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Abstract

Inspired by the discovery of possible roles of synchronization of oscillations in the brain, networks of coupled phase oscillators
have been proposed before as models of associative memory based on the concept of temporal coding of information. Here we
show, however, that error-free retrieval states of such networks turn out to be typicallyunstableregardless of the network size, in
contrast to the classical Hopfield model. We propose a remedy for this undesirable property, and provide a systematic study of
the improved model. In particular, we show that the error-free capacity of the network is at least 2ε2/ logn patterns per neuron,
wheren is the number of oscillators (neurons) andε the strength of the second-order mode in the coupling function.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The celebrated Hopfield model of associative memory[1] has provided fundamental insights into the origin
of neural computations and has since stimulated much interest. In this model, neurons in the network assume
discrete values (e.g.,+1 and−1) and a set of patterns is stored such that when a new pattern is presented, the
network responds by producing a stored pattern that most closely resembles the new pattern. Of interest is then the
capacity, the maximum number of patterns per neuron that the network can “memorize”. The physical significance
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of Hopfield’s work lies in his proposal of the energy function and his idea that memories aredynamically stable
attractors, naturally bringing concepts and tools from statistical and nonlinear physics into neuro- and information
sciences as well as engineering.

Recent empirical findings in neuroscience[2,3] suggesting that synchronous firing of specific neurons is ubiq-
uitous in the brain have stimulated several theoretical studies of models of associative memory based on the idea
of temporal coding of information[4–9]. Such models typically consist of coupled oscillators interacting with each
other according to a Hebbian rule, and the patterns are stored as phase-locked oscillations. One advantage of this
type of model is that it can be naturally implemented using variety of oscillatory devices including phase-locked
loop circuits[10], laser oscillators[11], and MEMS resonators[12].

The equation of motion for a network of coupled oscillators can be reduced to a phase model under fairly moderate
conditions. Assuming that interactions are weak and that the oscillators have stable limit cycles with nearly identical
periods, Kuramoto[13] has shown that the equations of motion for a network ofn oscillators can be reduced to
equations for the phase variablesθ = (θ1, . . . , θn)T:

θ̇i = ωi +
n∑

j=1

Γij(θj − θi), i = 1, . . . , n, (1)

whereΓij(φ) is a 2π-periodic function determining the coupling between neuroni andj. Reduction to a similar
phase model can be obtained more rigorously (Theorems 9.1 and 9.2 in[14]) for weakly coupled oscillators. The
phase model provides a convenient framework to study the phase-locking phenomenon.

In view of this reduction, many previous investigations have focused on the reducedEq. (1) to compute the
memory capacity of the model. The capacity is usually defined by the transition point at which the states that encode
memory patternswith small amount of error become unstable (or cease to exist). It can be calculated through an
extension of a standard, mean-field treatment analogous to the one used for the classical Hopfield model. It was
found that an extensive number of binary patterns could be stored in a large network leading to the capacity of up to
0.042 patterns per neuron (compared to 0.138 for the Hopfield model). Even under the assumption that the network
is to memorize uniformly distributed phase patterns (which may be more natural assumption than that of binary
patterns), a mean-field theory can be applied to show that the capacity is about 0.038 when small amount of error
is allowed in the recall process[4,15,16].

However, in many engineering applications, retrieval of the memory patterns with no error is often desired. For
the classical Hopfield model, the storage of an extensive number of patterns is no longer possible, and the capacity
for the error-free retrieval is known to be 1/(2 logn) patterns per neuron[17] for largen, wheren is the total
number of neurons. We have recently reported[22] results on the capacity in this sense for the oscillatory model of
associative memory and the main aim of this article is to present in full detail the results obtained through rigorous
mathematics using the framework of probability theory in the same spirit as in[17]. We also present additional
numerical results on the basin of attraction for the retrieval solutions.

