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In an ecosystem, environmental changes as a result of natural and human processes can
cause some key parameters of the system to change with time. Depending on how fast
such a parameter changes, a tipping point can occur. Existing works on rate-induced
tipping, or R-tipping, offered a theoretical way to study this phenomenon but from
a local dynamical point of view, revealing, e.g., the existence of a critical rate for
some specific initial condition above which a tipping point will occur. As ecosystems
are subject to constant disturbances and can drift away from their equilibrium point,
it is necessary to study R-tipping from a global perspective in terms of the initial
conditions in the entire relevant phase space region. In particular, we introduce
the notion of the probability of R-tipping defined for initial conditions taken from
the whole relevant phase space. Using a number of real-world, complex mutualistic
networks as a paradigm, we find a scaling law between this probability and the rate of
parameter change and provide a geometric theory to explain the law. The real-world
implication is that even a slow parameter change can lead to a system collapse with
catastrophic consequences. In fact, to mitigate the environmental changes by merely
slowing down the parameter drift may not always be effective: Only when the rate
of parameter change is reduced to practically zero would the tipping be avoided. Our
global dynamics approach offers a more complete and physically meaningful way to
understand the important phenomenon of R-tipping.
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In complex dynamical systems, the phenomenon of tipping point, characterized by an
abrupt transition from one type of behavior (typically normal, healthy, or survival) to
another type (e.g., catastrophic), has received growing attention (1–25). A tipping point
is often of significant concern because it is a point of “no return” in the parameter space,
manifested by the collapse of the system as a parameter passes through a critical value.
In ecological systems, sudden extinction of species on a large scale can be the result of
a tipping point (1–4). Tipping points can arise in diverse contexts such as the outbreak
of epidemics (26), global climate changes (27), and the sudden transition from normal
to depressed mood in bipolar patients (28). In nonlinear dynamics, a common type
of bifurcation responsible for a tipping point is saddle-node bifurcations (forward or
backward). Consider the situation where, in the parameter regime of interest, there are
two coexisting stable steady states: a “high” state corresponding to normal or “survival”
functioning and a “low” or “extinction” state, each with its own basin of attractor.
Suppose external factors such as climate change cause a bifurcation parameter of the
system to increase. A tipping point is a backward saddle-node bifurcation, after which
the “survival” fixed point disappears, leaving the “extinction” state as the only destination
of the system, where the original basin of the “survival” state is absorbed into the basin
of the “extinction” state.

In real-world dynamical systems, parameters are not stationary but constantly drift
in time. A known example is the slow increase in the average global temperature with
time due to human activities. In ecological systems, some key parameters such as the
carrying capacity or the species decay rate can change with time, and there is a global
tendency for such parameter changes to “speed up.” In fact, the rate of environmental
change is an important driver across different scales in ecology (29). The behavior of the
parameter variations with time introduces another “meta” parameter into the dynamical
process: the rate of change of the parameters. About 10 y ago, it was found that the rate
can induce a tipping point—the phenomenon of rate-induced tipping or R-tipping (9),
which is relevant to fields such as climate science (30, 31), neuroscience (32, 33), vibration
engineering (34), and even competitive economy (35). Existing studies of R-tipping were
for low-dimensional dynamical systems and the analysis approaches were “local” in the
sense that they focused on the behaviors of some specific initial condition and trajectory,
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addressing issues such as the critical rate for tipping (36, 37). In
particular, with respect to a specific initial condition, R-tipping
in these studies was defined as an abrupt change in the behavior
of the system (or a critical transition) taking place at a specific
rate of change of a bifurcation parameter (9).

The state that an ecological system is in depends on a
combination of deterministic dynamics, small-scale stochas-
tic influences, e.g., demographic stochasticity (38), and large
stochastic disturbances such as drought or other significant
climatic event (39). So when considering future dynamics of
ecological systems, it makes sense to consider systems that may
be far from equilibrium, but still within the basin of attraction
of an equilibrium, rather than starting at the equilibrium. High-
dimensional ecological systems are particularly likely to be found
far from equilibrium. In fact, it has been suggested that it
can be common for ecosystems to be in some transient state
(40, 41).

In this paper, we focus on high-dimensional, empirical
ecological networks and investigate R-tipping with two key time-
varying parameters by presenting a computationally feasible,
“global” approach to exploring the entire relevant phase space
region with analytic insights. We focus on a representative class
of such systems: mutualistic networks (14, 17, 19, 21, 42–48)
that are fundamental to ecological systems, which are formed
through mutually beneficial interactions between two groups
of species. In a mutualistic network, a species in one group
derives some form of benefit from the relationship with some
species in the other group. Examples include the corals and the
single-celled zooxanthellae that form the large-scale coral reefs
and the various networks of pollinators and plants in different
geographical regions of the world. These networks influence
biodiversity, ecosystem stability, nutrient cycling, community
resilience, and evolutionary dynamics (49), and they are a
key aspect of ecosystem functioning with implications for
conservation and ecosystem management. Understanding the
ecological significance of mutualistic networks is crucial for
unraveling the complexities of ecological communities and for
implementing effective strategies to safeguard biodiversity and
ecosystem health (50). Mathematically, because of the typically
large number of species involved in the mutualistic interactions,
the underlying networked systems are high-dimensional nonlin-
ear dynamical systems.

