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We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors
games with mobile individuals. We discover a set of seed distributions of species, which is able to
produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based
on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on
partial differential equations associated with specific initial conditions. The spatial entropy of patterns
is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility,
the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the
waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals
and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and
multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers
of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In
addition, comparing to large amount of previous work, we employ the no flux boundary conditions which
enables quantitative studies of pattern formation and stability in the system of stochastic interactions in
the absence of excitable media.

© 2012 Elsevier B.V. All rights reserved.

Formation of self-organized pattern is a fundamental aspect of
physical and biological systems out of equilibrium. Spiral waves are
quite common in a variety of excitable systems and population dy-
namics, such as Belousov–Zhabotinsky reaction [1,2], the cardiac
tissue [3], inset population dynamics [4] and cyclically competing
populations with mobility [5]. Spiral waves play significant roles
in the dynamics of excitable systems, e.g., in heart disease, such
as arrhythmia and fibrillation, which lead to death [3,6,7]. Spiral
waves are important in population dynamics as well. In particu-
lar, biodiversity in cyclically competing populations with stochastic
interactions can be maintained and stabilized by entangled mov-
ing spiral waves [5,8]. The coexistence of two or more spirals may
form multi-armed spiral and antispiral waves. These interesting
joint spirals have been extensively studied in excitable systems
theoretically and experimentally [9–14]. However, in the popula-
tion dynamics in the presence of stochastic processes, multi-armed
spirals and multi-pairs antispirals among entangled spirals is rarely
studied and far from being well understood. There are two impor-
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tant open questions associated with these waves: Are they able to
be generated through stochastic interactions and how is their sta-
bility? The purpose of this Letter is to address these questions in
the framework of cyclic competing games with mobile individuals.

Non-hierarchical cyclic competitions have been observed in a
number of real ecosystems, ranging from colicinogenic microbes
competition to mating strategies of side-blotched lizards in Cali-
fornia [15–19], as well as human sociality in terms of public goods
games [20–22]. The essential features of such competition can
be captured by the childhood game “rock–paper–scissors” (RPS).
In the game, species coexistence, as the key factor for maintain-
ing biodiversity, has been given much attention, especially for the
conditions that ensure species coexistence [23–31]. Both labora-
tory experiment and theoretical model have revealed that spatial
structure by confining local interaction is necessary for stabilizing
species coexistence [19]. Otherwise, stochastic effect and external
perturbation can easily ruin biodiversity. Quite recently, individual
mobility has been incorporated in the spatial RPS game [5,8,32,33].
It has been found that individual mobility induces entangled mov-
ing spiral waves which preclude species from extinction [5]. The
stochastic game has been casted into a set of partial differential
equations by a continuous approximation [8]. In this Letter, we in-
vestigate the origin of multi-armed spiral waves and multi-pairs
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antispiral waves on the basis of the spatial RPS game with mo-
bile individuals, which is unaddressed prior to our work. We find
that the joint spiral waves can spontaneously arise due to the in-
teraction of neighboring spirals and the type of the joint spirals
is determined by the position and rotational directions of neigh-
boring spirals. In particular, we discover a general set of seeds of
species distribution, which is capable of producing multi-armed
spirals with a finite number of arms and antispirals with finite
number of pairs. The diverse patterns generated from stochastic
simulations are reproduced by solving a set of partial differential
equations from specific initial conditions. We have also discussed
the stability of the joint spiral waves with respect to individual
mobility.

We consider the spatial RPS game proposed in Ref. [5]. Nodes of
a L × L square lattice with no flux boundary conditions sustain mo-
bile individuals belonging to one of the three species, A, B and C .
Each node can either host one individual of a given species or it
can be vacant. Vacant sites, denoted by ⊗, are also the so-called
resource sites where individuals of species reproduce offspring. The
dynamical process can be described as following:

AB
1−→ A⊗, BC

1−→ B⊗, C A
1−→ C⊗, (1)

A⊗ 1−→ A A, B⊗ 1−→ B B, C⊗ 1−→ CC, (2)

A� γ−→ �A, B� γ−→ �B, C� γ−→ �C (3)

where � denotes any species or vacant sites. These reactions de-
scribe three processes, i.e. competition, reproduction and exchange,
occurring only between neighboring nodes. In reaction (1), species
A eliminates species B at a rate 1, whereby the node previously
hosting species B becomes vacant. In the same manner species B
can kill species C , and species C can kill species A, thus forming
a closed loop. In reaction (2), individuals place an offspring to a
neighboring vacant node ⊗ at a rate 1. Reaction (3) defines ex-
change process where an individual exchanges its position with an
individual belonging any species or an empty site at a rate γ . Ac-
cording to the theory of random walks [34], mobility of individuals
M is defined as: M = γ /2N , where N = L × L and M represents the
typical area explored by one mobile individual per unit time.

