristically different from that with a discrete-time 
delay, where the hierarchical order cannot be recovered once 
the critical threshold τ∗ is attained. The change and the recovery 
of the hierarchical order require two conditions: (i) the distributed 
delays induce a nonmonotonic critical complexity for the preda
tor–prey community and (ii) its least critical complexity should 
be less than that of the fully random community (Fig. 4H).

We also studied another practical case when there is a time 
shift (29) τ̂ of the distributed delay (Fig. 4J and K). It is regarded 
as an inherent delay and has been incorporated into the analysis 
of insect population dynamics (29, 30). The inherent delay actual
ly strengthens the overall delay effect (Fig. 4E and L). It therefore 
makes the least critical complexity of the predator–prey commu
nity less than that of the fully random one. Consequently, the re
ordering of the hierarchical complexity and restoration can be 
anticipated and observed (Fig. 4M).

Further considerations of realistic significance
The analysis we have performed so far is based on the theory of 
random matrices, which require sufficiently large community 
size S. Does the reordering phenomenon persist when S is not 
large, e.g. S < 100? Also, there are more possible structures of com
munities in natural ecosystems. Here, we introduce four more 
ecosystems (Fig. 5A–D), to test the generality of our analytical re
sults. They are classified into two types (Sections 5.1–5.2 in SI). (i) 
The first two contain purely competitive and mutualistic effects 
(31) (Figs. 5A and B). (ii) The other two communities are of the 

predator–prey type following certain food-web structures includ
ing the cascading one (32) and the niche one (33, 34) (Figs. 5C and 
D). Altogether we studied seven types of ecosystems.

Because we now focus on validating our theoretical results for 
relatively small community size, we use the maximal capacity 
Smax of each ecosystem to characterize the critical complexity pro
vided that the other two parameters σ and C are fixed. We com
puted the maximal capacity Smax of those ecosystems indicating 
the critical complexity of the system (Sections 3.2–3.3 in SI). The 
cases of discrete time delay, distributed delays with varying aver
age and distributed ones with varying time shift were investigated 
and their results are shown respectively in Fig. 5E, F, and 
G. Despite the small community size, tendencies of variation in 
the maximal capacity analogous to those for large communities 
arise. The mixed and fully random communities exhibit near- 
constant maximal capacity in all cases. The capacity of the 
predator–prey community decreases significantly and tends to 
the mixed one as increasing the discrete and shifted time delay, 
yielding the reordering of hierarchy. The nonmonotonicity 
induced by the distributed delays is also observed producing the 
reordering and restoration of the hierarchy.

Considering the additional communities, the results for dis
crete and time-shifted delays are analogous (Fig. 5E.2 and G.2). 
The purely mutualistic and competitive ecosystems possess near- 
constant capacity for small delays–analogous to the mixed one. 
However, for the competitive one, the capacity decreases as 
time delay approaches a certain value because the capacity is de
termined by whether the left-most eigenvalue of the community 
matrix lies inside the stability region (Section 5.1 in SI). The cap
acities of the two communities with realistic food-web structures 
are further suppressed, compared with the (random) predator– 
prey one. They become even smaller than the capacity of the 
mixed community. This is consistent with the previous result 
that realistic food-web structures hamper the stability of such 
ecosystems (3). The mitigation of the capacity together with the 
nonmonotonicity is also observed when distributed time delays 
with an increasing average are considered (Fig. 5F.2). In this 
case, the capacities of purely mutualistic and competitive ecosys
tems remain almost static. Those simulations indicate the abso
lute necessity to take into account time delays in forecasting the 
maximal complexity of realistic ecosystems. Moreover, our theor
etical results can also be used to understand the behavior of those 
communities with small size.

The community matrix A is a significant factor for determining 
the critical complexity. Its nonzero elements follow a given distri
bution. We consider whether and how the distribution, from 
which the entries of the community matrix A are drawn, influen
ces the critical complexity. According to the elliptic law (35), for 
large random matrices, the distribution of eigenvalues depends 
solely on the mean, variance, and correlation ρ of the matrix en
tries, regardless of the specific form (e.g. shape) of the distribution. 
In the case of random communities (ρ = 0), this implies that differ
ent distributions (e.g. Gaussian and uniform) with identical mean 
and variance yield the same distribution of eigenvalues and thus 
result in the same critical complexity.

When considering structured communities (ρ ≠ 0), such as the 
type of predator–prey and mixture, we note that different distri
butions—with the same mean and variance—can induce different 
correlations ρ between matrix entries. According to the elliptic law 
(35), these variations in ρ lead to difference in the distributions of 
eigenvalues, which further affect the critical complexity. The in
fluence of distributions with different correlations is analyzed in 
detail in Section 4.2 of SI.

C.2

II

C.1

I

A

I II

III

B.1

B.2

B.3

I II

I

I

II

II

Fig. 3. Critical time delay for instability. A) Heat map of the critical time 
delay τcr for different correlation ρ and complexity α. Ecosystems in 
regions I and II, defined by τcr = ∞ and 0, respectively, are always stable 
and unstable. In region III, there is a color-coded critical value τcr 

determined by ρ and α, below which the system is stable. B.1–B.3) Cross 
sections of the heat map for ρ = 2/π, 0, and −2/π, respectively, as indicated 
by the three horizontal dashed lines. C.1, C.2) Cross sections of the 
heat map for α = 0.8 and 1.33, corresponding to the two vertical lines 
(white) in (a).
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In particular, we studied the predator–prey community and ex
amined how the correlation ρ, together with time delay, affects 
the critical complexity. We found that when the delay is small, in
creasing |ρ| raises the corresponding critical complexity, whereas 
when the delay is large, increasing |ρ| lowers it. Our results are 
consistent with the elliptic law and extend the conclusions of 

previous work (3). The results also highlight the complex interplay 
between delay and correlation in shaping the stability of struc
tured communities.

We consider two more factors that could occur naturally. 
(i) First, pairwise effects could have heterogeneous time delays. 
We considered a perturbation to the time delay (Section 4.1 in SI) 

A B

D.1 D.2 D.3 E

G

H

I.1

I.2

I.3

J

K

L

M.1

M.2

M.3

C

F

Fig. 4. Nonmonotonic and reordered critical admissible complexity induced by continuous time delays. A) A linearized ecosystem with continuously 
time-delayed interactions characterized by the weighted (kernel) function k(τ). B) A predator–prey community with continuous time delay (gradient 
color). C) Three delay kernels: exponential distributions correspond to different means. D.1–D.3) Stability region obtained from the characteristic 
equation of Eq. 3 (colored region on the left of the solid blue curves) with the three distributions given in (C). The gray area bounded by the dashed curves 
are stability regions associated with the discrete time delay τ = 〈τ〉. E) Theoretical critical admissible complexity α∗ of the predator–prey community with 
distributed (solid) and discrete (dashed) time-delayed interactions. F) Three Gamma distributions with different means. G) The area bounded by middle, 
inner, and outer closed curves indicating the stability regions associated with the distributions in (F) with 〈τ〉 = 0.6, 2, and 10, respectively. H) Critical 
complexity α∗ of the fully random (yellow) and predator–prey (blue) ecosystems when the kernel function is a Gamma distribution with different mean 
〈τ〉. I.1–I.3) Probability of stability (dots: simulation; vertical lines: theory) of the two ecosystems highlighted by the circles in (H). As the average delay 〈τ〉
increases, the hierarchy of complexity is reordered (I.2) and then restored (I.3). J) Three exponential distributions with a constant time shift τ̂ = 0.4. K) 
Three stability regions corresponding to the three distributions in (J). L) Critical complexity versus the average delay 〈τ〉 of a time-shifted exponential 
distribution. M.1–M.3) Probability of stability of the ecosystems considered and highlighted in (L). The hierarchy of complexity is reordered and then 
restored as average delay increases.
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and showed that the reordered hierarchy is maintained even with 
considerable perturbation. (ii) Second, we considered asymmetric 

time delays for three predator–prey type communities. Time delays 

are only introduced to those effects from preys to predators. We ob

served qualitatively the same results as those with bidirectional 

time delays for relatively small delay values (Section 5.3 in SI), 

indicating that the reordering of hierarchy is robust and can be 

anticipated in complex ecosystems.
Finally, we addressed the issue of the length of time delay. We 

showed that it is inversely proportional to the growth rate of the 
concerned species. For example, if the growth rate is 10/year, 
the time delay would be on the order of a month (Section 6 in 
SI). The value is relevant to natural species such as insects, mam
mals, and birds (30). These data indicate that the amount of time 
delays considered here are reasonable, providing insights into 
their effect on the hierarchical complexity of ecosystems in the 
real world.

Discussion
The possible complexity or capacity of large, complex ecosystems 
is of paramount significance to the sustainability of life on Earth 
and in particular the human society. We have performed a com
prehensive analysis with rigorous mathematical reasoning to as
sess the admissible complexity of representative types of 
communities with noninstantaneous interactions. When time de
lays are present, to keep stable abundances, any ecosystem can 
only accommodate a limited community size with a certain num
ber or uncertainty of interactions. While our result is consistent 
with previous ones (2, 3), we additionally uncover that any type 
of time delays encompassing discrete, distributed and time- 
shifted ones affect the admissible complexity of predator–prey 
type of ecosystems dramatically as the amount of delays changes. 
Contrarily, fully random communities and those with mutualistic 
or competitive interactions are hardly influenced. These findings 
suggest that the previously established complexity hierarchy for 

F.1

F.2

G.1

G.2

E.1

E.2

A B DC

Fig. 5. Admissible capacities Smax for various representative ecosystems. A) The community matrix A of an ecosystem with solely competitive 
interactions, i.e. aij < 0. Right panel shows its eigenvalues. B) The ecosystem with solely mutualistic interactions: aij > 0. C) A predator–prey community 
manifested as a cascading food chain. D) A predator–prey community with a niche food-web structure. E) Numerically obtained admissible capacity Smax 

for the seven representative ecosystems (red: mixture; yellow: fully random; blue:predator–prey; dark green: fully competition; purple: fully mutualism; 
light green: cascade; orange: niche) with discrete time delay. F) Admissible capacity for the seven ecosystems with continuous time delays with varying 
average delay. Time delays are characterized by an exponential distribution with mean 〈τ〉 together with a fixed time shift τ̂ = 0.4. G) Admissible capacity 
for the seven ecosystems with time-delayed interactions, where the time delays are characterized by an exponential distribution with fixed mean 〈τ〉 = 0.1 
together with a varying time shift τ̂. Other parameters are d = 1, C = 0.5, and σ = 0.2.

8 | PNAS Nexus, 2025, Vol. 4, No. 7

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/7/pgaf214/8199762 by Arizona State U

niversity W
est user on 07 August 2025

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf214#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf214#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf214#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf214#supplementary-data


different types of delay-free ecological communities (3), which is 
one of the fundamental issues in contemporary ecology, needs 
to be reexamined.

Indeed, our analysis revealed a reordering of the hierarchical 
complexity when incorporating time delays. As the time delay 
(discrete and time-shifted) increases, the complexity of the preda
tor–prey community is compromised because of the effect of 
direct-negative-feedback loops. This striking finding indicates 
that, in sharp contrast to the previous result (3), large and com
plex predator–prey communities are generally unstable in the 
presence of time delays. One possible implication is that, because 
of the ubiquitous presence of time delay in natural ecosystems, it 
is unlikely to observe large, complex uncertain predator–prey type 
of ecosystems. From an alternative viewpoint, time delays can be 
an important contributing factor to diversity in nature due to the 
richer dynamical behaviors that can arise in such complex net
worked systems.