We first ask whether R-tipping can arise in such high-
dimensional systems by simulating a number of empirical
pollinator-plant mutualistic networks (Table 1) and obtain an
affirmative answer. Our computations reveal that the critical rate
above which a tipping point occurs depends strongly on the

Table 1. Empirical mutualistic networks studied in
this work and their corresponding range of parameter
change and fitting constants in Eq. 1
Network Country NP NA �-interval B C

M_PL_008 Canary Islands 11 38 [0.90,0.93] 0.36 0.19
M_PL_013 South Africa 9 56 [0.70,0.99] 0.07 0.11
M_PL_022 Argentina 21 45 [0.75,0.93] 0.88 0.12
M_PL_023 Argentina 23 72 [0.87,0.96] 0.59 0.09
M_PL_027 New Zealand 18 60 [0.90,0.95] 0.49 0.09
M_PL_032 USA 7 33 [0.82,0.99] 0.55 0.19
M_PL_036 Açores 10 12 [0.74,0.88] 0.39 0.12
M_PL_037 Denmark 10 40 [0.87,0.93] 0.23 0.15
M_PL_038 Denmark 8 42 [0.85,0.95] 0.30 0.15
M_PL_045 Greenland 17 26 [0.96,0.98] 0.09 0.05

initial condition. Rather than studying the critical rate for any
specific initial condition, we go beyond the existing local analysis
approaches by investigating the probability of R-tipping for a
large ensemble of initial conditions taken from the whole relevant
phase space and asking how this probability, denoted as Φ(r),
depends on the rate r of parameter change. We find a scaling
law between Φ(r) and r: As the rate increases, the probability
first increases rapidly, then slowly, and finally saturates. Using
a universal two-dimensional (2D) effective model that was
validated to be particularly suitable for predicting and analyzing
tipping points in high-dimensional mutualistic networks (17),
we analytically derive the scaling law. Specifically, let �(t) be the
parameter that changes with time linearly at the rate r in a finite
range, denoted as [�min, �max]. The scaling law is given by:

Φ(r) ∼ exp [−C(�max − �min)/r], [1]

where C > 0 is a constant. Our theoretical analysis indicates
that, for 2D systems, C is nothing but the maximum possible
unstable eigenvalue of the mediating unstable fixed point on the
boundary separating the basins of the survival and extinction
attractors when the parameter � varies in the range [�min, �max].
However, for high-dimensional systems, such correspondence
does not hold, but C can be determined through a numerical
fitting.

The scaling law Eq. 1 has the following features. First, the
probability Φ(r) is an increasing function of r for r > 0
[Φ′(r) > 0]. Second, Φ′(r) is a decreasing function of r, i.e.,
the increase of Φ(r) with r slows down with r and the rate of
increase becomes zero for r → ∞. Third, the rate of increase
in Φ(r) with r is the maximum for r ≳ 0, and Φ(r) becomes
approximately constant for r > r∗ ∼

√
(�max − �min). This

third feature has a striking implication because the probability
of R-tipping will grow dramatically as soon as the rate of
parameter change increases from zero. The real-world implication
is alarming because it means that even a slow parameter change
can lead to a system collapse with catastrophic consequences. To
control or mitigate the environmental changes by merely slowing
down the parameter drift may not always be effective: Only when
the rate of parameter change is reduced to practically zero would
the tipping be avoided!

Alternatively, the scaling law Eq. 1 can be expressed as the
following explicit formula:

Φ(r) = B exp [−C(�max − �min)/r], [2]

with an additional positive constant B. For 2D systems, B is
the difference between the basin areas of the extinction state for
� = �max and � = �min. For high-dimensional systems, B can
be determined numerically.

While a comprehensive understanding of the entire parameter
space as well as the rates and directions of change associated
with these parameters are worth investigating, the picture that
motivated our work was the potential impacts of ongoing
climate change on ecological systems. Under climate change,
various parameters can vary in different directions, and some
changes might offset the effects of others. Our focus is on the
scenarios where the changes in parameters align with the observed
detrimental environmental impacts. For example, consistent
with environmental deterioration, in a mutualistic network
the species decay rate can increase, and/or the mutualistic
interaction strength can decrease. A simultaneous increase in
the species decay rate and mutualistic strength does not seem
physically reasonable in this context. We thus study scenarios of
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multiple parameter variations that align with the realistic climate
change impacts by carrying out computations with a systematic
analysis of the tipping-point transitions in the 2D parameter
plane of the species decay rate and the mutualistic interaction
strength.

Results
We consider the empirical mutualistic pollinator–plant networks
from the Web of Life database (www.Web-of-Life.es). The needs
to search for the parameter regions exhibiting R-tipping and to
simulate a large number of initial conditions in the phase space
as required by our global analysis approach as well as the high
dimensionality of the empirical mutualistic networks demand
extremely intensive computation (51). To make the computation
feasible, we select ten networks to represent a diverse range of
mutualistic interactions from different regions of the world and
highlight the generality of our approach to R-tipping and the
scaling law. The basic information about these networks such
as the name of the networks, the countries where the empirical
data were collected and the number of species in each network, is
listed in Table 1. The dynamics of a mutualistic network of NA
pollinator and NP plant species, taking into account the generic
plant–pollinator interactions (42), can be described by a total of
N = NA + NP nonlinear differential equations of the Holling
type (52) in terms of the species abundances as:

Ṗi =Pi
(
�Pi −

Np∑
l=1

�Pil Pl +

∑NA
j=1 


P
ij Aj

1 + h
∑NA

j=1 

P
ij Aj

)
, [3a]

Ȧj =Aj
(
�Aj − �j −

NA∑
l=1

�Ajl Al +

∑NP
i=1 


A
ji Pi

1 + h
∑NP

i=1 

A
ji Pi

)
, [3b]

where Pi and Aj are the abundances of the ith and jth plant and
pollinator species, respectively, i = 1, . . . , NP , j = 1, . . . , NA, �
is the pollinator decay rate, �P(A) is the intrinsic growth rate in the
absence of intraspecific competition and any mutualistic effect,
h is the half-saturation constant. Intraspecific and interspecific
competition of the plants (pollinators) is characterized by the
parameters �Pii (�Ajj ) and �Pil (�Ajl ), respectively. The mutualistic
interactions as characterized by the parameter 
Pij can be written as

Pij = �ij
0/K �

i , where �ij = 1 if there is a mutualistic interaction
between the ith plant and jth pollinator (zero otherwise), 
0 is a
general interaction parameter, Ki is the degree of the ith plant
species in the network, and � determines the strength of the
trade-off between the interaction strength and the number of
interactions. (The expression for 
Aji is similar.)