It turns out that the perfect retrieval solutions of the oscillatory models in the previous work appear to be
typically unstableregardless of the network size, as long as the number of memory patterns is more than two
[6]. This means that the capacity is 2/n, and clearly puts oscillatory models at a disadvantage. This observa-
tion is in fact consistent with the analysis in the following sections. To overcome this malady, we will intro-
duce a new, second-order mode in the coupling functionΓij(φ) and prove that this indeed results in stabilizing
the solutions representing patterns. The capacity is then computed for the new model, which turns out to be at
least 2ε2/ logn patterns per neuron, whereε is the parameter representing the strength of the new term. Note
that the capacity scales withn in a similar manner as the Hopfield case, but it can be increased by increasing
the new parameterε. However, increasingε also tends to stabilize solutions encoding other patterns (than the
memory), meaning that ifε is too large, the solution for every possible pattern becomes stable, and the sys-
tem cannot distinguish the memory patterns from others. We have shown below thatε < 1 guarantees that the
solution for a randomly chosen pattern is unstable with probability 1. We also show rigorously thatε < 1/8
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guarantees that all symmetric mixture solutions are unstable (although they seem to remain unstable for some-
what largerε than 1/8 for a typical choice ofp andn). In summary, the system will function (in the large sys-
tem size limit) as an associative memory as long as 0< ε < 1/8 and at most 2ε2/ logn patterns per neuron are
stored.

The rest of the article is organized as follows. InSection 2, we introduce our model.Section 3describes some
properties of the energy function for the system that is useful for understanding its dynamics. Then, inSection 4,
we analyze the stability of various solutions and compute the capacity of the network. We give some comments
on the basin of attraction of the solution for the memory pattern inSection 5, and conclude with some remarks in
Section 6.

2. The model

Many of the previous studies of weakly coupled oscillators with nearly identical frequencies have focused on the
sinusoidal coupling functions to make the problem tractable. Here, we consider the coupling functionΓij(φ) with
a second-order Fourier mode, namely,

Γij(φ) = Cij sin φ + ε

n
sin 2φ, (2)

whereε is a parameter andCij the strength of coupling from oscillatorj to i, which is given by Hebb’s learning
rule:

Cij = 1

n

p∑
µ=1

ξ
µ
i ξ

µ
j , (3)

whereξµ = (ξµ1 , . . . , ξ
µ
n )T, ξµi = ±1 for µ = 1, . . . , p, i = 1, . . . , n, represents a set ofp patterns to be memo-

rized. Patterns are chosen randomly, so thatξ
µ
i are independent and identically distributed random variables with

P(ξµi = 1) = P(ξµi = −1) = 1/2. We focus on the case for which natural frequencies of all oscillators are equal
(say,ωi = ω). After the change of variableθi → θi + ωt, the equation of motion (1) takes the form

θ̇i =
n∑

j=1

Cij sin(θj − θi) + ε

n

n∑
j=1

sin 2(θj − θi). (4)

Note that theEq. (1) (and henceEq. (4)) is invariant under translation by a constant, i.e., for any solutionθ(t) of
(1) and a constantc ∈ R, θ(t) + (c, . . . , c)T is also a solution. This implies that there is at least one direction in the
phase space in which any solution is neutrally stable. Hence, in what follows, we will not distinguish two solutions
related by constant translation.

There are 2n fixed-point solutions toEq. (4) corresponding to all possible binary patterns of lengthn. Let
η = (η1, . . . , ηn)T be ann-dimensional vector of 1’s and−1’s representing one of those binary patterns. There
is a unique (up to constant translation) fixed-point solution corresponding to the patternη, which is characterized
by

|θi − θj| =
{

0, if ηi = ηj,

π, if ηi 	= ηj

(5)

We denote this solution byθ(η). In the original coordinates, they are phase-locked oscillatory solutions, in which
binary patterns are encoded in the locked phase deviations of the oscillators. An example of such a solution is
visualized inFig. 1as an illustration.
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Fig. 1. A pattern encoded in the phase deviation among the oscillators. Each cell representing an oscillator is painted in gray scale according to
its phase.