We apply stochastic algorithm developed by Gillespie to simu-
late the system’s evolution [35], where the occurring probabilities
of reactions are determined by their rates. In our model, compe-
tition and reproduction occur with probability 1/(γ + 2), whereas
exchange (moving) occurs with probability γ /(γ +2). At each step,
an individual is randomly selected to interact with one randomly
selected neighboring site. In one time step, all individuals are se-
lected once on average.

A critical value Mc = (4.5 ± 0.5) × 10−4 of mobility has been
identified in Ref. [5]. Below Mc , three subpopulations can stably
coexist in the form of moving spiral waves; while above Mc , the
wave length of spirals exceeds the size of underlying lattice and
biodiversity is lost. Here, we focus on the biodiversity region for
M < Mc . In this region, by carrying out sufficient stochastic sim-
ulations from random initial distributions of species, we found
there is chance to observe both multi-armed spirals and multi-
pairs antispirals, as shown in Fig. 1(b) and (e). For different specific
initial conditions (see Fig. 2(b) and (c) for details), a two-armed
spiral and an one-pair antispiral can be reproduced, as shown in
Fig. 1(a) and (c) respectively, which are qualitatively the same as
the marked patterns in Fig. 1(b). In addition, as shown in Fig. 1(a)
and (c) respectively, a one-armed spiral and a two-pairs antispi-
ral emerge from special initial conditions (see Fig. 2(d) and (e)
for details), which are observed in Fig. 1(e). We also found that
these patterns can last for relative long time and then they may
disappear or transform to single armed spirals with the initial
conditions of species randomly distributing on the lattice. In the

Fig. 1. (Color online.) Spatial patterns in RPS game for M = 5.0 × 10−5. Panels (b)
and (e) are obtained from random distribution of three species initially. In pan-
els (a), (c), (d), and (f), the system starts from specific seed distributions of three
species. The marked local patterns in (b) can be reproduced from specific initial
conditions, as shown in (a) and (c). The marked local patterns in (e) can be gener-
ated as well, as shown in (d) and (f). L = 512 for all panels.

multi-armed spirals, the arms rotate in the same direction with
the same speed, resulting exclusively from stochastic interactions
among neighboring individuals. In the antispirals, the two spirals
of a pair rotate with the same speed but in reverse directions. The
identical rotational speed of sub-spirals in the waves ensures their
stable existence. It is noteworthy mentioning that the patterns in
Fig. 1 are obtained from no flux boundary conditions, and we also
examine the phase transition of system from biodiversity to uni-
formity with no flux boundary conditions. As shown in Fig. 2(a),
a critical mobility Mc emerges at 4.5 × 10−4, which is the same as
the result of periodic boundary conditions in Ref. [5].

It is interesting to find that the multi-armed spirals and multi-
pairs antispirals can arise from some specific distribution of three
subpopulations. As shown in Figs. 2(b) and 2(c), square, triangle
and circle symbols stand for a small amount of three subpop-
ulations which are placed on a lattice with no flux boundary
condition. Other sites of the lattice are left empty. In the early
stage, each pile of individuals expand due to reproduction. After
the boundaries of different species encounter, populations begin
to rotate because of the cyclic competition. Finally, after the sys-
tems reaching a non-equilibrium steady state, a two-armed spiral
and a one-pair antispirals emerge. Let’s see Fig. 2(b), the six pile of
species placed around a circle are in the order A, B , C , A, B , and C .
The six piles can be separated into two groups, each of which con-
tains three species. During the evolution, each group form an arm.
Due to the spatial symmetry of the two group, the wave length, ro-
tation speeds and directions of the two arms are the same, giving
rise to a steady two-armed spiral (Fig. 1(a)). In contrast, to gen-
erate antispirals, we need to place a finite number of species at
the center of a circle and the other two species around the circle
(Fig. 2(c)), leading to a steady one-pair antispiral (Fig. 1(c)).