The computational setting of our study is as follows. In
the network system described by Eqs. 3a and 3b, the number
of the equations determines the phase-space dimension of the
underlying nonlinear dynamical system. There are a large number
of basic parameters in the model, such as 
 that quantifies the
strength of the mutualistic interactions and � characterizing
the species decay rate. In the context of R-tipping, while all
the parameters should be time-varying in principle, to make
our study computationally feasible, we assume that the two key
parameters (� and 
) are time-dependent while keeping the other
parameters fixed. Since the defining characteristic of a system
exhibiting a tipping point is the coexistence of two stable steady
states: survival and extinction, we focus on the range of parameter

variations in which the network system under study exhibits the
two stable equilibria. When presenting our results (Fig. 1 below
and SI Appendix, Figs. S4–S14), in each case, the parameter
variation is along a specific direction in the 2D parameter plane:
� and 
 with the goal to understand how changes in these two
parameters impact the R-tipping probability.

To introduce the rate change of a parameter, we consider the
scenario where negative environmental impacts cause the species
decay rate to increase linearly with time at the rate r from a
minimal value �min to a maximal value �max:

�̇j =
{
r if �min < �j < �max
0 otherwise.

[4]

(For mutualistic networks, another relevant parameter that is
vulnerable to environmental change is the mutualistic interaction
strength. The pertinent results are presented in SI Appendix.) To
calculate the probability of R-tipping, Φ(r), we set r = 0 so
that � = �min, solve Eqs. 3a and 3b numerically for a large
number of random initial conditions chosen uniformly from the
whole high-dimensional phase space, and determine 105 initial
conditions that approach the high stable steady state in which no
species becomes extinct. We then increase the rate r from zero.
For each fixed value of r, we calculate, for each of the selected 105

initial conditions, whether or not the final state is the high stable
state. If yes, then there is no R-tipping for the particular initial
condition. However, if the final state becomes the extinction
state, R-tipping has occurred for this value of r. The probability
Φ(r) can be approximated by the fraction of the number of
initial conditions leading to R-tipping out of the 105 initial
conditions.

Fig. 1 shows Φ(r) versus r for the ten empirical mutualistic
networks specified in Table 1, together with the bipartite network
structure, which are distinguished by different colors. For each
network, the interval [�min, �max] of the bifurcation parameter
(listed in the fifth column of Table 1) is chosen such that the
dynamical network for static parameter values exhibits two stable
steady states and a tipping point in this interval, as determined by
a computational bifurcation analysis of the species abundances
versus �. Despite the differences in the topology and the specific
parameter values among the empirical networks, it is remarkable
that the probability of R-tipping exhibits a characteristic behavior
common among all the networks: As the time-varying rate of
the bifurcation parameter increases from zero, the probability
increases rapidly and then saturates at an approximately finite
constant value, as quantified by the analytic scaling law Eq. 1. The
final or asymptotic value of the R-tipping probability attained
in the regime of large time rate of change of the bifurcation
parameter depends on the specifics of the underlying mutualistic
network in terms of its topological structure and basic system
parameters. For example, the total number of species, or the
phase-space dimension of the underlying dynamical system, and
the relative numbers of the pollinator and plant species vary
dramatically across the ten networks, as indicated by the ten
surrounding network-structure diagrams in Fig. 1. The structural
and parametric disparities among the networks lead to different
relative basin volumes of the survival and extinction stable
steady states, giving rise to distinct asymptotic probabilities of
R-tipping.

The ecological interpretation of the observed different asymp-
totic values of the R-tipping probability is as follows. Previous
studies revealed the complex interplay between the structural
properties of the network and environmental factors in shaping
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Fig. 1. Probability Φ(r) of R-tipping versus the time rate r of parameter change for ten real-world mutualistic networks, together with the corresponding
bipartite structure for each network. The dots are the probability calculated by simulating Eqs. 3a, 3b, and 4, with an ensemble of random initial conditions.
The solid curves are the analytic results from Eq. 1, with the two fitting parameters B and C given in Table 1. Other parameter values are � = 0.3, � = 1, h = 0.4,

P = 1.93, and 
A = 1.77.

extinction probabilities (53–60). For example, it was discov-
ered (53) that the plant species tend to play a more significant
role in the health of the network system as compared to pollina-
tors (53) in the sense that plant extinction due to climate change is
more likely to trigger pollinator coextinction than the other way
around. In another example, distinct topological features were
found to be associated with the networks with a higher probability
of extinction (54, 55). It was also found that robust plant–
pollinator mutualistic networks tend to exhibit a combination
of compartmentalized and nested patterns (55). More generally,
mutualistic networks in the real world are quite diverse in
their structure and parameters, each possessing one or two or
all the features including lower interaction density, heightened
specialization, fewer pollinator visitors per plant species, lower
nestedness, and lower modularity, etc. (54–60). It is thus reason-
able to hypothesize that the asymptotic value of the R-tipping
probability can be attributed to the sensitivity of the underlying
network to environmental changes. For example, a higher (lower)
saturation value of the extinction probability can be associated
with the networks with a large (small) number of plants and lower
(higher) nestedness, network M_PL_22 (network M_PL_13).
In other examples, network M_PL_32 can be categorized as
“vulnerable” due to its low modularity, despite having a small
number of plants, and network M_PL_45 is resilient against
extinction due to its high nestedness and high modularity.