3. Energy function

The symmetry of the connection matrixC ensures that the system (4) can be written as a gradient system with
the Lyapunov (energy) function:

L(θ; ε, C) = −1

2

n∑
i,j=1

Cij cos (θi − θj) − ε

4n

n∑
i,j=1

cos 2(θi − θj). (6)

Thus, any solution will eventually converge to a fix point of the system located at a local minimum of the energy
function (6). UsingEq. (3) for C, the energy per oscillator can be rewritten as:

L̄(θ; ε,�) ≡ 1

n
L(θ; ε,�) = −1

2

p∑
µ=1

m2
µ − ε

2
q2, (7)

where then × p matrix� = (ξ1, . . . , ξp) and we define the order parameters:

mµ = mµ(θ) =
∣∣∣∣∣∣
1

n

n∑
j=1

ξ
µ
j e

iθj

∣∣∣∣∣∣ , µ = 1, . . . , p, (8)

q = q(θ)

∣∣∣∣∣∣
1

n

n∑
j=1

e2iθj

∣∣∣∣∣∣ . (9)

The parametermµ is called theoverlapand measures the closeness of the solution to the memory pattern
ξµ. The parameterq measures the closeness of the solution to its nearest binary pattern. The necessity of the
second term inEq. (7) comes from the fact that a minimum of the first term is typically located near but off
the fixed point corresponding to one of the patternsξµ. The second term, on the other hand, always has local
minima of the same depth at all fixed points representing a binary pattern. Thus, combining the two ensures that
the energy minima are located precisely at the memorized patterns. We will show this more rigorously in the next
section.

It is worth noting at this point that the overlapsmµ for solutionsθ(η) coincide with those for the Hopfield model,
i.e.,mµ = | ∑j ξ

µ
j ηj/n|. Moreover, sinceq = 0 for these solutions, the energy levelsL̄(η,�) ≡ L(θ(η); ε,�)/n

are identical to the energy per spin in the Hopfield model and does not depend onε. In particular, the approximate
energy levels of all symmetric odd-mixture solutions are known[18], which we prove here more rigorously. The
symmetric mixture solutions made ofs patterns out of thep memory patterns in� can be defined by the so-called
“majority rule”. We may just choose the firsts patterns without loss of generality because of the symmetry with
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respect to permutation of patterns. Hence, we set

ηs
j = sgn


 s∑

µ=1

ξ
µ
j


 , (10)

where sgn (x) = x/|x|. Note that the energy levels at these solutions are random variables, as they depend on random
variablesξµi . Let→P denote the convergence in probability, i.e.,Xn →P Y means thatP(|Xn − Y | > δ) → 0 for every
δ > 0 asn → ∞. The notationa(n) = o(b(n)) will be used to meana(n)/b(n) → 0 asn → ∞.

Theorem 1. Let s = 2k + 1, k = 1, 2, . . . and

m̄s = 1

22k

(
2k

k

)
. (11)

If p = o(n), then, L̄(ηs;�) →P L̄s ≡ −1/2sm̄2
s asn → ∞.

Proof. For anyδ > 0, we have:

P

(∣∣∣∣L̄(ηs;�) + 1

2
sm̄2

s

∣∣∣∣ ≥ δ

)
= P




∣∣∣∣∣∣
p∑

µ=1

m2
µ − sm̄2

s

∣∣∣∣∣∣ ≥ 2δ




≤ P




∣∣∣∣∣∣
s∑

µ=1

m2
µ − sm̄2

s

∣∣∣∣∣∣ ≥ δ


 + P


 p∑

µ=s+1

m2
µ ≥ δ




≤
s∑

µ=1

P

(
|m2

µ − m̄2
s | ≥ δ

s

)
+ P


 p∑
µ=s+1

m2
µ ≥ δ


 .

(12)

Let Xµ
i = ξ

µ
i η

s
i . Writing

X
µ
i = ξ

µ
i sgn


ξ

µ
i +

s∑
ν=1,ν 	=µ

ξνj


 ,

we see thatXµ
i = 1, if

∑
ν 	=µ ξνi ≥ 0 andXµ

i = −1 otherwise. Note that
∑

ν 	=µ ξνi obeys the binomial distribution
Bin(2k,1/2). Using this fact, straightforward calculation shows thatEX

µ
i = m̄s. Forµ = 1, . . . , s, we haveEmµ =

m̄s and Var(mµ) = [1 + m̄2
s ]/n, and by the Chebyshev inequality, we see that for anyδ > 0,

P

(
|m2

µ − m̄2
s | ≥ δ

s

)
= P

(
|mµ + m̄s||mµ − m̄s| ≥ δ

s

)
≤ P

(
|mµ − m̄s| ≥ δ

2s

)

≤ 4s2Var(mµ)