By extending the simple configuration in Fig. 2(b) and (c), we
discover a general route to generate multi-armed spirals with a fi-
nite number of arms and antispirals with a finite number of pairs.
To articulate the method, we should define the basic cell in the
initial distribution of species. As shown in Fig. 2(d), the cell of
multi-armed spirals is composed of three species in the order A, B
and C . The cell of antispiral contains two species except the cen-
tral species. The central species can be a finite number, but once
the central species is fixed, the cell is fixed as well. For the multi-
armed spirals, the number of arms is determined by the number
of cells. In general, one arm can be formed by one cell, so that by
adjusting the number of cells, one can obtain multi-armed spirals
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Fig. 2. (Color online.) In panel (a), extinction probability Pext as a function of mobility M . Seed distribution of species for producing (b) two-armed spiral, (c) one pair
antispiral, (d) multi-armed spirals with a finite number of arms and (e) antispirals with a finite number of pairs. Both the solid circle and the dash-dot circle denote seeds
distribute in the round manner in panels (b), (c), (d), (e). In addition, dash-dot circle in panels (d) and (e) means the number of seeds can be extended, and the number of
arms (pairs) of multi-armed spirals (multi-pairs antispirals) equals to the number of dash rings where seeds distribute in such special manner.

Fig. 3. (Color online.) Multi-armed spirals with one, two, three and four arms by
stochastic simulations (top panels) and by solving PDEs (medial and bottom pan-
els). It is worthy mentioning that both patterns in medial and bottom panels are
determined by the densities of three species on all the spatial sites. In the bottom
rows, the site i is denoted by the color of species A with probability a(r, t)/[a(r, t)+
b(r, t) + c(r, t)], by B ’s color with probability b(r, t)/[a(r, t) + b(r, t) + c(r, t)], and
by C ’s color with probability c(r, t)/[a(r, t) + b(r, t) + c(r, t)], where a(r, t), b(r, t),
c(r, t) are rate of species A, B , and C respectively. As shown in the medial rows,
patterns are obtained in a deterministic way, where the site i is denoted by the
color of species A if a(r, t) is the largest among rates of species. In this way, colors
of species B , C can be obtained, and the empty site is denoted by gray color. The
parameters are M = 5.0 × 10−5 for top rows and D = 5.0 × 10−5 for medial and
bottom rows, L = 512.

with any number of arms. For the antispiral, the number of cells
equals the number of antispiral pairs. One-pair antispirals is dif-
ferent from this regulation, as shown in Fig. 2(c). Two cells with
reverse orders are required to create one-pair antispirals, as shown
in Fig. 2(e). Stochastic simulation results from a set of seed dis-
tribution with different numbers of cells are shown in top panels
of Fig. 3 for multi-armed spirals and in top panels of Fig. 4 for
multi-pairs antispirals, respectively. The patterns justify the gener-
ate route to producing multi-armed spirals and multi-pairs antispi-
rals.

It is noteworthy that a large number of arms or pairs is not
stable because of the stochastic effect. Although all arms or pairs
can be formed, after a while, some arms or pairs will be intruded
by neighboring arms or pairs and disappear. The no flux boundary
conditions are also necessary to generate the waves. In contrast,
for periodic boundary conditions, the joint spirals in global scale

Fig. 4. (Color online.) Antispirals with one, two, three and four pairs by stochastic
simulations (top panels) and by solving PDEs (medial and bottom panels). The color
of patterns and the parameters are the same as in Fig. 3.

will be destroyed and break into small spirals. The symmetry of
the distribution of cells sustains the stability of multi-armed spi-
rals and multi-pairs antispirals, and better symmetry lead to more
stable waves. The radii of the circle and the number of individuals
in each pile do not affect the wave patterns.

The patterns generated by stochastic simulations can be pre-
dicted theoretically by a set of partial differential equations (PDEs).
As derived in the works of Reichenbach et al. [5,8], starting from
rate equations and applying the continuous approximation, we
have

∂ta(r, t) = D∇2a(r, t) + a(r, t)(1 − ρ) − c(r, t)a(r, t),

∂tb(r, t) = D∇2b(r, t) + b(r, t)(1 − ρ) − a(r, t)b(r, t),

∂tc(r, t) = D∇2c(r, t) + c(r, t)(1 − ρ) − b(r, t)c(r, t), (4)

where a(r, t), b(r, t) and c(r, t) are the densities of species A, B ,
C at position r and time t , ρ = a(r, t) + b(r, t) + c(r, t) is the local
species density and 1 − ρ denotes the density of empty sites. Eu-
lerian difference method and Runge-Kutta method are applied to
solve the PDEs. The initial conditions are a(r) = b(r) = c(r) = 0 for
all spatial coordinate r except the initial seed species in Fig. 2. In
the coordinate of seed, one species’ density is one and the others
are zero. The patterns generated by numerically solving the PDEs
are exhibited in the medial and bottom rows of Figs. 3 and 4 for
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Fig. 5. (Color online.) The spatial entropy varying with time at D = 5.0 × 10−5 for multiple armed spirals and antispirals obtained from PDE method, single armed and
three armed spirals in (a), two armed and four armed spirals in (b), two armed and three pairs antispirals in (c), four armed and four pairs antispirals in (d). The pattern
formations are shown in bottom panels of Figs. 3 and 4 respectively. Initial conditions are shown in Fig. 2(b), (c), (d) and (e). L = 512 for all panels.