The remarkable phenomenon is that, in spite of these
differences, the rapid initial increase in the R-tipping probability
is shared by all ten networks! That is, when a parameter begins

to change with time from zero, even slowly, the probability of
R-tipping increases dramatically. The practical implication is
that ecosystems with time-dependent parameter drift are highly
susceptible to R-tipping. Parameter drifting, even at a slow pace,
will be detrimental. This poses a daunting challenge to preserving
ecosystems against negative environmental changes. In particular,
according to conventional wisdom, ecosystems can be effectively
protected by slowing down the environmental changes, but
our results suggest that catastrophic tipping can occur with a
finite probability unless the rate of the environmental changes is
reduced to a near zero value.

To further explore the effects of parameter changes, we study
a scenario in which negative environmental impacts cause the
species decay rate (�) and the mutualistic interaction strength
(
0) to linearly increase and decrease, respectively. By considering
the rate of changing of � (
0) as r� (r
0 ), we set r� = Cr
0 ,
which allows us to investigate three different scenarios by varying
the parameter C: C < 1, C = 1, and C > 1. Fig. 2 shows a
systematic analysis of the tipping-point transitions in the 2D
parameter plane along with the probability of R-tipping for
the three different scenarios for the network M_PL_032. (The
pertinent results for the other nine networks are presented in
SI Appendix, section 4.)

To understand the behavior of the R-tipping probability in
Fig. 1, we resort to the approach of dimension reduction (61).
In particular, for tipping-point dynamics, a high-dimensional
mutualistic network can be approximated by an effective model
of two dynamical variables: the respective mean abundances of
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A

B

C

D

Fig. 2. Scaling law of probability of R-tipping in 2D parameter space. (A) 2D parameter plane of the species decay rate (�) and the mutualistic interaction
strength (
0) for the network M_PL_032. The solid lines correspond to the three different scenarios of the parameter C in calculating the probability of the
R-tipping point from 107 initial conditions for (B) C < 1, (C) C = 1, and (D) C > 1. Other parameters are t = 0.5, � = 1, � = 0.3, and h = 0.4.

all pollinator and plant species. The effective 2D model can be
written as ref. 17

Ṗ = P
(
� − �P +


PA
1 + h
PA

)
, [5a]

Ȧ = A
(
� − � − �A +


AP
1 + h
AP

)
, [5b]

where P and A are the average abundances of all the plants
and pollinators, respectively, � is the effective growth rate, and
parameter � characterizes the combined effects of intraspecific
and interspecific competition. The parameters 
P and 
A are the
effective mutualistic interaction strengths that can be determined
by the method of eigenvector weighting (17) (SI Appendix, Note
1). Eqs. 5a and 5b possess five possible equilibria: f1 ≡ (0, 0)T ,
f2 ≡ (�/�, 0)T , f3 ≡ (0, (� − �)/�)T , and f4,5 ≡ (g1, g2)T ,
where g1 and g2 are two possible equilibria that depend on the
values of the parameters of the model and can be calculated by
setting zero the factor in the parentheses of Eqs. 5a and 5b.

The first equilibrium f1, an extinction state, is at the origin
(P∗, A∗) = (0, 0) and is unstable. The second equilibrium f2
is located at the (P∗, A∗) = (�/�, 0) and it can be stable or
unstable depending on the parameters �. The locations of the
remaining equilibria depend on the value of �. In particular, the
third equilibrium f3 can be unstable or nonexistent and the fourth
equilibrium f4 is stable and coexists with stable equilibrium f2
in some interval of �. The fifth equilibrium f5 is an unstable
saddle fixed point in some relevant interval of �. Fig. 3 A and
B exemplify the behaviors of the equilibria as � increases from
zero to one for � = 0.3, � = 1, h = 0.4, 
P = 1.93, and

A = 1.77, for the average plant and pollinator abundances,
respectively. In each panel, the upper green curve is the survival

fixed point f4, while the lower horizontal green line corresponds
to the extinction state f2. The blue dot-dashed ellipse indicates the
interval of � in which two stable equilibria coexist (bistability),
whose right edge marks a tipping point.

What will happen to the dynamics when the parameter �
becomes time dependent? Without loss of generality, we focus
on the interval of � as exemplified by the horizontal range of
the dot-dashed ellipse in Fig. 3 A and B, defined as [�min, �max],
in which there is bistability in the original high-dimensional
network and in the 2D reduced model as well. Note that, for
different high-dimensional empirical networks, the values of �min
and �max in the 2D effective models are different, as illustrated
in the fifth column of Table 1. Because of the coexistence of
two stable fixed points, for every parameter value in the range
[�min, �max], there are two basins of attraction, as illustrated in
Fig. 3C andD for the 2D effective model of an empirical network
M_PL_036 for � = 0.74 and � = 0.88, respectively, where the
pink and gray regions correspond to the basins of the extinction
and survival attractors, respectively. The basin boundary is the
stable manifold of the unstable fixed point f5. It can be seen that,
as � increases, the basin of the extinction attractor increases,
accompanied by a simultaneous decrease in the basin area of
the survival attractor. This can be understood by comparing
the positions of the equilibria in Fig. 3 where, as � increases,
the position of survival fixed point f4 moves toward lower
plant and pollinator abundances, but the unstable fixed point
f5 moves in the opposite direction: the direction of larger species
abundances.

The boundary separating the basins of the extinction and
survival fixed-point attractors is the stable manifold of f5. As r
increases from zero, f5 moves in the direction of larger plant
and pollinator abundances, so must the basin boundary, as
exemplified in Fig. 4 (the various dashed curves) for r ∈ [0, 1].
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A C

B D

Fig. 3. Dynamics of the 2D reduced model Eqs. 5a and 5b. (A and B) A tipping point occurs as the species decay rate � increases toward one, for the mean
plant and pollinator abundances, respectively. The green and yellow curves correspond to the stable and unstable steady states, respectively, where the yellow
curve with a red segment is the unstable fixed point f5. The region of bistability is indicated by the blue dot-dashed ellipses. (C and D) Examples of basins of
attraction of the 2D model whose parameters are determined as the corresponding averages from the empirical network M_PL_036 in Table 1 for �min = 0.74
and �max = 0.88, respectively. Other parameters are � = 0.3, � = 1, h = 0.4, 
P = 1.93, and 
A = 1.77. The pink and gray regions correspond to the basins of
the stable steady states f2 (extinction) and f4 (survival), respectively.