Recently, discrete time delays have been shown to have the 
ability to modulate the recovery rate of many types of ecosystems 
with certain complexity (27). Our work focuses on a different 
measure, the ecological complexity, an issue that has not been ad
dressed before. Different from previous result, we showed that 
time delays only alter the complexity of predator–prey type of 
communities significantly, which is the major reason for the reor
dered hierarchy. In addition to ecological findings, our rigorous 
analysis of the stability bound of ecosystems with distinct types 
of community matrix and different types of time delays provides 
a solid foundation for understanding the interplay between eco
logical stability and complexity in nature. Technically, our ana
lysis enables us to calculate the exact critical admissible 
complexity α∗ for a given time delay τ, which is mathematically 
quite challenging. We note that this critical value was only esti
mated in the recent work (27).

Further, we also provided analytic results when ecosystems 
have continuous “memory” (distributed time delays). The most 
important finding is possibly the nonmonotonic variation in the 
complexity of the predator–prey communities with respect to 
the average of the continuous delays. As a comparison, the critical 
complexity of the random and mixed communities are un
changed. Therefore, while the hierarchical complexity is reor
dered as the overall amount of time delay increases, the order 
can finally be restored when the amount exceeds a certain thresh
old. This result is important for understanding complex ecosys
tems, as it can guide us to choose the correct dynamical models 
to analyze ecological memories. It is worth pointing out that the 
nonmonotonic variation may not occur by changing other mo
ments of the distribution (e.g. changing variance with a fixed aver
age). We also established the generality of our analytic results, 
which were obtained for large systems, for more realistic ecosys
tems with small community sizes and other realistic factors.

Taken together, our work provides fresh insights into the fun
damental interplay between stability and complexity in more 
realistic ecosystems. There are also future directions that can 
strengthen our understanding. As shown in a recent work (21), in
corporating noninstantaneous self-interaction alters stability 
pattern significantly and can also induce nonmonotonic phenom
enon for the random communities. This raises significant ques
tions about how delayed self-interactions may affect the critical 
complexity of various community types and their hierarchical or
der, which deserve further exploration. Also, we focus on the local 
asymptotic stability in the present work which characterizes the 
dynamics only in the vicinity of the equilibrium. It thus provides 
limited information on the stability of complex ecosystems. To 

have a more comprehensive understanding, other significant 
metrics including reactivity (36) and recovery time (27) merit fur
ther detailed investigation. Finally, there are inherent limitations 
of the linearized model. The relationship between complexity and 
stability in generic ecological models as formulated in Eq. 1 re
mains a formidable challenge that requires innovative analytical 
and computational approaches.

Methods
Community matrix and correlated interactions
The parameters aij in Eq. 2 constitute a community matrix 
A : = {aij}

S
i,j=1. The sparsity of the community is characterized by 

the probability of the existence of each interaction aij: C ∈ (0, 1]. 
Each nonzero element is then randomly generated from a give dis
tribution with zero mean and variance σ. See Sections 3 and 5 in SI
for the details on the configuration of community matrices for dif
ferent types of ecosystems.

Throughout this study, we use the correlation parameter, de
fined as ρ : = 〈aija ji〉, to characterize the pairwise relationship 
among species (Section 2.1 in SI). It is used to classify and distin
guish the network interaction patterns. For ρ = 0, the community 
matrix becomes identical to that in May’s original model, where 
the structure is homogeneously random (Fig. 1A). For ρ > 0, there 
is a tendency for any two species in the ecosystem to simultan
eously promote or suppress each other’s abundances (Fig. 1B). 
For ρ < 0, the pair of species tends to exhibit opposite behaviors 
(Fig. 1C). An ecosystem with ρ > 0 thus corresponds to a commu
nity with mixed competitive and mutualistic interactions, while 
ρ = 0 represents a random community, and ρ < 0 is characteristic 
of predator–prey ecosystems (3). The magnitude of ρ represents 
the level of congruity of pairwise interactions and can be used to 
characterize the strength of direct-feedback loops.

Distribution of eigenvalues of the community 
matrix
According to the elliptic law (37), the distribution of the eigenval
ues λ of the community matrix A depends only on the complexity 
α = σ

����
SC
√

and the correlation ρ (Theorem 2 in SI). In particular, for 
ρ = 0, ρ < 0, or ρ > 0, the eigenvalues λ are distributed uniformly 
within a circle Ωc

A, a vertically stretched ellipse Ωv
A, or a horizon

tally stretched ellipse Ωh
A in the complex plane, respectively. An 

example of a predator–prey system is shown in Fig. 1D.3.

Stability region affected by time delay
For an ecological community with a large community size S, deter
mining its critical admissible complexity requires the relationship 
between the distribution of the eigenvalues of the community ma
trix A and the stability region calculated from the associated char
acteristic equation which is influenced by the time delay (Section 
2 in SI). Figure 1E shows examples of the stability regions (shaded 
area) when τ = 0 and τ = 1. When all the eigenvalues of the com
munity matrix A lie in the stability region, the corresponding com
plexity α is admissible, guaranteeing the stability of the 
equilibrium abundances.

For delay-free ecosystem, the stability region is the open left 
plan with <(λ) < d. The ecosystem possesses stable equilibrium 
abundances if the real parts of all eigenvalues of A are less than 
d. When a discrete time delay is present (0 < τ < +∞), the stability 
region becomes a leaf-shaped area, denoted by Ωτ (see Section 2.1
in SI for a detailed analysis). A larger time delay leads to a smaller 
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leaf-shaped stability region Ωτ and, for τ→∞, Ωτ approaches Ω∞–a 
disk of radius d centered at the origin (see Fig. S1 in SI).

Finding the critical admissible complexity
The locations of Ωc,v,h

A and Ωτ enable the critical complexity α∗ to be 
calculated in terms of the correlation ρ and the time delay τ. 
Because the stability region shrinks monotonically to Ω∞, there 
is a disk centered at the origin with radius d (Section 2.1 in SI). 
For τ→ +∞, the distributions Ωc

A and Ωh
A are bounded by Ωτ 

when their rightmost points do not cross (d, 0). Consequently, 
the critical admissible complexity of the fully random (ρ = 0) and 
mixed (ρ > 0) communities correspond respectively to the cases 
where Ωc

A and Ωh
A are tangent to the stability region at (d, 0) 

(Fig. 2B.3 and B.4). The critical complexity can then be inferred 
as α∗ = d/(1 + ρ) for ρ ≥ 0, which depends on ρ and d but not on τ. 
This result implies that May’s stability bound (2) for random com
munities (ρ = 0) without time delay is valid for determining the 
critical admissible complexity even in discrete delayed ecosys
tems with ρ ≥ 0. Alternatively, for ρ < 0, admissible complexity re
quires that the vertical extension of Ωv

A is bounded by Ωτ (Fig. 1H). 
In this case, the critical complexity α∗ relies on the values of both ρ 
and τ, which can be obtained by solving the following two algebra
ic equations

F1(ρ, τ, ω, α) = 0,
F2(ρ, τ, ω) = 0.

(4) 

The explicit expressions of F1 and F2 are given in Section 2.1 of the 
SI. They are obtained by considering the critical case when the dis
tribution of the eigenvalues of A and the stability region intersect 
with one another (see Section 2.1 of the SI for more details). For a 
set of fixed ρ and τ, the unknowns α∗ and ω∗ are solved. Here, ω∗ is 
the critical frequency corresponding to the unstable eigenvalues.

As exemplified in Fig. 2a for τ = 0, our analysis enables the crit
ical admissible complexity of the three representative ecosystems 
to be predicted. The results are also verified by simulations, as in 
Fig. 2A.1, where each dot indicates the numerical probability of 
stable ecosystems.

The complexity of the predator–prey community
A direct consequence of a discrete time delay is a decreasing sta
bility region. It is reasonable to expect that a time delay will 
change the critical (greatest) admissible complexity of a preda
tor–prey community, whose eigenvalues are distributed in a verti
cally stretched ellipse Ωv

A. This is verified numerically in Fig. 1F–H. 
As the complexity of the predator–prey system increases (Fig. 1F), 
the corresponding eigenvalue distribution is enlarged. When 
there is no time delay, the critical admissible complexity is such 
that the distribution of the eigenvalues is tangent to the vertical 
line Re(λ) = d (Fig. 1G.3). For τ = 1, the critical case occurs earlier 
in the sense that the boundaries of Ωv

A and the stability region be
come tangent to each other at a point with less complexity 
(Fig. 1H.2), due to the tangent point occurring in the vertical direc
tion. More insights can be gained by analyzing the limiting case of 
τ→ +∞. Our results show that the critical admissible complexity 
of the predator–prey systems cannot be less than that of the 
mixed ones (Fig. 2E).

Critical time delay
As mentioned previously, we are able to find accurately the critic
al admissible complexity α∗ when ρ and τ are given. Sometimes, it 
is also necessary to find the critical time delay τcr, where the eco
system with certain complexity loses its stability. For instance, at 

a threshold τcr, the predator–prey communities share the same 
critical complexity α∗ = d as that of the fully random ones 
(Fig. 2B). The value of τcr and the corresponding critical frequency 
ω∗ can also be computed from the algebraic Eq. 4 (see Section 2.1
in SI) by fixing ρ and α∗ = d.

Continuous time delay
We use Eq. 3 to model the linearized dynamics of ecosystems with 
continuous time delay. The function k(τ) is called the kernel func
tion satisfying the practical conditions k(τ) ≥ 0 (nonnegativity) and 
∫ ∞

0 k0(τ) dτ = 1 (normalization). The average delay is calculated as 
〈τ〉 : = ∫ ∞

0 τk(τ) dτ.
The Gamma function used in the main text is written as k(τ) = 

amτm−1 exp ( − aτ)/Γ(m) with s > 0, a > 0, and m > 0. For m = 1, 
where k(τ) degenerates into an exponential distribution 
a exp ( − aτ), τ > 0, giving 〈τ〉 = 1/a. Analytically, the stability re
gion can also be calculated from the characteristic equation 
as (Section 2.2 in SI)

Ωexp = λ = x + iy ∣ x ≤ d −
a

(a + d)2 y2

􏼨 􏼩

, (5) 

which describes an unbounded region (Fig. 4D.1–D.3) where, for 
comparison, the bounded stability region (gray area) for the 
case of discrete time delay, which shrinks monotonically with 
τ = 1/a = 〈τ〉, is also shown. The critical complexity α∗ for the fully 
random and the mixed ecosystems is invariant as the average 
delay increases because the smallest stability region is larger 
than Ωτ, the disk centered at the origin with radius d. More re
sults and discussions on the continuous time delays can be 
found in Section 2.2 in SI.

Time-shifted delay
When the ecosystem possesses an inherent time delay, the dens
ity function k(τ) is shifted by a positive time τ̂: k(τ) : = k0(τ − τ̂) for 
τ > τ̂, where k0(τ) (τ > 0) is a given density function satisfying k0(τ) ≥ 
0 (nonnegativity) and ∫ ∞

0 k0(τ) dτ = 1 (normalization). A detailed 
analysis of ecosystems with a shifted density function is provided 
in Section 2.2 in SI.
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1 Preliminaries

A central tool in the stability-complexity analysis of networked ecosystems is the spectrum theory of large

random matrices that characterizes the distribution of the eigenvalues of the community matrix. In recent

decades, there have been dramatic advances in the random matrix theory and it has now become possible to

study the those properties of complex systems arising from a variety of fields [1, 2, 3, 4].

Regarding the fully random community, consider elements aij of matrices A drawn independently from given

probability distribution. The distribution of eigenvalues λ was studied under different auxiliary conditions [5, 6]

and the fundamental result is the theorem due to Tao et al. [7].

Theorem 1 (Circle Law). Let A be an S × S random matrix whose entries are independently identically

distributed (i.i.d) random variables with zero mean and unit variance. The empirical distribution of eigenvalues

of A/
√
S converges to a uniform distribution on the unit disk both in probabilistic and in the almost everywhere

sense as S → ∞.

A more general case is that the ensembles are not independent but have correlation. For instance, in

ecological systems, there can be statistical correlation between the pairwise elements aij and aji. Numerical

simulations revealed that the behavior of the distribution of eigenvalues obeys an elliptic law [8, 9, 10, 11, 12].