δ2
= 4s2(1 + m̄2

s )

δ2n
, (13)

were we used|mµ|, |m̄s| ≤ 1
Forµ = s + 1, . . . , p, we haveE(m2

µ) = 1/n, and by the Markov inequality,

P


 p∑

µ=s+1

m2
µ ≥ δ


 ≤

E
(∑p

µ=s+1 m2
µ

)
δ

=
∑p

µ=s+1 Em2
µ

δ
= p − s

δn
. (14)
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From (12)–(14),

P

(∣∣L̄s(�) + 1

2
sm̄2

s

∣∣ ≥ δ

)
≤ 4s3(1 + m̄2

s )

δ2n
+ p − s

δn
→ 0, (15)

asn → ∞. Thus,L̄(ηs;�) →P −1
2sm̄

2
s . �

Note thats = 1 leads to the solutions corresponding to memorized patterns (η = ξµ). First few energy levels
are: L̄1 = −1/2, L̄3 = −3/8, L̄5 = −45/128, etc. One can see that there is an ordering of the energy levels:
L̄1 < L̄3 < L̄5 < . . ..

4. Stability analysis

First we give general stability results that hold for any solution that corresponds to a binary pattern for a finiten.
Then, in the subsections that follows, we use these results to study the stability of specific types of solutions in the
limit n → ∞.

The Jacobian matrix ofEq. (4) evaluated atθ = θ(η) is (2ε/n)E − 2εI + J , whereE is then × n matrix of ones,
I then × n identity matrix, andJ is defined componentwise by:

Jij = Cijηiηj − δij

n∑
k=1

Cikηiηk = 1

n

p∑
µ=1

ξ
µ
i ξ

µ
j ηiηj − δij

n

n∑
k=1

p∑
µ=1

ξ
µ
i ξ

µ
k ηiηk. (16)

The stability of the solutionθ(η) is determined by the eigenvalues of the Jacobian matrix. Since it is symmetric,
all eigenvalues are real. Hence, the solution is stable if and only if all eigenvalues are negative.

Whenε > 0, inclusion of the second-order mode in the coupling functionΓij(φ) results in shifting the eigenvalues
for the solution corresponding to each pattern by 2ε. This fact is used in the following theorem, which gives a
condition for stability of solutions in terms of the eigenvalues ofJ . Letλmax(A) andλmin(A) denote the maximum
and minimum eigenvalues of a matrixA, respectively.

Theorem 2. Letη be ann-dimensional column vector of±1’s.The solution of(4) defined by(5) is asymptotically
stable ifλmax(J) < 2ε, and unstable ifλmax(J) > 2ε.

Proof. First note that the Jacobian (2ε/n)E − 2εI + J always has eigenvalue zero associated with the eigenvector
1= (1, . . . , 1)T. Let λ be a nonzero eigenvalue ofJ , so thatJv = λv for somev 	= 0. SinceJ is symmetric,v is
orthogonal to1, and hence, we haveEv = 0. Thus, we have:[(

2ε

n

)
E − 2εI + J

]
v = (λ − 2ε)v, (17)

which implies thatλ − 2ε is an eigenvalue of the Jacobian associated with the eigenvectorv. Therefore, whether
λmax(J) is above or below 2ε determines the stability of the solution defined in (5). �

Fig. 2 shows sample distributions of theλmax(J) for several types of solutions: a memory pattern, a memory
pattern with single-bit error, a symmetric three-mixture pattern, and a random pattern. Notice that even for the
memory patternλmax(J) is always positive, indicating that the corresponding solution is unstable forε = 0. In fact,
our numerics with various combinations ofn andp suggest that the same is true2 for anyn and anyp > 2. This is
indeed consistent with the observation in[6].

2 For p = 1,2, one can show that the solutions for the memory patterns are at least neutrally stable (λmax ≤ 0) by using the Gerschgorin
Theorem.
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Fig. 2. The distribution of the maximum eigenvalueλmax(J) for three types of solutions: a memory pattern, a memory pattern with single-bit
error, a symmetric three-mixture pattern, and a random pattern. We chose each bit of each memory pattern to be±1 at random with equal
probabilities. The parameters of the system weren = 1000 andp = 10. According toTheorem 2, λmax(J) = 2ε is the borderline of stability.