Note that, since the decay parameter � increases from �min
to �max at the linear rate r, we have �(r = 0) = �min
and �(r = ∞) = �max. As r increases, the basin boundaries
accumulate at the one for �max.

Theory
Fig. 4 provides a physical base for deriving the scaling law Eq.
1. Consider the small neighborhood of the unstable fixed point
f5, where the basin boundary is approximately straight, as shown
schematically in Fig. 5. Consider two cases: one with rate r1
of parameter increase and another with rate r2, where r2 > r1,
as shown in Fig. 5 A and B, respectively. For any given rate r,
at the beginning and end of the parameter variation, we have
� = �min and � = �max, respectively, where the time it takes
to complete this process is T = (�max − �min)/r. Since r2 >
r1, we have T2 < T1. For both Fig. 5 A and B, the unstable
fixed point f5 is marked by the filled green circles at t = 0 and
filled orange circles at the end of the parameter variation, and
the blue dashed line with an arrow indicates the direction of
change in the location of f5 in the phase space as the parameter
varies with time. Likewise, the solid green (orange) line segments
through f5 denote the boundary separating the extinction basin
from the survival basin of attraction at t = 0 (t = T1 or T2).
That is, before the parameter variation is turned on for � =
�min, the initial conditions below (above) the solid green lines
belong to the basin of the extinction (survival) attractor. After
the process of parameter variation ends so that � = �max, the
initial conditions below (above) the solid orange lines belong to
the basin of the extinction (survival) attractor. During the process

of parameter variation, f5 moves from the position of the green
circle to that of the orange circle, and its stable manifold (the
basin boundary) moves accordingly. Now consider the initial
conditions in the light-shaded green area, which belong to the
basin of the survival attractor for � = �min. Without parameter
variation, as time goes, this green rectangular area will be stretched
along the unstable direction of f5 exponentially according to its
unstable eigenvalue � and compressed exponentially in the stable
direction, evolving into an orange rectangle that is long in the
unstable direction. Since T1 > T2, the orange rectangle for
r = r1 is longer and thinner than that for r = r2.

The dynamical mechanism responsible for R-tipping can now
be understood based on the schematic illustration in Fig. 5 A and
B. In particular, because of the movement of f5 and the basin
boundary as the parameter variation is turned on, the dark shaded
orange part of the long rectangle now belongs to the basin of the
extinction attractor. The initial conditions in the original green
rectangle which evolve into this dark-shaded orange region are
nothing but the initial conditions that switch their destinations
from the survival to the extinction attractor as the result of the
time variation of the parameter. That is, these initial conditions
will experience R-tipping, as indicated by the red rectangle inside
the green area in Fig. 5B. For any given rate r, the fraction of
such initial conditions determines the R-tipping probability. Let
d(0) denote the fraction of R-tipping initial conditions and let
D be the distance between the basin boundaries at the beginning
and end of parameter variation along the unstable direction of
f5. We have d(T ) = D = d(0) exp (�T ). Our argument for
Φ(r) ∼ d(0) and the use of T = (�max − �min)/r lead to the
scaling law Eq. 1.
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Fig. 4. Basin boundary between the extinction and survival fixed-point
attractors for different rate of parameter change. Shown are a series of basin
boundaries for r ∈ [0 1]. As r increases from zero, the boundary moves in the
direction of large species abundances. The basin boundaries are calculated
from the 2D model of the empirical network M_PL_036 in Table 1. Other
parameters are the same as those in Fig. 3 C and D.

Discussion
To summarize, nonlinear dynamical systems in nature such as
ecosystems and climate systems on different scales are experienc-
ing parameter changes due to increasing human activities, and it
is of interest to understand how the “pace” or rate of parameter
change might lead to catastrophic consequences. To this end, we
studied high-dimensional mutualistic networks, as motivated by

the following general considerations. In ecosystems, mutualistic
interactions, broadly defined as a close, interdependent, mutually
beneficial relationship between two species, are one of the most
fundamental interspecific relationships. Mutualistic networks
contribute to biodiversity and ecosystem stability. As species
within these networks rely on each other for essential services,
such as pollination, seed dispersal, or nutrient exchange, they
promote species coexistence and reduce competitive exclusion.
This coexistence enhances the overall diversity of the ecosystem,
making it more resilient to disturbances and less susceptible to the
dominance of a few species. They can drive coevolutionary pro-
cesses between interacting species. As species interact over time,
they may evolve in response to each other’s adaptations, leading
to reciprocal changes that strengthen the mutualistic relationship.
Disruptions to these networks, such as the decline of pollinator
populations, can have cascading effects on ecosystem functions
and the survival of dependent species. By studying mutualistic
interactions, conservationists can design more effective strategies
to protect and restore these vital relationships and the ecosystems
they support.