A universal result about the elliptic law has been established [12], which can be stated, as follows.

Theorem 2 (Elliptic Law). Consider real matrices A = {aij}Si,j=1 whose elements aij are drawn from given

probability distribution and satisfy the following conditions:

(i) the pairs (aij , aji), i ̸= j and the diagonal elements aii are independent of each other;

(ii) the values of mean, variance, and correlation satisfy E[aij ] = 0, var[aij ] = 1 and E[aijaji] = ρ (if i ̸= j)

for some |ρ| ≤ 1;

(iii) aij are uniformly square integrable, i.e., maxi,j

{
E
[
a2ij

∣∣∣ |aij | > M
]}

→ 0, as M → +∞.

For |ρ| < 1, the empirical distribution of the eigenvalues of A/
√
S converges weakly in the probabilistic sense to

the uniform distribution on the ellipse Ω that depends on ρ as S → ∞, where

Ω =

{
λ = x+ iy ∈ C

∣∣∣ x2

(1 + ρ)2
+

y2

(1− ρ)2
≤ 1

}
.

Note that when ρ = 1 (i.e., symmetric A) reduces the elliptic law to the Wigner’s semi-circle law [13]. For

ρ = 0, the elliptic law degenerates into the circle law.

In our study, we assume that the random matrices delineating the pairwise interactions among species satisfy

the conditions required by the existing results as stated above. The procedure of generating certain community

matrices is given in the latter section. Remark that the conclusions drawn from random matrix theory are

valid to study the critical admissible complexity in our work when the community size S is assumed to be large

enough. Actually, we also study the cases when S is relatively small by numerical simulations to validate the

conclusions.
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2 Mathematical analyses on the critical admissible complexity

In this section, we carry out mathematical analyses on the admissible complexity α for different types of

ecosystems. The critical admissible complexity is the threshold where the equilibrium abundances of a given

ecosystem change from stable to unstable. Therefore, we perform stability analysis for the linearized system

with either discrete and or distributed (continuous) time delays.

2.1 Ecosystems with discrete time delays

As mentioned in the main text, the linearization of an ecosystem with discrete time delay around the

equilibrium abundances is written as

ẋ(t) = −dx(t) +Ax(t− τ), (S1)

where x = (x1, . . . , xS)
⊤, S is the community size, and A is the community matrix of size S × S. We consider

matrices that satisfy the conditions of Theorem 2. Specifically, the elements aij of A are random variables

satisfying

E[aij ] = 0, var[aij ] = Cσ2, E[aijaji] = ρ, (S2)

where σ > 0, −1 ⩽ ρ ⩽ 1 and C ∈ (0, 1]. Moreover, the pairs (aij , aji) and the diagonal elements aii are

independent of each other. As defined in the main text, the complexity of an ecosystem is α := σ
√
SC.

We are now going to analyze the critical admissible complexity of the equilibrium x ≡ 0 of Eq. (S1). As we

will see soon, the value is related to the location of the eigenvalues λ of the community matrix A. According to

the elliptic law (Theorem 2), when the community size S is sufficiently large, the distribution of the eigenvalues

approaches an uniform distribution on an ellipse

ΩA =

{
λ = x+ iy

∣∣∣ x2

α2(1 + ρ)2
+

y2

α2(1− ρ)2
≤ 1

}
. (S3)

We denote λA(α, ρ) as the boundary of the ellipse which is significant for analyzing the critical admissible

complexity. Remember that the critical admissible complexity is the threshold where the equilibrium loses

stability.

We then decompose the community matrix as A = PΛP−1, where Λ is the Jordan form of A and P is the

corresponding invertible S × S matrix. Under the linear transformation x = Pu with u = (u1, u2, · · · , uS)
⊤,

we obtain the following set of differential equations for scalar variables ui, i = 1, 2, · · · , S

u̇i(t) = −dui(t) + λiui(t− τ), (S4)

where λi are the eigenvalues of A.

For the sake of simplicity, we drop the subscript i hereafter and bear in mind that each eigenvalue of the

community matrix A yields a differential equation in the form of Eq. (S4). Moreover, analyzing the stability of

the equilibrium x ≡ 0 of Eq. (S1) is equivalent to study the characteristic equation corresponding to Eq. (S4).

Therefore, we leverage the ansatz u(t) = ezt, z ∈ C to obtain the following characteristic equation

H(z) := z + d− λe−zτ = 0. (S5)

If all the roots of Eq. (S5) satisfy Re(z) < 0, then the equilibrium abundance that we consider is stable.

Therefore, we insert the critical condition z = iω, ω ∈ R into Eq. (S5) and obtain

Ĥ(ω) := H(iω) = iω + d− λe−iωτ = 0.

Equivalently, we have λ(ω, τ) = eiτω(d + iω). For a fixed time delay τ > 0, λ(ω, τ) is actually a parametric

curve separates the complex plane into stable and unstable regions. Denoting λ = x+ iy, we get{
x = d cos τω − ω sin τω,

y = d sin τω + ω cos τω.
(S6)
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By basic calculations, we derive that the least positive root ω0 of the second algebraic equation y(ω) = 0 in

Eq. (S6) exists and satisfies ω0 ∈
( π

2τ
,
π

τ

)
. Moreover, we have λ(−ω, τ) = λ̄(ω, τ). The trajectory λ(ω, τ),

ω ∈ [−ω0, ω0] therefore forms a simple closed curve (denoted by Γτ ) on the complex plane, which is symmetric

to the x-axis. Figure S1 shows several parametric curve Γτ corresponding to different τ . Continuity stipulates

that the region Ωτ surrounded by Γτ is nothing but the stability region, because Eq. (S4) corresponding to the

origin λ = 0 inside Ωτ for any τ is always stable. Consequently, the equilibrium of Eq. (S1) is stable if all the

eigenvalues λi of the community matrix A lie in the region Ωτ , i.e., ΩA ⊂ Ωτ .

As the time delay τ increases, the area of the region Ωτ decreases monotonically [14]. For τ = 0, Ωτ

degenerates into the half plane {λ = x+ iy |x < d}. For τ > 0, Ωτ is a leaf-shaped bounded region and shrinks

into a circular disk of radius d centered at the origin: Ω∞ = {λ = x + iy | |λ| < d} in the limit τ → +∞. We

have that ΩA is the estimated distribution of eigenvalues of A that depends mainly on the correlation coefficient

ρ and the complexity α. In what follows, we provide a detailed analysis about the conditions under which the

ellipse ΩA is a subset of the stability region Ωτ . We remark that, in a recent work [15], the stability condition is

considered heuristically by taking into account solely the relative positions of the endpoints of the ellipse to the

stability region Ωτ . Here, to be more rigorous, we will analyze the exact tangent point of ΩA and Ωτ , especially

for ρ < 0 (i.e., the predator-prey systems).

2.1.1 Cases when ρ ⩾ 0

For ρ ⩾ 0, the long axis of ΩA is the segment Re(λ) ∈ [−α(1 + ρ), α(1 + ρ)] lying on the real axis. As the

complexity α increases from zero, the ellipse ΩA is contained inside the unit disk Ω∞ and hence inside Ωτ until

the right endpoint of the long axis (α(1 + ρ), 0) reaches the tangent point (d, 0). It can be seen that, for ρ ≥ 0,

(d, 0) is the only possible tangent point between the boundaries of ΩA and Ωτ for any value of τ . As a result,

when α(1 + ρ) < d, we have ΩA ⊂ Ω∞ ⊂ Ωτ for any time delay τ ⩾ 0. On the contrary, when α(1 + ρ) > d, we

get ΩA ∩Ωc
τ ̸= ∅, which implies that there are some eigenvalue λ of A belonging to the unstable region for any

time delay τ ⩾ 0. Consequently, the absolute stability and instability conditions are respectively α < d/(1 + ρ)

and α > d/(1 + ρ). Here the term “absolute” is used because the conditions are independent of the time delay

τ . As a final result, the critical admissible complexity is found as α∗ = d/(1 + ρ) when ρ ⩾ 0.

2.1.2 Cases when ρ < 0

For ρ < 0, the analysis becomes more complicated because the long axis of ΩA lies now on the imaginary axis

with the endpoints (0,±α(1 − ρ)). Analogously, the ellipse ΩA becomes larger as the complexity α increases.

It is then convenient to consider three subcases.

Subcase (i): When α(1 − ρ) < d or, equivalently, α < d/(1 − ρ), the long axis of the ellipse ΩA is lo-

cated inside the disk Ω∞ centered at the origin with radius d, implying that ΩA ⊂ Ω∞ ⊂ Ωτ for any time delay

τ ⩾ 0. In this case, the steady state is absolutely stable.

Subcase (ii): When α(1 + ρ) > d or, equivalently, α > d/(1 + ρ), the point (d, 0) on the boundary Γτ of

the stability region is always located inside ΩA, resulting in absolute instability.

Subcase (iii): In addition to the subcases (i) and (ii), the complexity α lies between d/(1− ρ) and d/(1 + ρ).

Consequently, both ΩA ∩ Ωc
∞ ̸= ∅ and ΩA ⊂ Ω0 hold. Remark that here we neglect the critical situations

α = d/(1− ρ) and/or α = d/(1 + ρ) for simplicity, but these issues will be discussed later. In this case, a fixed

time delay τ > 0 corresponds to a stability region Ωτ . As the complexity α increases from d/(1 − ρ), we first

have ΩA ⊂ Ωτ yielding that the equilibrium state is stable. Then, at a critical complexity α = α∗, the two

regions ΩA and Ωτ intersect at a tangent point somewhere on the upper right part of the ellipse, see Fig. S1.

When α > α∗, we have ΩA ∩ Ωc
τ ̸= ∅ leads to instability of the equilibrium abundances.

Also in this case, let us now consider the case when the complexity α ∈ (d/(1 − ρ), d/(1 + ρ)) is fixed. As
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Ωτ shrinks to Ω∞ monotonically as τ increases from zero, there is certainly a unique critical time delay τcr such

that the boundaries of ΩA and Ωτcr become tangent (also at somewhere on the upper right part of the ellipse).

Therefore, ΩA ⊂ Ωτ as long as time delay satisfies τ ∈ [0, τcr). Consequently, in this case, the steady state that

we consider is stable for τ < τcr but becomes unstable for τ > τcr, as illustrated in Fig. S1.

Figure 3a of the main text summarizes the analysis we carried out so far, which shows that the param-

eter space {(α, ρ) |α > 0 and −1 ≤ ρ ≤ 1} can be divided into three regions corresponding to different stability

criteria as follows

I :=

{
(α, ρ)

∣∣∣ − 1 ≤ ρ ≤ 1 and 0 ≤ α ≤ d

1 + |ρ|

}
,

II :=

{
(α, ρ)

∣∣∣ − 1 ≤ ρ ≤ 1 and α ≥ d

1 + ρ

}
,

III :=

{
(α, ρ)

∣∣∣ − 1 ≤ ρ < 0 and
d

1− ρ
< α <

d

1 + ρ

}
.

(S7)

For any time delay τ ⩾ 0, the steady state x ≡ 0 of Eq. (S1) is always stable and unstable in regions I

and II, respectively. The transition between the two regions is determined by the criterion α = d/(1 + ρ), at

which the rightmost endpoints of both ΩA and Ωτ coincide as the intersecting point. However, in Region III

(corresponding to the predator-prey communities), the stability depends significantly on the value of τ in an

area circumscribed by the curves α = d/(1 + ρ) and α = d/(1− ρ). The latter curve describes the critical case

where the top endpoints of both ΩA and Ω∞ coincide, which breaks the “absolute” stability.

We have seen that the case when ρ < 0 is more complicated because ΩA and Ωτ may not intersect at the

four endpoints of the ellipse but some point at the upper right part (Fig. S1). Now, we are going to compute

the intersecting point and its corresponding critical admissible complexity α∗ or critical time delay τcr.