Having reduced the problem of stability to the eigenvalue problem forJ , we are left with finding the distribution
of the eigenvalues ofJ . Before doing that for specific types of solutions in the subsequent subsections, let us first
derive some useful properties of the eigenvalues ofC̃, thep × p correlation matrix of the memory patterns, defined
by:

C̃µν = 1

n

n∑
i=1

ξ
µ
i ξ

ν
i , (18)

or, in matrix notation,̃C = 1
n
�T�. As the random variablesξµi are independent and take values±1 with probability

1/2 each, the spectra ofC̃ obeys a law of large numbers. The following theorem is due to Girko[19] (Theorem 10.3,
p. 70).

Theorem 3. Suppose that random entriesξ(n)
ij , i = 1, . . . , n, j = 1, . . . , pn, of the matrix�n = [ξ(n)

ij ]j=1, ..., pn

i=1, ..., n

are independent for eachn, γ = limn→∞ pn/n, γ > 0, Eξ
(n)
ij = 0, Var(ξ(n)

ij ) = 1. Let Fn(x) denote the (random)

distribution function of the eigenvalues of1
n
�T�.The necessary and sufficient condition forlimn→∞ supx |Fn(x) −

F (x)| = 0with probability one is the modified Lindeberg condition: for everyτ > 0,

lim
n→∞

1

n

pn∑
j=1

n∑
i=1

∫
|x|>τ

x2 dP(ξ(n)
ij <

√
nx) = 0,

where

dF (x)

dx
=

√
4γx − (γ + x − 1)2 χ

( √
4γx

|γ+x−1| > 1

)
2πγx

+
(

1 − 1

γ

)
δ(x)χ(γ ≥ 1).
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Corollary 4. If p = o(n), then all eigenvalues of̃C converges to one in probability asn → ∞. In particular,
λmax(C̃) →P 1 andλmin(C̃) →P 1 asn → ∞.

Proof. It suffices to show that, for allδ > 0, P(λmin(C̃) ≥ 1 − δ) → 0 andP(λmax(C̃) ≤ 1 + δ) → 0 asn → ∞.
For a givenδ > 0, chooseγ > 0, so thatγ + 2

√
γ < δ. Choose a sequencep′

n of integers such that limn p′
n/n = γ.

Then, writingp = pn to explicitly show the dependence onn, we have:

lim
n

pn − p′
n

n
= −γ < 0, (19)

and hence,pn < p′
n for large enoughn. For each realization of�, construct�′ by adding extra rows with random

±1 entries, so that�′ hasp′
n rows. ThenC̃ = (1/n)�T� is the upper left submatrix of̃C′ = (1/n)�′T�′, and hence,

by the interlacing property of symmetric matrices (see, for example,[20]) (p. 396),

λmin(C̃′) ≤ λmin(C̃), λmax(C̃) ≤ λmax(C̃
′). (20)

The modified Lindeberg condition inTheorem 3is satisfied, since the integral vanishes for large enoughn. The
other assumptions are clearly satisfied, and hence, the theorem can be applied to give:

P(λmin(C̃) ≤ 1 − δ) ≤ P(λmin(C̃′) ≤ 1 + γ − 2
√
γ) (21)

= 1 − F (1 + γ − 2
√
γ) → 0, (22)

P(λmax(C̃) ≥ 1 + δ) ≤ P(λmax(C̃
′) ≥ 1 + γ + 2

√
γ) (23)

= F (1 + γ + 2
√
γ) → 0 (24)

asn → ∞. �

A useful lower bound onλmax(J) can be obtained by simple application of the variational principle. Letxi = ηiξ
ν
i

for some fixedν. Using (16), we have:

λmax(J) ≥
∑n

i=1
∑n

j=1 Jijxixj∑n
i=1 x2

i

(25)

= 1

n2

p∑
µ=1

n∑
i=1

n∑
j=1

ξ
µ
i ξ

µ
j ξ

ν
i ξ

ν
j − 1

n2

p∑
µ=1

n∑
i=1

n∑
k=1

ξ
µ
i ξ

µ
k ηiηk

=
p∑

µ=1

C̃2
µν −

p∑
µ=1

m2
µ =

p∑
µ=1

C̃2
µν + 2L̄(η,�). (26)