This paper focuses on the phenomenon of rate-induced tipping
or R-tipping, where the rate of parameter change can cause the
system to experience a tipping point from normal functioning
to collapse. The main accomplishments are three. First, we went
beyond the existing local approaches to R-tipping by taking a
global approach of dynamical analysis based on consideration
of basins of attraction of coexisting attractors. This allows
us to introduce the probability of R-tipping with respect to
initial conditions taken from the whole phase space. Second,
most previous works on R-tipping analyzed low-dimensional toy
models but our study focused on high-dimensional mutualistic
networks constructed from empirical data. Third, we developed

A B

Fig. 5. Analysis of the dynamical mechanism responsible for R-tipping. The dynamics of the unstable fixed point f5 together with those of a rectangle region
of the initial conditions in its neighborhood are illustrated for two values of the rate of parameter change: (A) r = r1 and (B) r = r2 > r1. At t = 0 (� = �min, a
segment of the basin boundary in the vicinity of f5 is illustrated as the solid green line. As the rate of parameter change begins to increase, the basin boundary
moves upward and eventually accumulates at that for � = �max—the solid orange lines. For a small rate, the time required for the green boundary to reach
the orange boundary is longer. All the initial conditions in the light green region above the green boundary belong to the basin of the survival attractor for
� = �min, whose trajectories are determined by the local exponentially contracting and expanding dynamics of f5. The fate of these initial conditions is the
result of a “race” to go above the orange basin boundary within the “allowed” time duration [T1 in (A) and T2 < T1 in (B)]: Those managing to go above will
approach the survival attractor, but those that stay below will lead to extinction. Since T1 > T2, the fraction of initial conditions that can go above in (A) is larger
than that in (B), leading to a higher probability of R-tipping for case (B). The precise fraction of those initial conditions is indicated by the red rectangular region
in (B), whose initial height stretches to the distance between the green and orange boundaries in the permissible time. This gives the probability of R-tipping
as quantified by the scaling law Eq. 1. See text for more details.
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a geometric analysis and derived a scaling law governing the
probability of R-tipping with respect to the rate of parameter
change. The scaling law contains two parameters which, for
two-dimensional systems, can be determined theoretically from
the dynamics. For high-dimensional systems, the two scaling
parameters can be determined through numerical fitting. For
all ten empirical networks studied, the scaling law agrees well
with the results from direct numerical simulations. To our
knowledge, no such quantitative law characterizing R-tipping
has been uncovered previously.

The effective 2D systems in our study were previously
derived (17), which capture the bipartite and mutualistic nature
of the ecological interactions in the empirical, high-dimensional
networks. It employs one collective variable to account for the
dynamical behavior of the pollinators and another for the plants.
The effective 2D models allow us to mathematically analyze
the global R-tipping dynamics, with results and the scaling
law verified by direct simulations of high-dimensional networks.
The key reason that the dimension-reduced 2D models can be
effective lies, again, in the general setting of the ecological systems
under consideration: coexistence of a survival and an extinction
state. While our present work focused on mutualistic networks,
we expect the global approach to R-tipping and the scaling law to
be generally applicable to ecological systems in which large-scale
extinction from a survival state is possible due to even a small,
nonzero rate of parameter change.

It is worth noting that the setting under which the scaling law
of the probability of R-tipping with the rate of parameter change
holds is the coexistence of two stable steady states in the phase
space, one associated with survival and another corresponding to
extinction. This setting is general for studying tipping, system
collapse, and massive extinction in ecological systems. Our
theoretical analysis leading to the scaling law requires minimal
conditions: two coexisting basins of attraction separated by a
basin boundary. The scaling law is not the result of some specific

parameterization of the mutualistic systems but is a generic
feature in systems with two coexisting states. Insofar as the
system can potentially undergo a transition from the survival
to the extinction state, we expect our R-tipping scaling law
to hold. In a broad context, coexisting stable steady states or
attractors are ubiquitous in nonlinear physical and biological
systems.

The scaling law stipulates that, as the rate increases from zero,
the R-tipping probability increases rapidly first and then saturates.
This has a striking and potentially devastating consequence:
in order to reduce the probability of R-tipping, the parameter
change must be slowed down to such an extent that its rate
of change is practically zero. This has serious implications. For
example, to avoid climate-change-induced species extinction, it
would be necessary to ensure that no parameters change with
time, and this may pose an extremely significant challenge in our
efforts to protect and preserve the natural environment.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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1. Two-dimensional effective model12

The reduced effective model of mutualistic networks described by Eq. 1 in the main text can be written as (1)13

Ṗ = P
(

α − βP + γP A

1 + hγP A

)
[1a]14

15

Ȧ = A
(

α − κ − βA + γAP

1 + hγAP

)
[1b]16

where the dynamical variables P and A correspond to the average abundances of the plant and pollinator species, respectively,17

α is the effective growth rate, β is a parameter characterizing the combined effects of intraspecific and interspecific competition.18

To calculate the effective mutualistic interaction strengths γP and γA, we use the eigenvector weighting method (1). In19

particular, the pollinator and plant abundances are calculated based on the largest eigenvalue of the respective projection20

bipartite network where any direct interaction in the network is between a pollinator and a plant species. The projection21

matrix Ξ characterizing all mutualistic interactions is NP × NA dimensional, where NP and NA are the numbers of plant22

and pollinator species, respectively. For ξij = 1, there is an interaction between the ith plant and the jth pollinator species;23

otherwise ξij = 0. The project matrices ΞP and ΞA for the plan and pollinator species can be written as24

ΞP = ΞΞT ΞA = ΞT Ξ. [2]25

Let VP and VA be the eigenvectors associated with the largest eigenvalue of ΞP and ΞA, respectively. The effective mutualistic
interaction strengths can be calculated through

γP =
γ0

∑SP

i=1 k1−t
Pi

V i
P∑SP

i=1 V i
P

[3]

γA =
γ0

∑SA

i=1 k1−t
Ai

V i
A∑SA

i=1 V i
A

[4]

Setting the right-hand side of Eqs. 1a and 1b to zero, we find five possible equilibria: f1 ≡ (0, 0)T , f2 ≡ (α/β, 0)T , f3 ≡26