We denote the tangent point as λtan = x + iy. From Eqs. (S3) and (S6), we have the following algebraic

equation

F1(ρ, τ, ω, α) :=
(d cos τω − ω sin τω)2

(1 + ρ)2
+

(d sin τω + ω cos τω)2

(1− ρ)2
− α2 = 0. (S8)

In addition, the tangent vectors at the point λtan against the two boundaries λ(α, ρ) and λ(ω, τ) are parallel to

each other and satisfy respectively
xdx

(1 + ρ)2
+

y dy

(1− ρ)2
= 0,

and 
dx

dω
= −τω cos τω − (1 + dτ) sin τω,

dy

dω
= (1 + dτ) cos τω − τω sin τω,

which imply the second algebraic equation

F2(ρ, τ, ω) :=
(d cos τω − ω sin τω)(τω cos τω + (1 + dτ) sin τω)

(1 + ρ)2

− (d sin τω + ω cos τω)((1 + dτ) cos τω − τω sin τω)

(1− ρ)2
= 0.

(S9)

Because of the symmetry to the real axis, we can assume the critical frequency ω∗ ∈ [0, ω0]. For a fixed

correlation ρ < 0, we now have two algebraic equations Eqs. (S8) and (S9) and three unknowns α, τ and ω.

Therefore, with a certain time delay τ > 0, we are able to compute α∗ and ω∗ from the two equations. The

former one is indeed the critical admissible complexity of the predator-prey communities. Conversely, if the

complexity of the predator-prey community is given, we can also calculate τcr and ω∗ accordingly. In both cases,

the tangent point λtan can then be obtained. In practice, when the system parameters are provided, we solve

the critical values numerically.

Note that region III is below the α-axis, i.e., there is a critical time delay τcr only when ρ is negative. This

implies that the predator-prey systems possess distinct properties compared to the fully random and the mixed
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ecosystem (i.e., ρ ⩾ 0). Figure 3b of the main text shows that τcr(α, ρ)–written as a function of α and ρ–is not

continuous at the boundary between regions II and III, due to the departure of the rightmost endpoint of the

ellipse ΩA from Ωτ when seeking the critical condition for the tangency of their boundaries.

For a fixed ρ < 0, we now consider α = d/(1 + ρ) which is the boundary value of regions II and III. The

corresponding ellipse ΩA is then tangent to the straight line Re(λ) = d, which is the critical case of stability

for τ = 0. As τ increases from zero, ΩA is still fully covered by Ωτ until their boundaries get osculated when τ

reaches the value τcr(d(1+ρ), ρ), the left limit value at (d/(1+ρ), ρ), which can be obtained from the condition

that the curvatures of both boundaries are equal at the point λ = d. Specifically, after some algebra, we obtain

the following explicit expression

τ̂cr := τcr

(
d

1 + ρ
, ρ

)
=

(1−
√
−ρ)2

2d
√
−ρ

.

Note that ω ≡ 0 is always a trivial solution of Eq. (S9) that corresponds to α = d/(1+ρ) and the tangent point

(d, 0). For the specific value ω = π/(2τ), we can show that F2[ρ, τ, π/(2τ)] < 0. A nontrivial positive solution

ω ∈ (0, ω0) then exists under the condition ∂F2/∂ω > 0, leading to τ > τ̂cr.

Two remarks about the stability on the boundaries of the parameter regions I, II and III are the following.

Firstly, region III is relatively open since τcr ∈ (τ̂cr,∞). Thus, the boundary curve {(α, ρ) |α = d/(1−ρ) and −
1 ≤ ρ < 0} separating regions I and III belongs to region I, so does the boundary curve {(α, ρ) |α = d/(1 +

ρ) and − 1 < ρ < 0} with region II. Secondly, the segment {α = d/(1 + ρ), 0 ≤ ρ ≤ 1} belongs to region

II, because the uniform distribution of eigenvalues in the ellipse ΩA is an asymptotic behavior in the limit of

infinite community size. For the ecosystem with finite size S, there is a nonzero probability that at least one

eigenvalue of A is located outside ΩA.
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2.2 Distributed time delays and time shift τ̂ ⩾ 0

Following the notation in the main text, the linearization of an ecosystem with distributed time delay is

written as

ẋ(t) = −dx(t) +A

∫ ∞

0

k(τ)x(t− τ) dτ, (S10)

where the kernel k(τ) is a probability density function that satisfies k(τ) ⩾ 0 for s ⩾ 0 and
∫∞
0

k(τ) dτ = 1.

For k(τ) = δ(τ − c), c ⩾ 0 where δ(·) is the Dirac delta function, the system degenerates into the one with a

discrete time delay. As introduced in the main text, there is sometimes a time shift (i.e., inherent delay) τ̂ ⩾ 0.

In such a case, the delay kernel is characterized as

k(τ) =

0, 0 ⩽ τ < τ̂ ,

k0(τ − τ̂), τ ⩾ τ̂ ,
(S11)

where k0(τ) is a given probability density function satisfying k0(τ) ⩾ 0 for τ ⩾ 0 and
∫∞
0

k0(τ) = 1.

Similar to the case discussed in Sec. 2.1, we decompose the community matrix A as A = PΛP−1, so it

suffices to consider the following system of scalar variable through the linear transform x = Pu

u̇(t) = −du(t) + λ

∫ ∞

0

k(τ)u(t− τ) dτ, (S12)

where λ is the eigenvalue of A and we again omit the subscript i but emphasize that there is a characteristic

equation for each eigenvalue of A. It is required that u(t) = 0 is stable for all λ to guarantee the stability of

x ≡ 0 of Eq. (S12).

To analyze the stability of u(t) = 0 of Eq. (S12), we again leverage the ansatz u(t) = ezt, z ∈ C and derive

the corresponding characteristic equation as

Hk(·)(z) := z + d− λK(z) = 0, (S13)

where

K(z) :=

∫ ∞

0

e−zτk(τ) dτ =

∫ ∞

τ̂

e−zτk0(τ − τ̂) dτ =

∫ ∞

0

e−z(v+τ̂)k0(v) dv = e−zτ̂

∫ ∞

0

e−zvk0(v) dv. (S14)

Denoting K0(z) :=
∫∞
0

e−zτk0(τ) dτ , we then have

Hk(·)(z) = z + d− λe−zτ̂K0(z) = 0. (S15)

In this work, we assume that K0(z) is well-defined and continuously differentiable, which is a generally satisfied

condition for common density functions used in the context of ecology such as the Gamma distribution.

The equilibrium state of the original system is stable if, for all λ of A, all roots of the characteristic equation

Hk(·)(z) = 0 have negative real parts. Analogous to the distributed-time-delay case, we can define the stability

region as

Ωk(·) :=
{
λ = x+ iy

∣∣∣Hk(·)(z) = 0 ⇒ Re(z) < 0
}
, (S16)

whose boundary is denoted as Γk(·). Thus, the steady state x ≡ 0 is stable if ΩA ⊂ Ωk(·).

Now, we consider the critical case z = iω, ω ∈ R. When z = iω, after simple calculations, we obtain

K̂(ω) := K(iω) = KR(ω) + iKI(ω), (S17)

with

KR(ω) =

∫ ∞

0

cos[ω(τ + τ̂)]k0(τ) dτ, (S18)

and

KI(ω) = −
∫ ∞

0

sin[ω(τ + τ̂)]k0(τ) dτ. (S19)
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Considering that λ = x+ iy ∈ C and the critical case Hk(·)(iω) = 0, we obtain
x =

dKR(ω) + ωKI(ω)∣∣∣K̂(ω)
∣∣∣2 ,

y =
ωKR(ω)− dKI(ω)∣∣∣K̂(ω)

∣∣∣2 .

(S20)

For a fixed time shift τ̂ and a given density function k0(τ), Eq. (S20) is indeed the parametric form [x(ω), y(ω)]

of the boundary Γk(·). In general, the shape of Ωk(·) and its boundary Γk(·) is sophisticated and difficult to be

analyzed universally. We therefore first consider a common probability distribution, the Gamma distribution,

and then provide some general results.

2.2.1 The Gamma distribution

For the Gamma distribution, the probability density function is written as

k0(τ) =
θ−m

Γ(m)
τm−1e−τ/θ, τ > 0, (S21)

where θ ∈ R+ and m ∈ R+. Moreover, we have

⟨τ⟩ := E[τ ] =
∫ +∞

0

τk0(τ) dτ = mθ. (S22)

By simple calculations, we obtain

K̂(ω) = e−iωτ̂ (1 + iωθ)−m. (S23)

Then, for a given time shift τ̂ > 0, the parametric form of the boundary Γk(·) of the stability region is obtained

as

x(ω) + iy(ω) = eiωτ̂ (d+ iω)(1 + iωθ)m, (S24)

which is actually equivalent to Eq. (S20).

In the main text (Fig. 4), we consider m = 1 and m = 2 as two examples. When m = 1, the Gamma

distribution is actually reduced into the exponential distribution as

k0(τ) =
1

θ
e−τ/θ, τ > 0. (S25)

In this case, when there is no time shift (i.e., τ̂ = 0) the stability region is found as the following simple form

Ωk(·) = Ωexp(θ) =

{
x+ iy ∈ C

∣∣∣x ⩽ d− θ

(1 + dθ)2
y2
}
. (S26)

Note that θ indeed delineates the average time delay. As it increases from zero, we find that the stability region

changes continuously but non-monotonically. As θ → 0 or θ → +∞, the boundary tends to the vertical line

x = d, which corresponds to the two limiting cases.

Because we have the expression of the stability region, it is possible to calculate explicitly the critical

admissible complexity. By basic algebras, we are able to show that the disk Ω∞ = {λ = x+ iy | |λ| < d} always

lies in the stability region. Consequently, the incorporated exponentially distributed time delay does not change

the critical complexity of the fully random (ρ = 0) and the mixed ecosystems (ρ > 0), for which the critical

admissible complexity are α∗ = d and α∗ = d/(1 + ρ), respectively. As for the predator-prey communities

(ρ < 0), we need to first compute the tangent point of the boundary of Ωexp(θ) and ΩA, which can be found

from the following algebraic equations

x

(1 + ρ)2
dx+

y

(1− ρ)2
dy =0,

dx+
2yθ

(1 + dθ)2
dy =0.

(S27)
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We finally find the intersecting point (x∗, y∗) as

x∗ =

(
1 + ρ

1− ρ

)2
(1 + dθ)2

2θ
, y∗ = ±(1 + dθ)

√
d− x∗

θ
. (S28)

Finally, the critical admissible complexity for the predator-prey systems is obtained as

α∗ =

√(
x∗

1 + ρ

)2

+

(
y∗

1− ρ

)2

=
1 + dθ

(1− ρ)
√
2θ

√
1 + 2d−

(
1 + ρ

1− ρ

)2
(1 + dθ)2

θ
.

(S29)

It can be verified that the critical complexity α∗ changes non-monotonically as the average time delay θ increases

from zero. This is actually caused by the non-monotonicity of the stability region with respect to θ.

We are able to carry out analogous investigations when m = 2. Because some expressions are lengthy to be

provided explicitly, here we only show the boundary of the stability region, which is written in the parametric

form as

x(ω) = d(1− θ2ω2)− 2θω2, y(ω) = ω(1− θ2ω2) + 2dθω, ω ∈
[
−
√
1 + 2dθ

θ
,

√
1 + 2dθ

θ

]
. (S30)

Again, in this case, the distributed time delay does not alter the critical complexity for ecosystems with ρ ⩾ 0.

Moreover, it changes non-monotonically the critical complexity α∗ of the predator-prey communities, see Fig. 4

of the main text.

In general, the above computations can be carry out when the density function k(τ) is given explicitly even

when the time shift τ̂ > 0. To gain further insights of the distributed time delay and to see how time shift

τ̂ affects the critical complexity, we next provide some general properties for the ecosystems when distributed

time delay are incorporated. We also discuss two cases, ρ ≥ 0 and ρ < 0, separately.