Fig. 6. (Color online.) The spatial entropy evolves with time at M = 4.0 × 10−5 for
two armed spirals in panel (a) and single pair antispirals in panel (b). It is notable
that both two armed spirals and one pair antispirals become single armed spirals
in the end, and patterns in panel (a) and panel (b) obtained at time of 1.45 × 105

and 2.15×105 respectively. Initial conditions are shown in Fig. 2(b), (c), (d) and (e).
L = 512 for all panels and one time step is defined as all individuals are selected
once.

multi-armed spirals and multi-pairs antispirals, respectively. The
patterns obtained from PDEs are in good agreement with results
of stochastic simulations. The colors of patterns obtained by PDEs
are determined by the densities of three species on all the spatial
sites. As shown in bottom rows in Figs. 3 and 4, at a finite num-
ber of location (r) and time t , the site i is denoted by the color of
species A with probability a(r, t)/[a(r, t) + b(r, t) + c(r, t)], by B ’s
color with probability b(r, t)/[a(r, t) + b(r, t) + c(r, t)], and by C ’s
color with probability c(r, t)/[a(r, t)+b(r, t)+c(r, t)], where a(r, t),
b(r, t), c(r, t) are rate of species A, B , and C respectively. A deter-
ministic method is used to obtain patterns by PDEs. As shown in
the medial rows of Figs. 3 and 4, the site i is denoted by the color
of species A if a(r, t) is the largest among rates of species. In this
way, colors of species B , C can be obtained, and the empty site is
denoted by gray color.

To quantitatively investigate the emergence of multi-armed spi-
rals and multi-pairs antispirals, we define the spatial entropy of
patterns according to Shannon entropy [36]:

S = −
z∑

i=1

pi ln(pi), (5)

where z is the number of the clusters formed by individuals of the
same species and pi is the probability of the cluster with size of xi ,
pi = xi/N . Here, the size xi is the number of individuals of the
same species in cluster i. In the simulation, the size of cluster xi is
the number of individuals of the same species in the same cluster,
and the probability of the cluster with size xi is xi/N , where N is
the size of the system. The spatial entropy can then be calculated
according to Eq. (5), and ln(pi) is the natural logarithm for pi . For
the PDE method, the spatial entropy is calculated according to col-
ors patterns which are quantified by the densities of three species
on all the spatial sites, as shown in bottom rows in Figs. 3 and 4.
In this regard, the spatial entropy measures the disorder degree
of spatial patterns in the system. For the extreme case, xi = N ,
e.g. the system is predominated by one species, there are only one
cluster in the system, and the entropy equals to zero. In the case of
three species randomly distributed on lattice of N = 512×512, the
spatial entropy tends to be − ln(1/N) ≈ 12.5. Given N = 512×512,
the spatial entropy of pattern formation ranges from 0 to 12.5.
Therefore, we can quantitatively study disorder of spatial patterns
in terms of entropy. Fig. 5 shows spatial entropy of multi-armed
spirals and multi-pairs antispirals as function of time with PDE
method. Average values of spatial entropy are 3.4, 3.7, 3.8, and
4.0 for one-armed, two-armed, three-armed, and four-armed spi-
rals respectively, while average values of spatial entropy are 3.8
for both one-pair and two-pairs antispirals, 4.0 for both three-pair
and four-pairs antispirals. One can find that the spatial entropy of
single spirals is smaller than that of multi-armed spirals and multi-
pairs antispirals. In addition, the transition time is about 12000
time steps from the two armed spirals to the single armed spirals
and about 16000 time steps from the one pair antispirals to the
single armed spirals.

Since multi-armed spirals and multi-pairs spirals are unsta-
ble at too small or large mobility, without loss of generality,
we investigate the evolvement of pattern and spatial entropy at
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M = 4.0 × 10−5 with stochastic algorithm. Fig. 6 shows the spatial
entropy evolving with Monte Carlo (MC) time for two armed spi-
rals and one pair antispirals which transform to the single armed
spirals, and one can find that the two armed spirals and one pair
antispirals emerge in the system at beginning, as shown in left in-
sets of Figs. 6(a) and 6(b) respectively, while after long time evolv-
ing both two armed spirals and one pair antispirals become the
single armed spirals, as shown in right insets of Figs. 6(a) and 6(b)
respectively. The transition time is about 12000 time steps from
the two armed spirals to the single armed spirals and about 16000
time steps from the one pair antispirals to the single armed spirals.
In addition, the spatial entropy for both two armed spirals and one
pair antispirals reduces after the transformation.