(0, (α − κ)/β)T , and f4,5 ≡ (g1, g2)T , where g1 and g2 are two possible equilibria that depend on the values of the model27

parameters and can be calculated by setting zero the factor in the parentheses of Eqs. 1a and 1b. The first equilibrium f1 is an28

unstable equilibrium corresponding to an extinction state located at the origin (P ∗, A∗) = (0, 0). The second equilibrium f229

is located at the (P ∗, A∗) = (α/β, 0), and its stability depends on the value of the parameters κ. The locations of all three30

remaining equilibria depend on the value of κ. In particular, the third equilibrium f3 ≡ (0, (α − κ)/β)T is unstable for α > κ31

and does not exist for α < κ (corresponding to nonphysical negative abundances). The fourth equilibrium f4 is stable and it32

coexists with stable equilibrium f2. The fifth equilibrium f5 is an unstable saddle fixed point.33

Figure S1 exemplifies the vector field, nullclines, and equilibria of the 2D effective model 1. For this parameter setting, the34

model exhibits bistability with two stable equilibria. The unstable saddle equilibria f1 and f5 are indicated by the yellow dots35

and stable equilibria f2 and f4 are denoted by the two green dots.36

Fig. S1. Vector field of the reduced 2D system 1 for parameter values α = 0.3, β = 1, h = 0.4, κ = 0.85, γP = 1.93, and γa = 1.77. The blue and red curves are the
nullclines of the pollinator and plant species, respectively. The yellow and green dots are the saddle and stable equilibria. The equilibrium f3 is located at [0 − 0.55], which is
nonphysical.
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2. Probability of R-tipping in the effective model37

As described in the main text, the probability of rate-induced tipping (or R-tipping) can be calculated for the 2D effective38

model that captures the essential tipping-point dynamics of the high-dimensional mutualistic network (1). As shown in Fig. 439

of the main text, as the time rate of change r of some parameter increases from zero, the basin boundary moves in the direction40

of larger plant and pollinator abundances. For r = 0 (r = ∞ ), the extinction basin (pink region) is the same as that in the 2D41

effective model 1 for κ = κ0 (κ = κmax). The greater the rate r, the larger the extinction area is.42

To calculate the probability of R-tipping, Φ(r), we set r = 0 so that κ = κmin, solve Eqs. 1a and 1b for a large number of43

initial conditions chosen from the gray region of the phase space that approaches the high stable steady state in which no44

species is extinct. We then increase the rate r from zero. For each fixed value of r, we calculate, for each initial condition,45

whether the final state is the high stable state. If yes, then there is no R-tipping for the particular initial condition. However, if46

the final state becomes extinction, then R-tipping has occurred for this value of r. The probability Φ(r) can be approximated47

by the fraction of the number of initial conditions leading to R-tipping out of the whole chosen initial conditions.48

Fig. S2. Probability of R-tipping in the reduced 2D effective model versus the time rate of change of the pollinator decay parameter κ. For a given rate r, initially κ = κmin

and it increases to κmax at the rate r. Other parameters are fixed: α = 0.3, β = 1, h = 0.4, γP = 1.93, γA = 1.77.

Figure S2 shows the probability of R-tipping Φ(r) in the 2D effective model versus the rate r for the cases corresponding to49

those in Table 1 in the main text. For each network, the range [κmin, κmax] of parameter change is listed in the fifth column50

of Table 1 in the main text. The solid curves represent the analytic prediction. There is a good agreement between theory51

and numerics. The general feature is that, as the rate of parameter change increases from zero, the probability Φ(r) increases52

rapidly initially and then saturates at an approximately constant value, in agreement with the results from the high-dimensional53

networks in the main text.54

3. Probability of R-tipping with time-varying mutualistic interaction γ055

For a mutualistic network, the strength of the mutualistic interactions is another key parameter. Negative environmental56

impacts can cause the interactions to continuously weaken. This can be modeled by starting from an initial (relatively large)57

value of the nominal interaction strength γmax
0 and decreasing the parameter γ0 at a constant rate until it reaches the minimum58

value γmin
0 , as shown in Fig. S3. The time required for the parameter change is T = (γmin

0 − γmax
0 )/r, where r < 0.59

As γ0 decreases from its initial value, the unstable saddle point f5 starts to move from f5(γmax
0 ) and reaches f5(γmin

0 ) at60

time T . The trajectories starting from the initial conditions located above the stable manifold of f5(γmax
0 ) leave exponentially61

from the unstable saddle point over time: ∼ eλt. The number of initial conditions that are unable to catch up with the moving62

saddle point f5(γ0) is proportional to e−λT . The faster rate of change r, the larger the basin of extinction is. Using an argument63

similar to the one in the main text, we obtain64

Φ(r) = B exp [−C(γmin
0 − γmax

0
r

)] [5]65
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Fig. S3. Linear decrease in the nominal mutualistic interaction strength γ0. The rate of decrease is r, the initial and final values of the strength are γmax
0 , and γmin

0 ,
respectively. The time required for the change is T = (γmin

0 − γmax
0 )/r.

with B > 0 and C > 0 being two fitting constants. Fig. S4 shows the probability of R-tipping with respect to different values66

of rate r for all the networks listed in Table 1 in the main text. The details of the parameter setting and the values of the two67

fitting parameters for the ten high-dimensional mutualistic networks are provided in Table S1. As the rate of parameter change68

increases from zero, the probability of R-tipping increases rapidly initially and then saturates at an approximately constant69

value, similar to the cases treated in the main text where the time-varying parameter is the species decay rate.70

Table S1. Empirical mutualistic networks, their ranges of parameter variations, and fitting constants in Eq. (5)

Network κ γ0-interval B C

M_PL_008 0.92 [0.96 1] 0.05 0.12
M_PL_013 0.95 [0.95 1] 0.03 0.18
M_PL_022 0.89 [0.96 1] 0.39 0.04
M_PL_023 0.90 [0.92 1] 0.37 0.08
M_PL_027 0.93 [0.97 1] 0.11 0.07
M_PL_032 0.94 [0.94 1] 0.12 0.07
M_PL_036 0.8 [0.90 1] 0.10 0.11
M_PL_037 0.90 [0.97 1] 0.14 0.06
M_PL_038 0.93 [0.98 1] 0.23 0.05
M_PL_045 0.96 [0.98 1] 0.13 0.05
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Fig. S4. Probability of the R-tipping versus the rate of change in the nominal mutualistic interaction strength. Initially, the strength is γ0 = γmax
0 and it linearly decreases to

γ0 = γmin
0 in time T with rate r < 0. Other parameters are: α = 0.3, β = 1, h = 0.4. The seven cases correspond to the high-dimensional networks listed in Tab. S1.