2.2.2 Some general results for the cases when ρ ⩾ 0

For ρ ⩾ 0, we have the following result:

Theorem 3. The radius-d disk Ω∞ = {λ = x + iy | |λ| < d} is contained in the stability region Ωk(·) for any

kernel function k(s). For ρ ≥ 0, the system is therefore either absolutely stable or absolutely unstable.

Proof. We first show that the disk Ω∞ is always a subset of Ωk(·) for an arbitrary density function k(s). If not,

then for some λ ∈ Ω∞, its corresponding characteristic equation Hk(·)(z) = 0 has at least one root satisfying

Re(z) ⩾ 0. We thus have

Re(z) = Re(−d+ λK(z)) ≤ −d+ |λK(z)| < −d+ d

∫ ∞

0

∣∣e−zτ
∣∣ k(τ) dτ ≤ 0,

which is a contradiction. This proves the first part of the theorem.

Note that, when λ = d, z = 0 is a trivial zero point of Hk(·)(z) which is independent of the choice of density

function k(τ). The point λ = d is therefore located on the boundary Γk(·) for any k(τ). The derivative at this

point

∂ Re(z)

∂λ

∣∣∣∣
z=0,λ=d

= − Re

{
∂Hk(·)

∂λ

/
∂Hk(·)

∂z

}∣∣∣∣
z=0,λ=d

=

[
1 + d

∫ ∞

0

τk(τ) dτ

]−1

> 0

implies transversality and λ ̸∈ Ωk(·) if λ ∈ (d, d + ε) holds for some positive ε. Because ΩA is an ellipse with

its long axis [−α(1 + ρ), α(1 + ρ)] lying on the real axis [i.e., Im(λ) = 0], either ΩA ⊂ Ω∞ ⊂ Ωk(·) holds or the

point λ = d (on the boundary of Ωk(·)) is located inside ΩA for any kernel k(τ). The former and the latter case

corresponds to absolute stability and absolute instability, respectively.

In light of Theorem 3, we deduce that the distributed time delay does not affect the critical complexity α∗

for the ecosystems with ρ ⩾ 0. Therefore, we always have α∗ = d/(1 + ρ) for ρ ⩾ 0.
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2.2.3 Some general results for the cases when ρ < 0

The all-or-none property (i.e., either absolute stability or absolute instability) holds for ρ ≥ 0 because, in

this case, it is only necessary to consider the relationship between the point λ = d and the rightmost point

(α(1+ ρ), 0) of ΩA. For the case of ρ < 0, the analysis is more complicated, as the intersecting point of ΩA and

the boundary of the stability region does not occur at the point λ = d, as seen in previous examples. In this

case, it is necessary to investigate properties of the stability regions Ωk(·). In what follows, we focus on the role

played by time shift τ̂ ⩾ 0 to see how it affects the critical complexity of the predator-prey communities.

To begin, we introduce the following lemma (c.f., Theorem 2 in Campbell and Jessop’s work [16]).

Lemma 4. If λ is real and λ > d, then system (S12) is unstable.

Proof. Consider the real root of the characteristic equation (S13). Note that H(0) = d− λ < 0 and

H(z) = z + d− λ

∫ ∞

0

e−zτk(τ) dτ > z + d− λ ⩾ 0

for z ⩾ λ− d. Therefore, H(z) = 0 has a real positive root z ∈ (0, λ− d) and thus system (S12) is unstable.

According to Eqs. (S15)and(S20), the boundary of the stability region is found in the parametric form as

λ(ω; τ̂) =
eiωτ̂ (d+ iω)

K̂0(ω)
, (S31)

where K̂0(ω) := K0(iω) =
∫∞
0

e−iωsk0(s) ds, which is in fact equivalent to the Fourier transform of the density

function k0(τ) [because k0(τ) = 0 when τ < 0]. The curve described by Eq. (S15) corresponds to the critical

case when the characteristic equation Eq. (S13) has a pair of conjugate pure imaginary root. Note that when

λ = 0, the characteristic equation has one and only one solution z = −d < 0, and thus the equilibrium state

that we concern is stable. Consequently, the stability region Ωk(·) is the set of all the points that possesses a

continuous path to the origin which does not intersect with the boundary λ(ω; τ̂).

Based on our assumption, K̂0(ω) is continuous. Let ω∗ be the smallest positive zero point of K0(ω). Note

that we have λ(−ω; τ̂) = λ(ω; τ̂) implying that the boundary is symmetric to the real axis. Moreover, we also

have λ(0) = d. Consequently, to analyze the stability region, we are going to consider the parametric curve

defined in the interval ω ∈ [−ω∗, ω∗]. In addition, if K0(ω) has no zero point, we denote ω∗ = +∞.

We then consider the tangent point of the curve λ(ω; τ̂) and the real axis. For this purpose, we denote the

smallest positive root of the equation Im[λ(ω; τ̂)] = 0 as ω0(τ̂), we have that, according to Lemma 4, if ω0(τ̂)

exists and ω0(τ̂) < ω∗, then λ(ω0; τ̂) must be negative, i.e., arg[λ(ω0; τ̂)] = π. In such a case, the stability

region Ωk(·) is closed.

We have already seen that the stability region is open for the exponentially distributed delay without time

shift. This means that ω0 may not exists for arbitrary k0(τ) when there is no time shift (i.e., τ̂ = 0). In fact, by

introducing sufficiently large time shift τ̂ > 0, the existence of ω0 can be guaranteed by the following lemma.

Lemma 5. There is a τ ≥ 0 such that, for any τ̂ > τ , ω0(τ̂) exists and ω0(τ̂) < ω∗. Specifically, if ω0(0) < ω∗

exists, then τ = 0.

Proof. First, we have λ(ω; τ̂) = eiωτ̂λ(ω; 0) for all ω and τ̂ . This implies that

arg[λ(ω; τ̂)] = ωτ̂ + arg[λ(ω; 0)].

If ω0(0) < ω∗ exists, then for any τ̂ > 0, we have

arg[λ(ω0(0); τ̂)] = ω0(0)τ̂ + arg[λ(ω0(0); 0)] = ω0(0)τ̂ + π > π.

We also have arg[λ(0; τ̂)] = arg(d) = 0 for any τ̂ . Thus, by continuity of λ(ω; τ̂), we have that, for any τ̂ , ω0(τ̂)

exists and ω0(τ̂) < ω0(0) < ω∗. Consequently, τ = 0.
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Now suppose Im[λ(ω, 0)] ̸= 0 for ω ∈ (0, ω∗). For any τ̂ ⩾ 0, from Eq. (S31), after some algebra, we have

dλ

dω

∣∣∣∣
ω=0

= i(1 + dτ̂).

We thus have that λ(ω; 0) lies in the upper half plane for ω ∈ (0, ω∗) according to continuity, i.e., arg[λ(ω; 0)] ∈
(0, π). Choosing 0 < ω̃ < ω∗, we have

arg[λ(ω̃; τ̂)] = ω̃τ̂ + arg[λ(ω̃; 0)] > ω̃τ̂ . (S32)

Now we take τ = π/ω̃. Then, for τ̂ > τ and we have arg[λ(ω̃; τ̂)] > π, implying that there exists a ω0 < ω̃ < ω∗

such that arg[λ(ω0, τ̂)] = π. Here, we use again the continuity of λ(ω; τ̂). This completes the proof.

For simplicity, hereafter we let τ be the infimum of all those τ satisfying Lemma 5. Having proved that

ω0(τ) is well-defined, we are now going to discuss the monotonicity and convergence of the stability region with

respect to the increasing of time shift τ̂ . As we will see, the monotonicity is different from the case when the

average time delay ⟨τ⟩ increases. We first have the following lemma.

Lemma 6. As τ̂ increases in the interval (τ ,∞), ω0(τ̂) decreases monotonically and converges to zero. More-

over, the endpoint λ(ω0(τ̂); τ̂) of the boundary Γk(·) tends to λ = −d.

Proof. For any δ > 0, the relation λ(ω; τ̂ + δ) = eiδωλ(ω; τ̂) implies that

arg[λ(ω0(τ̂); τ̂ + δ)] = ω0(τ̂)δ + arg[λ(ω0(τ̂); τ̂)] = ω0(τ̂)δ + π > π.

Thus, there exists a ω0(τ̂ + δ) that is less than ω0(τ̂) such that arg[λ(ω0(τ̂ + δ); τ̂ + δ)] = π. Consequently, we

deduce that ω0(τ̂) is a monotonically decreasing function.

For any ϵ > 0, we take τ̂ = π/ϵ. Then,

arg[λ(ϵ; τ̂)] > ϵτ̂ + arg[λ(ϵ; 0)] > π.

Therefore, ω0(τ̂) exists and satisfies ω0(τ̂) < ϵ, which implies that limτ̂→∞ ω0(τ̂) = 0. Because |λ(ω; τ̂)|2 =

(d2 + ω2)/ |K0(ω)|2, it follows that limτ̂→∞ |λ(ω0(τ̂); τ̂)| = d. Also, λ(ω0(τ̂); τ̂) must be negative according to

Lemma 4. Therefore, it converges to −d as . This completes the proof.

From Lemma 6, we define ω0(τ) = limτ̂→τ+ ω0(τ̂). We then have ω0(τ̂) < ω0(τ) ≤ ω∗ for any τ̂ > τ . We

further define the following real function

F (ω) := |λ(ω; τ̂)|2 =
ω2 + d2

|K0(ω)|2
.

The next result of our analysis is the following theorem about Ωτ̂ that describes the stability region for

different time shift τ̂ .

Theorem 7. There exists η ⩾ 0 such that for τ̂ > η, Ωτ̂ shrinks monotonically as τ̂ → ∞ and the limiting set

is the disk Ω∞ = {λ ∈ C | |λ| ⩽ d}. Further, if F (ω) is strictly monotonic in the interval (0, ω0(τ)), then η = τ

and Ωτ̂ is globally monotonic for τ̂ ∈ (τ ,∞).

Proof. The continuous differentiability of K0(ω) stipulates that F (ω) is strictly monotonically increasing in

some interval (0, ϵ) close to ω = 0, because its numerator is monotonically increasing while the denominator

is the energy spectrum of k0(s) for which ω = 0 yields a maximal value. Lemma 6 implies that there exists a

η > 0 such that for τ̂ > η, ω0(τ̂) < ϵ holds and thus F (ω) is monotonically increasing in the interval (0, ω0(η)).

When there are two pairs (τ̂i, ωi), i = 1, 2 satisfying τ̂i > η, 0 < ωi < ω0(τ̂i) such that λ(ω1; τ̂1) = λ(ω2; τ̂2),

i.e.,
eiω1τ̂1(d+ iω1)

K0(ω1)
=

eiω2τ̂2(d+ iω2)

K0(ω2)
,
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taking absolute values of both sides implies that F (ω1) = F (ω2). Because F (ω) is a monotonically increasing

function in the interval (0, ω0(η)), we must have ω1 = ω2, and thus have τ1 = τ2. This means that, for different

τ̂ in τ ∈ (η,∞), the boundary of the stability region Ωτ̂ never intersect each other except at the trivial point

λ = d.

Note that the endpoint λ(ω0(τ̂); τ̂) = −
√
F (ω0(τ̂)) is monotonically increasing with respect to τ̂ . Because

η < τ̂1 < τ̂2 implies λ(ω0(τ̂1); τ̂1) < λ(ω0(τ̂2); τ̂2) and the boundary of Ωτ̂1 and Ωτ̂2 never intersect, we conclude

that Ωτ̂2 ⊂ Ωτ̂1 .