4.1. Perfect retrieval

The perfect retrieval solutions are defined by (5) withη = ξν, ν = 1, . . . , p. Lettingη = ξν for a fixedν in (16),
we get

J = S + D −
(

1 + p − 1

n

)
I, (27)
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where

Sij = 1

n

p∑
µ=1

ξ
µ
i ξ

ν
i ξ

µ
j ξ

ν
j , (28)

Dij = −δij

n

∑
µ	=ν

∑
k 	=i

ξ
µ
i ξ

ν
i ξ

µ
k ξ

ν
k . (29)

The stability of these solutions are then determined byλmax(J), whose statistical behavior depends on the rate of
growth ofp = pn with n. For evaluation of the capacity of the network, we ask how bigp can be as a function ofn.

Let us first consider the caseε = 0. In this case, the model reduces to the one previously studied. In particu-
lar, Aonishi [6] has reported that the solutions corresponding to memory patterns appear to be unstable for any
combination ofp > 2 andn. Here, we present an argument that supports this claim. According toTheorem 2, the
condition for instability isλmax(J) > 0 in this case. A lower bound forλmax(J) can be obtained by choosingx to
be the normalized eigenvector ofS associated with the eigenvalueλmax(S) in (25):

λmax(J) ≥ xTJx

xTx
= λmax(S) + xTDx

xTx
− 1 − p − 1

n
. (30)

Taking the averages on both sides, we obtain:

Eλmax(J) ≥ Eλmax(S) + E

[
xTDx

xTx

]
− 1 − p − 1

n
≈ 2

√
p

n
> 0. (31)

Here, we used the approximation, which seems to be valid for 1� p � n, that the eigenvectorx and the components
of D are nearly independent, which leads toE

[
xTDx/xTx

] ≈ 0. We also usedEλmax(S) ≈ 1 + p/n + 2
√
p/n,

which follows fromTheorem 3if n andp are both large. This approximation appears to be reasonable, as is evident
in Fig. 3 for n = 1000. The figure also shows that another approximationEλmax(J) ≈ p/n + 2

√
p/n seems to

be valid. However, as we will see next, this approximation cannot be valid forp, n → ∞ with p/n fixed, since
λmax(J) must diverge in this limit.

Let us now consider the case with arbitraryε. The main theorem below shows that the borderline case is
pn = O(n/ logn).

Theorem 5. Let

α = lim sup
n

pn logn

n
, α = lim inf

n

pn logn

n
, (32)

Fig. 3. The average ofλmax(J) (circles) and its lower boundEλmax(S) + E[xTDx/xTx] − 1 − (p − 1)/n for n = 1000. The average is estimated
with 100 realizations. The solid curves arep/n + 2

√
p/n (top) and 2

√
p/n (bottom).
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and ε > 0. If α < 2ε2, then the solution corresponding toξν is asymptotically stable with probability one in the
limit n → ∞. If α > (1 + 2ε)2/2, then it is unstable with probability tending to one asn → ∞.

In other words, whenn is large,p/n < 2ε2/ logn guarantees the stability, whilep/n < (1 + 2ε)2/(2 logn)
guarantees the instability of the perfect retrieval solutions. In particular, ifpn = cn for some constantc, then
α = ∞ and therefore the solution is unstable no matter how largeε is.

To proveTheorem 5, we need the following lemma.

Lemma 6. Letx > 0. If α < x2/2, thenP(maxi Dii ≥ x) → 0asn → ∞. If α > x2/2, thenP(maxi Dii ≥ x) → 1
asn → ∞.