Finally, we examine the stability of spirals and antispirals with
respect to the individual mobility M . The stability denotes the
probability that spirals or antispirals are maintained after the pat-
terns emerge. Each probability of the stability is obtained from 100
different independent realizations. For example, for given M and L,
if there are 50 times that the single armed spirals survive, the sta-
bility of single armed spirals is 0.5. Without loss of general, if the
value of stability is higher than 0.5, the pattern is regarded as sta-
ble, otherwise the pattern is regarded as unstable. Therefore, we
calculate the stability of spirals and antispirals from 100 indepen-
dent realizations, as shown in Fig. 7, in the stable region in the
parameter space of M , the value of stability of all patterns are
higher than 0.5. The shadow and gray regions in Fig. 7(a) denote
one-armed spirals and two-armed spirals emerging stably in the
system, respectively. There are three regions: for small values of M ,
M < 1.0×10−5, both single spiral and two-armed spiral break into
a number of small spirals; for large values of M , M > 1.0 × 10−3,
biodiversity is lost and spirals disappear; for intermediate values
of M , both spirals survive. The single spiral is more stable then the
two-armed spiral and the latter can transform to the former. The
similar phenomenon is also observed for multi-pairs antispirals.
As shown in Fig. 7(b), one-pair and two-pairs antispirals exist sta-
bly in the blue (dark) and green (light) region respectively. There
exhibit three regions and the one-pair is more stable then the two-
pair, similar to the multi-armed spirals. The top panels of Fig. 7
demonstrate that at the boundaries of three regions, the two-pair
antispirals reduces to single spiral.

Spatiotemporal patterns have been investigated extensively,
ranging from chemical reactions on catalytic surfaces to propa-
gating signals in aggregating microorganisms [37]. It is found that
patterns in excitable media emerge primarily due to the insta-
bilities induced by the interplay between the fast excitatory and
slow recovery variables. This kind of mechanism explain well the
multi-armed spirals and antispirals emerging in the Belousov–
Zhabotinsky (BZ) reaction [10] as well as cardiac substrate [11],
and aggregating amoeba D. discoideum [12]. However, multi-
armed spirals and multi-pairs antispirals in our systems emerge
because of cyclic interaction in populations of three species with
the same mobility. In this Letter, we have explored the origin and
stability of multi-armed spirals and multi-pairs antispirals in the
spatial rock–paper–scissors game with mobile individuals. The two
types of joint spirals are naturally observed by stochastic simula-
tions. We have discovered a set of seed distributions of species,
which is able to produce multi-armed spirals and multi-pairs anti-
spirals with a finite number of arms and anti-pairs. The availability
of the seed for producing the waves are justified by both stochastic
simulations and a theoretical model described by a set of partial
differential equations. The patterns obtained by PDEs are consis-
tent with numerical patterns. We have also discussed the stability
of multi-armed spirals and multi-pairs antispirals depending on
the individual mobility. We found that in the intermediate mobil-
ity, both waves are relatively stable, whereas for low mobility, the
spirals in the global scale breaks into small spirals and for high

Fig. 7. (Color online.) The navy-blue (dark) and red (light) region indicate emerging
stably of one- and two-armed spirals respectively in panel (a) and panel (b). The
blue (dark) and green (light) region show appearing stably of one- and two-pairs
antispirals respectively in panel (c) and (d). Results are obtained from 100 different
independent realizations, L = 512.

mobility, spirals disappear due to the loss of biodiversity. We have
also found that large numbers of arms or anti-pairs weaken the
stability of the joint spirals and the joint spirals with larger num-
bers of arms or anti-pairs can transform to less numbers of arms
or anti-pairs. It is noteworthy that our model is quite simple and
only focuses on the competitions among species, such that the
model is unable to capture and reproduce all dynamical behaviors
in real ecosystems. For example, in our model the death of indi-
viduals can be exclusive induced by competitions among different
species. However, the natural death mechanism is lacking, which
prevents extinctions of single species in a small patch, in oppo-
site to the reality that any small colony dies [38,39]. In addition,
due to the simplification of migration in our work, the current re-
sults of biodiversity inhibited by migration is quite different from
the reported results in literature that there exist optimal migration
rates to facilitate biodiversity [40] and cooperation [41] in real sys-
tems.
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