We now consider the asymptotic region of Ωτ̂ . From Theorem 3 and Lemma 6, we have λ(ω0(τ̂); τ̂) < −d

and limτ̂→+∞ λ(ω0(τ̂); τ̂) = −d. Moreover, λ = −d belongs to the boundary of the limiting set Ω∞ which

always lies inside Ωτ̂ . Therefore, for any τ̂ > η, the point λ(ω; τ̂) on the boundary of the stability region Ωτ̂

satisfies |λ(ω; τ̂)| =
√
F (ω), which is bounded between d and |λ(ω0(τ̂))|, i.e.,

{λ ∈ C | |λ| ⩽ d} ⊂ Ωτ̂ ⊂ {λ ∈ C | |λ| ⩽ |λ(ω0(τ̂))|}.

It then follows that limτ̂→+∞ Ωτ̂ = Ω∞ = {λ ∈ C | |λ| ⩽ d}.
Finally, if F (ω) is monotonic in the interval (0, ω0(τ)), then it can be checked that the analysis above holds

for τ̂ > τ and then η = τ . This completes the proof.

With Theorem 7, we are able to further analyze the stability of the ecosystems with the correlation parameter

ρ < 0. Recall that, in this case, the distribution of the eigenvalues of the community matrix A is a vertically

stretched ellipse, whose long axis [−iα(1− ρ), iα(1− ρ)] lies on the imaginary axis. As the complexity α of the

predator-prey communities increases from zero, we have ΩA ⊂ Ω∞ ⊂ Ωk(·) when α < d/(1 − ρ). As a result,

the equilibrium state that we concern is absolutely stable, i.e., the conclusion is independent of the distributed

delay. As α increases further, we have that ΩA ∩ Ωc
∞ ̸= ∅. Moreover, according to Theorem 7, when τ̂ > η,

the stability region shrinks monotonically to Ω∞. Therefore, there is a critical value τ̂cr such that ΩA ⊂ Ωc

(implying stable equilibrium state) when τ̂ < τ̂cr and ΩA ∩ Ωc
k(·) ̸= ∅ (indicating unstable equilibrium state)

when τ̂ > τ̂cr. Consequently, as the complexity α increases and exceeds d/(1 − ρ), the ecosystem enters an

uncertain region where the stability of the steady state depends on the value of time shift τ̂ . When α increases

further and exceeds d/(1 + ρ), we have that ΩA ∩ Ωc
k(·) ̸= ∅ for all τ̂ because the short (horizontal) axis of the

ellipse ΩA crosses the rightmost point of Ωk(·), i.e., λ = d. As a consequence, the equilibrium state we concern

is absolutely unstable. We now summarize the analysis into the following theorem.

Theorem 8. When ρ < 0, as the complexity α increases, the state of the concerned equilibrium state changes

from being absolutely stable through an uncertain region to being absolutely unstable. Moreover, in the uncertain

region, there is a critical time shift τ̂cr separates the equilibrium state into stable and unstable state.

We remark that the critical threshold of α that separates the uncertain region and the absolutely-unstable

region may not always be d/(1 + ρ). It depends on the choice and the properties of specific density function

k0(τ). For instance, when τ = η = 0 for a given k0(τ), the stability region shrinks monotonically to Ω∞ in a

global manner. That is, the greatest stability region corresponds to the case when time shift τ̂ = 0. In this

case, if we further have that ΩA ∩ Ωc
k(·) ̸= ∅ when α = α̃ < d/(1 + ρ) and τ̂ = 0, then, the concerned steady

state is absolutely unstable whenever α > α̃.

Based on Theorems 3and 8, we now conclude that the role played by time shift τ̂ is analogous to that by the

discrete time delay τ . Specifically, when ρ ⩾ 0, the discrete or distributed time delays do not alter the critical

complexity of the ecosystems. As for ρ < 0, there is an uncertain region where the amount of time delay plays

significant role in determining the critical admissible complexity. In practice, for specific discrete or distributed

time delays, the critical value can be calculated.
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3 Detailed settings for numerical simulations

In previous sections, we provide some analytical results for the considered ecosystems with either discrete

or distributed time delays. To verify our theoretical results, we need also to carry out numerical simulations.

In fact, most of the results for comparison and verification are provided in the main text. Here, we give below

detailed settings for numerical investigations.

3.1 Configure the three representative types of ecosystems

We refer to the previous work [17] to construct the community matrix A for the three representative types

of ecosystems. Following the notation mentioned in the main text, we set C ∈ (0, 1] as the parameter char-

acterizing the sparsity of the community. Denoting by ϕ, ϕ+ and ϕ− the probability density function of a

Gaussian distribution N (0, σ2) and the corresponding distributions with positive and negative absolute values

±
∣∣N (0, σ2)

∣∣, respectively. In a fully random community, each element aij is drawn independently from N (0, σ2)

with probability C and is zero with probability 1− C, i.e., the probability density function of aij is

prandom(aij) = (1− C)δ(aij) + Cϕ(aij), (S33)

where δ(·) is the Dirac delta function.

For the mixed ecosystems, each pair of interactions (aij , aji) is drawn independently from
(∣∣N (0, σ2)

∣∣ , ∣∣N (0, σ2)
∣∣)

with probability C/2, and from
(
−
∣∣N(0, σ2

0)
∣∣ ,− ∣∣N(0, σ2

0)
∣∣) with the same probability C/2, and is (0, 0) with

probability 1− C. Thus, the probability density function is

pmixture(aij , aji) = (1− C)δ(aij)δ(aji) +
C

2
ϕ+(aij)ϕ+(aji) +

C

2
ϕ−(aij)ϕ−(aji). (S34)

For the predator-prey communities, each pair of interactions (aij , aji) is drawn independently with equal

probability C/2 from
(∣∣N (0, σ2)

∣∣ ,− ∣∣N (0, σ2)
∣∣) and

(
−
∣∣N (0, σ2)

∣∣ , ∣∣N (0, σ2)
∣∣), and is (0, 0) with probability

1− C. Thus, the density function is

ppredator−prey(aij , aji) = (1− C)δ(aij)δ(aji) +
C

2
ϕ+(aij)ϕ−(aji) +

C

2
ϕ−(aij)ϕ+(aji). (S35)

For simplicity, we assume that the self-interaction instantaneous, and they are considered to be the same as d

in this work. Therefore, we set aii = 0 for all the community matrices. The above configurations yield that the

interactions aij and aji of the mixed ecosystems are either both positive (indicating mutualism) or both negative

(indicating competition), while those aij and aji of the predator-prey communities always have opposite signs

if they are non-zero. The construction procedure also guarantees that the sparsity of the community matrix A

(i.e., number of non-zero elements) is C and satisfies the conditions in Eq. (S2). Consequently, the complexity

of each constructed ecosystem is α =
√
SCσ.

Once the community matrix A has been configured, we are able to calculate the corresponding correlation

coefficient ρ. We get ρ0 = 0, ρ+ = 2/π, and ρ− = −2/π for the ecosystems with fully random, mixed,

and predator-prey type of communities, respectively. Note that the correlation coefficients ρ is constant and

independent of other parameters. The specific values of these coefficients mean that the three types of systems

represent different kinds of ensemble mutual patterns between any two species in real ecological networks,

corresponding to the balanced, positive, and negative relationships, respectively.

3.2 Estimating admissible capacity Smax

When other parameters are fixed, the admissible capacity of a network is denoted by Smax and defined as the

largest value S make the concerned equilibrium state stable. According to the theoretical result, such a value

classifies the equilibrium states into stable and unstable ones in a “binary” manner. However, this is reliable

only when the network size is sufficiently large. In practice, we also want to find Smax for the community size
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is relatively small. In such cases, due to the the stochastic nature of the community matrix A, the equilibrium

state of a specific type of ecosystem is either stable or unstable for a fixed value of S can only be determined in

a probabilistic sense. We thus apply a statistical method to estimate numerically the critical value Smax.

For a given set of parameter values, we first obtain the theoretical prediction of Smax. For each S value around

this prediction, we perform numerical simulations for sufficient number of times (e.g., 100) when generating the

community matrix A. For each A we determine the stability of the equilibrium state and use these results to

estimate the probability of stability, pS . Finally, we obtain an estimation of the critical value of Smax by fitting

with a probit regression model

Φ−1(pS) = β(S − Smax),

where Φ−1 is the inverse of the standard Gaussian cumulative distribution function.

3.3 Corresponding results for discrete time delays

We first consider the case where the interactions possess a discrete time delay τ . From our analytical

result (S7) about the regions of stability, we see that the fully random and mixed communities (ρ ⩾ 0) are

either absolutely stable or absolutely unstable, depending on the value of α =
√
SCσ. The transition (between

the stable and unstable regions) occurs at α = d and α = πd/(π+2) for the fully random and mixed communities,

respectively (see also Fig. 3 of the main text). For instance, in simulations, for C = 0.2, σ0 = 0.5 and d = 3, the

maximal admissible capacity are approximately Smax = 180 and Smax = 67 for the fully and mixed communities,

respectively.

While discrete time delay does not affect the admissible complexity α (or the maximal capacity Smax)

for the fully random and mixed communities, it does play a significant role for the predator-prey ones. In

particular, for the predator-prey communities, because ρ− = −2/π < 0 region III emerges for complexity

α ∈ (πd/(π + 2), πd/(π − 2)). When the complexity α of the predator-prey communities is assigned in this

interval, time delay τ contributes to determining the stability. Moreover, there is a critical value of time delay

τcr, which relates to the complexity α, and can be obtained numerically as discussed in previous sections.

Conversely, the admissible complexity or the network capacity also depend on the value of time delay in region

III. This is the essential difference between the predator-prey communities and those with fully random or mixed

interactions.

In general, an increment in the time delay plays a negative role for the admissible complexity or the network

capacity of the predator-prey systems. Recall that the admissible complexity for the fully random ecosystem is

α = d. Then, given α = d we can find τcr(α, ρ) = τcr(d, ρ) where the predator-prey communities and the fully

random ones possess the same admissible complexity. For τ > τcr(d, ρ), the critical admissible complexity of the

predator-prey communities become less than d. As a result, if other parameters are fixed, the maximal network

capacity that a stable predator-prey community accommodate will be smaller than that of a fully random one.

For different types of ecosystems, we carry out simulations for different values of the time delay τ and find that

the results agree with those from theoretical analysis, see Fig. 5 of the main text. More results are provided in

Table S1. For instance, for τ = 0.5, numerical computation gives Smax = 96 for the predator-prey communities,

which is much smaller than Smax = 180 for the fully randomly ecosystems, yet still larger than Smax = 67 for the

mixed ones. More importantly, comparing with ecosystems without any time delay, the hierarchy of stability

for the three types of systems changes for τ > 0.165 - see Table S1 for more details, where the parameters are

C = 0.2, σ0 = 0.5, and d = 3.
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4 Effects of other realistic factors

4.1 Robustness of altered complexity hierarchy with respect to heterogeneous

time delays

We carry out a robustness analysis with respect to variations in the time delay. Considering perturbations

to the time delays yields the following linearized differential equation

ẋi(t) = −dxi(t) +

S∑
j=1

aijxj(t− τij), i = 1, . . . , S.

In simulations, each τij is drawn independently from a uniform distribution U(τ − δ, τ + δ). For a reasonable

comparison of the effects of perturbations for the heterogeneous time delays, we take cvτ , the coefficient of

variation of the perturbation distribution, as a control parameter such that δ =
√
3τcvτ . Rather than calculating

the distribution of the eigenvalues of the community matrix A and comparing their position with the stability

region Ωτ , we estimate the probability of stability directly from the simulated trajectories. The reason is that

it is difficult to establish the corresponding stability theory from the distribution of the community eigenvalues

with heterogeneous time delays. In simulations, given the values of S, τ and cvτ , we generate the community

matrix A and a set of time delays {τij} for a sufficiently large number of times (e.g., 100 times) and compute

the Lyapunov exponents from the simulated trajectories. The probability of stability is then estimated from

the frequency of the negative Lyapunov exponents. Note that cvτ can never be greater than
√
3/3 in order to

guarantee non-negative time delays.