The solid curves are from Eq. (5).

4. Probability of R-tipping with time-varying parameters κ and γ071

To extend our investigation into R-tipping in mutualistic networks with respect to the time rate of change of a single parameter,
we study the effects of multiple time-varying parameters under the scenario where the species decay rate (κ) exhibits a linear
increase and the mutualistic interaction strength (γ) simultaneously undergoes a linear decrease, so as to gain insights into
how adverse environmental changes can impact the tipping probability and the overall stability of the mutualistic network.
Specifically, we assume that κ increases linearly with time at the rate rκ from a minimal value κmin to a maximal value κmax
and γ0 decrease linearly with time at the rate rγ from a maximal value γmax

0 to a minimal value γmin
0 :

κ̇j =
{

rκ if κmin < κj < κmax

0 otherwise,
[6]

γ̇0 =
{

−rγ if γmin
0 < γ0 < γmax

0

0 otherwise.
[7]

The time required for the parameter κ change is Tκ = (κmax − κmin)/rκ, where rκ > 0 and the time required for the parameter72

γ0 change is Tγ0 = (γmin
0 − γmax

0 )/rγ0 , where rγ0 < 0.73

To examine the probability of R-tipping, we set rκ = Crγ , where C > 0 and study three distinct scenarios by varying the74

parameter C: C < 1, C = 1, and C > 1. Using an analysis similar to the one in the main text, the probability of R-tipping is75

Φ(r) = B exp [−C(max(Tκ, Tγ0 ))] [8]76

with B > 0 and C > 0 being two fitting constants. Table S1 lists the parameter configurations and the corresponding values of77

the two fitting parameters for the ten high-dimensional empirical mutualistic networks.78
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Table S2. Empirical mutualistic networks, ranges of time-varying parameters κ and γ0, and the fitting constants in Eq. (8)

Network κ-interval γ0-interval C < 1 C = 1 C > 1
[B, C] [B, C] [B, C]

M_PL_008 [0.90 0.93] [0.96 1] [0.28, 0.60] [0.28, 0.20] [0.30, 0.10]
M_PL_013 [0.86 0.97] [0.96 1] [0.30, 0.40] [0.29, 0.15] [0.30, 0.18]
M_PL_022 [0.87 0.89] [0.96 1] [0.76, 0.29] [0.77, 0.03] [0.77, 0.02]
M_PL_023 [0.90 0.92] [0.96 1] [0.37, 0.52] [0.37, 0.07] [0.37, 0.03]
M_PL_027 [0.90 0.91] [0.96 1] [0.08, 0.72] [0.09, 0.13] [0.08, 0.02]
M_PL_032 [0.87 0.96] [0.96 1] [0.49, 0.25] [0.49, 0.12] [0.49, 0.10]
M_PL_036 [0.82 0.85] [0.96 1] [0.30, 0.42] [0.29, 0.09] [0.29, 0.01]
M_PL_037 [0.86 0.89] [0.96 1] [0.16, 0.55] [0.16, 0.15] [0.16, 0.05]
M_PL_038 [0.86 0.92] [0.96 1] [0.26, 0.45] [0.26, 0.13] [0.26, 0.11]
M_PL_045 [0.93 0.94] [0.96 1] [0.02, 0.65] [0.02, 0.12] [0.02, 0.05]

The probability of R-tipping in various scenarios for each network listed in Table S2 is shown in Figs. S5-S14, respectively.79

These results provide a detailed illustration of the tipping probabilities for ten high-dimensional empirical mutualistic networks80

under the different parameter settings, where each figure corresponds to a specific network.81

Fig. S5. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_008. (a) Two-dimensional parameter plane of the species
decay rate (κ) and the mutualistic interaction strength (γ0). The solid lines correspond to the three different scenarios of the parameter C in calculating the probability of the
R-tipping point using 105 initial conditions: (b) C < 1, (c) C = 1, and (d) C > 1. The initial parameter values are γ0 = γmax

0 and κ0 = κmin, and they change linearly with
time to γ0 = γmin

0 and κ0 = κmax, respectively. Other parameter values are t = 0.5, β = 1, α = 0.3, µ = 0, and h = 0.5.
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Fig. S6. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_013. Legends are the same as those in Fig. S5 except
h = 0.4.
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Fig. S7. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_022. Legends are the same as those in Fig. S5 except
h = 0.35.
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Fig. S8. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_023. Legends are the same as those in Fig. S5 except
h = 0.4.
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Fig. S9. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_027. Legends are the same as those in Fig. S5.
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Fig. S10. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_032. Legends are the same as those in Fig. S5.
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Fig. S11. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_036. Legends are the same as those in Fig. S5.
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Fig. S12. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_037. Legends are the same as those in Fig. S5.

Shirin Panahi, Younghae Do, Alan Hastings, and Ying-Cheng Lai1 13 of 15



Fig. S13. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_038. Legends are the same as those in Fig. S5.
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Fig. S14. Scaling law of probability of R-tipping in two-dimensional parameter space for the empirical network M_PL_045. Legends are the same as those in Fig. S5.
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