The numerical results indicate strong robustness against heterogeneous time delays, as shown in Fig. S2.

Even for large perturbations with cvτ = 1/2, which means that the values of τij are taken to be very different

from the value τ (e.g., from the interval [0.13τ, 1.87τ ]), the trends of variation in calculated capacity Smax do not

change appreciably. We find that the capacity is especially robust for the fully random and mixed ecosystems

which is consistent with the analytical result that those values do not depend on the values of the time delay.

4.2 Effects of different probability distributions for interaction strength on the

stability hierarchy

In our analysis and computations so far, the elements aij of the community matrix A are drawn from the

Gaussian distribution N (0, σ2). Here we consider the situation where the distribution is no longer fixed as

Gaussian but can be other symmetric probability density function with zero mean and variance σ2. For a fixed

value of the variance σ2, different probability density functions indeed lead to different interacting strength

E[|aij |]. To study the effects of the interacting strength on the hierarchical complexity, we focus mainly on

the predator-prey communities because the fully random or mixed ecosystems are either absolutely stable or

absolutely unstable.

From the configuration of the predator-prey communities (S35), we have (E[|aij |])2 = |ρ|σ2 due to the

symmetry of the probability density function of aij , which can be verified numerically. As a result, for a fixed

value of σ, increasing or decreasing the interacting strength E[|aij |] is equivalent to changing the absolute value

of the correlation |ρ|. The role of varying the interacting strength in our analysis is thus assessed by the variation

in the correlation coefficient ρ.

For comparison with the Gaussian ensemble, we now consider the ensemble of a uniform distribution

U [−
√
3σ,

√
3σ] with zero mean and standard derivation σ, for which the correlation coefficients between aij

and aji are ρ0 = 0, ρ+ = 0.75, and ρ− = −0.75 for the fully random, mixed, and predator-prey communi-

ties, respectively. To compare the two ensembles, we first denote ρu+ = 0.75 and ρn+ = 2/π for the uniform

and Gaussian distribution, respectively, for positive ρ. Thus, we have ρu+ > ρn+. The correlation of the pair

of interactions in structured ecosystems are stronger for the uniform distribution than that for the Gaussian

distribution. As already revealed by our theoretical analysis, the stability criteria for the fully random or mixed
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ecosystems are independent of the time delay. For the former one, the critical admissible complexity is always

found as α∗ = d which is invariant for different ensembles. As for the mixed ecosystems, the critical complexity

becomes α∗ = d/(1 + ρ). Specifically, we have α∗ = 4d/7 for the uniform distributed aij , which is smaller than

α∗ = πd/(π + 2) for the case of Gaussian ensemble. Consequently, for the mixed ecosystems, the Gaussian

distributed interactions accommodate greater complexity.

For predator-prey communities, the stability criterion depends highly on the time delay. To gain insights, we

consider here two extreme cases for which the value of τ is near or far from zero. Firstly, when τ is sufficiently

small (near zero), the critical complexity of a given predator-prey community is approximately equivalent to

that for the case when there is no time delay, i.e., τ = 0. In such a case, we have α∗ ≈ d/(1 + ρ) = 4d for the

uniformly distributed interactions and α∗ ≈ πd/(π − 2) for the Gaussian ensemble. Because of the inequality

4d > πd/(π−2), the predator-prey communities with uniformly distributed interactions have greater admissible

complexity than those with the Gaussian distribution. In the opposite extreme case where τ is sufficiently large,

the phase transition occurs near the boundary between regions I and III, where the critical complexity becomes

α∗ = 4d/7 and α∗ = πd/(π + 2) for the uniform and the Gaussian distributions, respectively. Consequently,

the order of critical admissible complexity for the predator-prey communities with two different ensembles of

interactions is analogous to that for the mixed ecosystems.

The insights so gained indicate that there is a critical value of the time delay where the two types of

predator-prey ecosystems, one with the uniform and the other with the Gaussian distribution of interactions,

accommodate the same critical complexity. In particular, in region III with a fixed complexity α, the stability

of the equilibrium state is determined by whether the inequality τ < τcr holds. As stated in previous sections,

we are able to calculate the value of τcr once the complexity α and the correlation coefficient ρ is known.

Conversely, if time delay τ and correlation ρ is known, we are also able to compute the critical complexity α∗.

Consequently, for a specific ρ, the critical complexity α∗ is written as a function of time delay τ , i.e., α∗(τ ; ρ).

The analysis now boils down to determining the sign and zero points of the function

∆α(τ) = α∗
(
τ ;− 2

π

)
− α∗

(
τ ;−3

4

)
.

Numerical searching indicates that there is a unique zero point, which is supported by direct simulations of the

dynamics, as shown in Fig. S3a. For the case of distributed time delay following, e.g., the Gamma distribution

with θ = 0.05 and m = 2, the function ∆α is always positive, implying that the predator-prey communities

with a greater value of |ρ| have a less critical complexity α∗ or system’s capacity Smax, as shown in Fig. S3b.

This is due to the fact that the time delay with the kernel k(s) is still considerable even when there is no time

shift, i.e., τ̂ = 0.

To summarize, increasing the interacting strength E[|aij |] or, equivalently, the value of |ρ| diminish the

complexity or capacity of the mixed ecosystems and enhances those of the predator-prey type ecosystems with

a small time delay. However, when time delay becomes greater, sufficiently large interacting strength mitigates

the complexity or capacity of the predator-prey communities.
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5 Extended ecosystems with more interacting structures

We validate our analysis in the presence of time delay using a number of realistic ecological systems with

competitive, mutualistic, or predator-prey type of interactions.

5.1 Competitive and mutualistic ecosystems

For mutualistic or competitive ecosystems, each off-diagonal elements aij of the community matrix A is

drawn from a non-negative or a non-positive distribution, respectively, while the diagonal elements are set to zero

as previously discussed. The configuration of the competitive and mutualistic coupling matrices are analogous

to that for systems with mixed interactions, except that each pair of (aij , aji) is drawn with probability C

only from
(∣∣N (0, σ2)

∣∣ , ∣∣N (0, σ2)
∣∣) for the mutualistic systems and from

(
−
∣∣N (0, σ2)

∣∣ ,− ∣∣N (0, σ2)
∣∣) for the

competitive systems. We thus have the average interacting strength is µ = ±
√

2/πCσ (“+” for mutualistic

and “−” for competitive systems), the variance becomes σ̃2 = (1− 2C/π)Cσ2, and the correlation coefficient is

ρ = (1− C)/(π/2− C).

To analyze the eigenvalues of the community matrixA for mutualistic and competitive systems, it is sufficient

to study the mutualistic one because for the competitive one we only need to multiply the matrix by −1.

Therefore, for the following analysis, we have aij ⩾ 0 for all i and j. We again decompose A as A = PΛP−1.

The columns vi of P are the right eigenvectors and the rows w⊤
i of P−1 are the left eigenvectors of A with

the inner product w⊤
i vi = 1 where 1 = [1, · · · , 1]⊤. For a system with sufficiently large community size S, the

sums of each row and each column have approximately the same value (S−1)µ. Associated with the eigenvalue

λ1 = (S − 1)µ, both the right and left eigenvectors are v1 = w1 = 1/
√
S. To compute the distribution of the

remaining eigenvalues, we note that the decomposition

A = PΛP−1 = (S − 1)µ · 1√
S

1⊤
√
S

+

S∑
i≥2

λiviw
⊤
i

implies

A− µ11⊤ = −µ · 1√
S

1⊤
√
S

+

S∑
i≥2

λiviw
⊤
i ,

which is the spectrum decomposition of A − µ11⊤. As a result, λ2, · · · , λS are also eigenvalues of the matrix

A− µ11T , which has the diagonal element −µ and zero mean off-diagonal elements. According to the elliptic

law, except λ1 = −µ, the remaining eigenvalues are distributed uniformly in the ellipse

Ω =

{
λ = x+ iy ∈ C

∣∣∣∣∣ x2

(1 + ρ)2
+

y2

(1− ρ)2
≤ α2

}

asymptotically, where α =
√
Sσ̃. Hence, for matrix A, except for λ1 = (S − 1)µ, the remaining eigenvalues

follow asymptotically a uniform distribution on the ellipse Ω. For large community size S, λ1 is the leading

eigenvalue since λ1 ∼ O(S) and λi ∼ O(
√
S) for i ⩾ 2. Analogously, the competitively community matrix has

the leading eigenvalue λ1 = −(S − 1)µ and its remaining eigenvalues are distributed uniformly on Ω.

We can now analyze the critical admissible complexity of the two ecosystems. For the mutualistic systems,

to guarantee the stability of the concerned equilibrium state, we need to have λ1 < d because the distribution of

other eigenvalues Ω is always located inside the circle Ω∞ (with radius d and centered at the origin). Specifically,

we obtain that the maximal capacity is (approximately) Smax = 1 +
√

π/2 · [d/(Cσ)], which is independent of

the amount of time delay. However, for the competitive ecosystems, a greater time delay does affect its maximal

capacity. To illustrate this, we consider the systems with a discrete time delay τ , for which the stability criteria

that both the leading eigenvalue λ1 = −(S − 1)µ and the ellipse Ω are located inside Ωτ result in |λ1| = (S − 1)µ < |λ(ω0, τ)| =
√
d2 + ω2

0(τ),

α(1 + ρ) =
√
Sσ̃(1 + ρ) < d,
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where ω0(τ) is the smallest positive root of the equation Im(λ(ω, τ)) = 0. Analogous to the analytical results for

the predator-prey communities with a discrete time delay, given different values of the parameters, the system

exhibits three distinct types of dynamical behaviors: absolutely stable, absolutely unstable, and delay-dependent

stability, with respective conditions (S − 1)µ < d, α(1 + ρ) > d, and α(1 + ρ) < d < (S − 1)µ. Specifically,

for the third case, there is a critical time delay τcr determined by (S − 1)µ = |λ(ω0(τcr), τcr)|. As the time

delay increases from zero and exceeds a certain amount, the maximal capacity of the competitive ecosystems

decreases, as shown in Fig. 5f of the main text.

In Table S1, we list the results of numerical simulations on the maximal capacities of the mutualistic and

competitive ecosystems. The results agree with those calculated directly from the respective theoretical formulas.

5.2 Cascade and niche predator-prey ecosystems

The species in a cascade ecosystem [18] form a unidirectional food chain, i.e., all the species are labeled

consecutively by integers 1, . . . , S and species j prey on species with smaller indices, i.e., 1, . . . , j − 1. There is

a top predator with index S and a bottom prey with index 1. With these labeling, all the positive elements

aij > 0 are located in the lower triangular part while all negative elements aij < 0 fall in the upper triangular

part, see Fig. 5c of the main text. The configuration of the cascade predator-prey systems is analogous to

that of the random predator-prey ecosystems except that each pair (aij , aji) with i > j take values zero with

probability 1− C and is drawn independently from
(∣∣N (0, σ2)

∣∣ ,− ∣∣N (0, σ2)
∣∣) with probability C.

The ecosystems with niche structure [19, 20] refines the cascade structure by loosening the unidirectional

food chain, which is then capable of incorporating more diverse ecological features such as cannibalism, looping

and flexible food chain length. In a niche system, each species i is allocated to a niche value ni uniformly

distributed in the interval [0, 1]. While ni > nj means i preys on j in a cascade system, the difference here

is that each species i is further assigned a niche interval [ci − ri/2, ci + ri/2] with a niche center ci and range

ri, and only preys on those species j whose niche values nj are contained within the niche interval of i. The

niche range ri is the product of ni and a variable following the Beta distribution with the probability density

function β(1 − x)β−1, where β = 1/C − 1 is determined by the sparsity parameter C. The niche center ci is

drawn uniformly and independently from the interval [ri/2, ni] for each species i.

The configuration results in a binary adjacency matrix B with elements bij for the niche structures, where

bji − bij represents a qualitative relationship from the species j to i. The elements aij of the community matrix

A is then constructed with its modulus from an absolute Gaussian variable
∣∣N (0, σ2)

∣∣ and its sign drawn from

bji − bij .

The distributions the eigenvalues of the cascade and niche matrices do not obey the elliptic law, because the

matrix elements are not homogeneously distributed with the identical moment. Numerical computations reveal

that, for both types of matrices, the first several eigenvalues are located near the imaginary axis and isolated

from the remaining ones that are distributed approximately on an ellipse, as shown in Figs. 5c–d of the main

text. We also find that, for systems with sufficiently large community size, the spectral radii are proportional

to S, and the size of the ellipse is proportional to
√
S, a feature of the elliptic law, as shown in Fig. S4.

We analyze the relationship between the stability region and the distribution of eigenvalues. For systems

with a cascade or a niche structure without time delay (i.e., τ = 0), the stability depends on the values of d and

λ+, the eigenvalues possessing the largest real part, which is nothing but the length of the semi-horizontal axis

of the “ellipse”. When time delay is present, for a system with large community size, the stability region is a

bounded leaf-shape area and the stability is dominated by the leading eigenvalue λmax (possessing the greatest

modulus) rather than λ+, because the former is of order O(S) while the latter is of order O(
√
S). In practice, we

are able to compute numerically the maximal capacity Smax when other parameters are fixed (e.g., Table S1 and

Fig. 5 of the main text). Because the distributions of the eigenvalues of the two types of interacting structures

expand more widely and grow faster than that of the predator-prey communities, the maximal capacities of

the former ones are smaller than that of the latter one and decay rapidly as the amount of the time delay τ

increases. As a result, a sufficiently large time delay implies that the systems with cascade and niche structures
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accommodate even less complexity (or capacity) than the mixed ecosystems, making them the last system in the

hierarchical order of complexity. In addition, different distributions of the eigenvalues suggest that the cascade

systems accommodate more species than the niche ones. We also simulate the case with distributed time delays

with varying time shift τ̂ or average time delay ⟨τ⟩. The results are provided in Figs. 5h–j of the main text.

5.3 Effect of asymmetric delays in predator-prey type ecosystems

The nature of the predator-prey interaction suggests that the populations of the prey species decrease almost

instantaneously even when time delay is present. For asymmetric time delays, the ecosystem is described by

ẋi(t) = −dxi(t) +
∑

j:aij<0

aijxj(t) +
∑

j:aij>0

aijxj(t− τ), (S36)

where A with elements aij is the predator-prey type of community matrix, and a negative coefficient aij < 0

means that species j preys on and affects i without time delay. The system can be rewritten in the following

matrix form

ẋ(t) = −dx(t) +A−x(t) +A+x(t− τ),

where A+ = {max(aij , 0)} and A− = {min(aij , 0)} are the positive and negative parts of matrix A, respectively.

We focus on three types of systems that contain different predator-prey type of interactions: random

predator-prey, cascade and niche structures, and investigate how unidirectional time delays affect the admissible

complexity and/or capacity. Due to the heterogeneity of the time delay, a uni-dimensional characteristic equa-

tion is not adequate for the analytical investigation. We detect the stability numerically and directly from the

simulated trajectories of Eq. (S36). The results are depicted in Fig. S5a. Apparently, the asymmetric time delay

does not change the hierarchical order of complexity for different predator-prey type ecosystems. Moreover, the

asymmetric time delay also mitigates the admissible complexity or capacity of the ecosystems with the same

trends as those with bidirectional time delays.

For the three types of ecosystems, we also introduce the concept of effective time delay τeff that depends on

the actual time delay τ . In such a way, the system with bidirectional time delay τeff shares the same admissible

complexity or maximal capacity as the one with unidirectional time delay τ . The values of τeff can be computed

numerically. As shown in Fig. S5b, the effective time delay τeff of the asymmetric systems are much smaller

than τ . For the predator-prey ecosystems, the value of τeff is approximately τ/2, whereas for the systems with

cascade and niche structures, the values of τeff are even less. In spite of the unidirectional time delay structure,

the overall tendency is analogous and the hierarchical order of complexity sustains among the different types of

predator-prey communities.
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6 Estimation of the amount of time delay

We consider a general time-delayed system described by

dx(t)

dt
= f (x(t),xτ (t)) , x ∈ Rn. (S37)

where xτ (t) = x(t − τ). Assume that the system admits a positive equilibrium state x = x⋆ satisfying

f(x⋆,x⋆) = 0. To study the dynamics in the vicinity of x⋆, we consider the linearization of Eq. (S37) around

x⋆ and obtain the following equation in terms of y(t) = x(t)− x⋆

dy(t)

dt
= Df1(x

⋆)y(t) +Df2(x
⋆)y(t− τ). (S38)

where

Df1(x
⋆) =

∂f

∂x

∣∣∣∣
x=x⋆,xτ=x⋆

, Df2(x
⋆) =

∂f

∂xτ

∣∣∣∣
x=x⋆,xτ=x⋆

are, respectively, the Jacobian matrices of f(x,xτ ) about (x⋆,x⋆). According to the theory of functional

differential equations [21], the stability of the equilibrium state x⋆ is determined by the stability of the zero

solution y(t) ≡ 0 of the system (S38).

Introducing a new time variable s which satisfying the linear transformation t = Ts with T ∈ R+ and

defining that z(s) := y(Ts), we have

y(t− τ) = y(T (s− τ/T )) = z(s− τ0),

where τ0 := τ/T . System (S38) now becomes

dz(s)

ds
= T · Df1(x

⋆)z(s) + T · Df2(x
⋆)z(s− τ0). (S39)

We investigate the relation between the amount of time delay in the linearized equation and the corresponding

amount in the original ecological system. We focus on the following S-dimensional generalized Lotka-Volterra

system

dxi(t)

dt
= rixi(t)

1− aiixi(t) +

S∑
j=1,j ̸=i

aijxj(t− τ)

 , i = 1, . . . S, (S40)

where xi is the abundance of the ith population, t is time in units of year, month, or day, ri stands for the

natural growth rate of the ith population, aii is the reciprocal number of the maximal capacity of the ith

population, and aij characterizes the interacting strength from the jth to the ith population. Interactions with

aij < 0 are of the predator-to-prey or the competition type, while those with aij > 0 are of the prey-to-predator

or mutualistic type. For simplicity, we use the homogeneous time delay τ in system (S40) and assume the

existence of a positive equilibrium state denoted by x⋆ = [x⋆
1, . . . , x

⋆
N ]. We then obtain a linearized equation of

(S40) about the equilibrium state as in Eq. (S38). Note that the linearized system with time delay considered

in the main text is written as
dx(s)

ds
= −dx(s) +Ax(s− τ0).

Unifying the two linearized systems requires that d ·I = −T ·Df1(x
⋆), where I is the S×S identity matrix. For

simplicity, we set the damping rate d for every population as the average of the derivatives about the equilibrium

state for all populations

d ≜ −T
1

N
tr [Df1(x

⋆)] = −T
1

N

∑
i

(ri − 2riaiix
⋆
i ),

The scaling constant thus becomes

T = − d
1
N

∑
i(ri − 2riaiix⋆

i )
=

d

2⟨riaiix⋆
i ⟩ − ⟨ri⟩

,

20 Bo-Wei Qin & Wenbo Sheng et al.



which implies that

τ = Tτ0 =
dτ0

2⟨riaiix⋆
i ⟩ − ⟨ri⟩

,

where τ is the original time delay in the system (S40). The values of the vector x⋆ depend on the values of

the interaction aij . Because the values of the elements in x⋆ and those of the interacting strength can be taken

from a bounded interval and we also have aiix
⋆
i < 1, it is reasonable to regard the values of τ and dτ0

⟨ri⟩ as having

the same order of magnitude. For example, for ⟨ri⟩ ∼ 10year−1, we have τ ∼ 10−1year. That is, the amount

of time delay is approximately on the order of one month, which is consistent with the practical data in the

survey [22] indicating that the estimated amount of time delay for insects is on the order of one month.
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7 Supplementary table

Smax (Discrete time delay) Smax (Gamma-distributed time delay)

τ = 0 τ = 0.165 τ = 0.5 τ̂ = 0 τ̂ = 0.083 τ̂ = 0.5

Mutualism 35 35 35 35 35 35

Competition 83 82 63 83 83 59

Mixture 69 69 69 69 69 69

Random 184 181 178 182 181 177

Predator-prey 1333 185 100 305 184 95

Cascade 1180 87 60 118 87 58

Niche 522 61 44 81 61 42

Table S1: Empirical maximal capacities for different types of ecosystems with or without time delays. The maximal capacity Smax

are obtained by numerical simulations and the probit model. The values of the discrete time delays are 0, 0.165, 0.5. For the

distributed time delay, we consider the Gamma distribution with θ = 0.05 and m = 2 with time shift τ̂ = 0, 0.083 and 0.5. Other

parameters used here are d = 3, σ = 0.5 and C = 0.2.
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8 Supplementary figures

Supplementary Fig. S1: Boundary of the stability region and distribution of eigenvalues. The gray curves are the

boundaries of the stability region when there is a discrete time delay τ = 0.3, 0.5 and 1. The dashed black circle is the limiting

case when τ → ∞. The circle is centered at the origin with radius d. The blue curve indicates the distribution of eigenvalues of the

community matrix A for the predator-prey communities corresponding to a negative correlation ρ. It is the system with critical

admissible complexity α∗ = 0.9973 when there is a time delay τ = 0.5. We see that the ellipse intersects with the stability region.

Other parameters used here are d = 1, ρ = −2/π.

Supplementary Fig. S2: Robustness of the complexity hierarchy. The maximal capacity Smax of the three representative

ecosystems with heterogeneous time delay are shown. The time delays τij are sampled from a uniform distribution with mean

ranging from 0.02 to 0.5 and coefficient of variation (cv) ranging from 0.05 to 0.5. The regions bounded by the mean ± standard

deviation of the maximal capacity are filled among different values of cv with respect to τ . Other parameters used here are d = 3,

C = 0.2, and σ = 0.5.
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a b

Supplementary Fig. S3: Comparisons of critical complexity α∗ for different ensemble distributions in predator-

prey ecosystems. a, For each given value of a discrete time delay τ , the critical complexity α∗ is estimated from both theoretical

analysis (solid curves) and numerical simulations (dots). The elements aij are drawn from a Gaussian (blue) or a uniform (red)

distribution. b, The results when considering the distributed time delay (Gamma distribution) with time shift τ̂ . Parameters used

here are S = 400, C = 0.1, and d = 3.

a b

Supplementary Fig. S4: Properties of eigenvalues versus the community size for cascade and niche structures. a

and b show the largest eigenvalues of the community matrix A of the predator-prey ecosystems with cascade and niche structure,

respectively. Light and dark dots are respectively the eigenvalues with largest modulus (|λmax|) and the square of the largest real

part (λ2
+). Solid lines are linear fittings with |λmax| ∼ O(S) and λ+ ∼ O(

√
S) for both cases. Parameters used here are C = 0.2,

σ = 0.5, and S = 100, 200, · · · , 1000.
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a b

Supplementary Fig. S5: Predator-prey type ecosystems with asymmetric time delays. a, Numerically computed

maximal capacity Smax for the three predator-prey type ecosystems with asymmetric time delay. Systems with (random) predator-

prey, cascade and niche structures are shown in blue, cyan and orange, respectively. The results of random (yellow dashed) and

mixed ecosystems (red dashed) are also presented for comparison. The monotonic decreasing of Smax for the three ecosystems are

analogous to those for the counterparts with bidirectional time delays. Moreover, the hierarchical order of the three predator-prey

type ecosystems sustains. b, For each value of asymmetric time delay τ , the corresponding effective time delay τeff of the systems

with bidirectional time delays is calculated from Smax. All three curves are located below the line τeff = τ/2. The parameters used

here are d = 3, C = 0.2, and σ = 0.5.
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