Proof. The proof uses an idea similar to that for the Big Theorem in[17]. Supposeα < x2/2. Since the terms in
(28) are mutually independent, a version of large deviation lemma[17] (Lemma B′) may be applied to obtain:

q ≡ P(Dii ≥ x) = P


−

∑
µ	=ν

∑
k 	=i

ξ
µ
i ξ

ν
i ξ

µ
k ξ

ν
k ≥ nx


 ∼ Φ

(
nx√

(p − 1)(n − 1)

)

∼ 1√
2π

√
(p − 1)(n − 1)

nx
exp

(
− n2x2

2(p − 1)(n − 1)

)
∼

√
p

2πnx2
exp

(
−nx2

2p

)
, (33)

whereΦ(t) denotes the distribution function of the standard normal random variable, and we have used the
approximation formula:

Φ(t) ∼= 1

t
√

2π
e−t2/2, (34)

valid for larget. Usingα < x2/2 in (33) yields:

q � 1

n
√

4π logn
, (35)

which implies thatnq can be made arbitrarily small by makingn large. LetAi = {Dii ≥ x} for i = 1,2, . . . , n. By
Lemma C in[17], we have, for every evenK such that 1≤ K ≤ n,

K∑
k=1

(−1)k−1σk ≤ P(max
i

Dii ≥ x) = P(A1 ∪ · · · ∪ An) ≤
K−1∑
k=1

(−1)k−1σk, (36)

where

σk =
∑

j1<···<jk

P(Aj1 ∩ · · · ∩ Ajk ). (37)

Application of Lemma 2 in[17] yields:

σk ∼
(
n

k

)
qk ∼ (nq)k

k!
. (38)

For any givent > 0, take large enoughn to ensurenq < t. Then,

P(max
i

Dii ≥ x) �
K−1∑
k=1

(−1)k−1 t
k

k!
→ 1 − e−t (39)

asK → ∞. Sincet was arbitrary, the right-hand side can be made as small as one wishes, provingP(maxi Dii ≥
x) → 0 asn → ∞.
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Now supposeα > x2/2. Proceeding similarly as above, we obtain:

q ∼
√

p

2πnx2
exp

(
−nx2

2p

)
� 1√

4π logn
exp

(
−x2 logn

2α

)
= n−x2/2α√

4π logn
, (40)

yielding

nq � n1−x2/2α√
4π logn

, (41)

which diverges asn → ∞. Thus, for a givent > 0, we havenq > t for large enoughn, and therefore,

P(max
i

Dii ≥ x) �
K∑

k=1

(−1)k−1 t
k

k!
→ 1 − e−t . (42)

Takingt → ∞ proves thatP(maxi Dii ≥ x) → 1 asn → ∞. �

Proof (Proof ofTheorem 5). Supposeα < 2ε2. Chooseδ > 0 so thatα < 2δ2 < 2ε2. Note first that the positive
eigenvalues ofS = 1

n
��T coincide with the eigenvalues ofC̃ = 1

n
�T�. Since

λmax(J) ≤ λmax(S) + λmax(D) − 1 − p − 1

n
≤ λmax(C̃) + max

i
Dii − 1 − p − 1

n
, (43)

we have

P(λmax(J) ≥ 2ε) ≤ P

(
λmax(C̃) + max

i
Dii ≥ 1 + p − 1

n
+ 2ε

)

≤ P

(
λmax(C̃) ≥ 1 + 2(ε − δ) + p − 1

n

)
+ P(max

i
Dii ≥ 2δ)

≤ P(λmax(C̃) ≥ 1 + 2(ε − δ)) + P(max
i

Dii ≥ 2δ). (44)

Application ofLemma 4andLemma 6with x = 2δ then proves the first part of the theorem.
Now supposeα > (1 + 2ε)2/2. We have

λmax(J) ≥ max
i

Jii = −1 + 1

n
+ max

i
Dii. (45)

So,

P(λmax(J) ≥ 2ε) ≥ P

(
max

i
Dii ≥ 1 + 2ε − 1

n

)
≥ P(max

i
Dii ≥ 1 + 2ε) → 1 (46)

asn → ∞ by applyingLemma 6with x = 1 + 2δ. This completes the proof of the theorem. �

As we mentioned earlier,λmax(J) indeed diverges with probability one ifα = ∞, sinceε can then be chosen
arbitrarily large in (46).

4.2. Random patterns

Consider the case where eachηi is chosen randomly and independently to be±1 with equal probability, i.e.,η
is chosen in exactly the same fashion asξµ. It is straightforward to show, using the lower bound (26) and taking the
expected value of both sides, thatEλmax(J) ≥ 1 − 1/n. Actually, we have a stronger result.
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Theorem 7. If p = o(n2), thenP(λmax(J) ≤ 1 − δ) → 0 asn → ∞ for everyδ > 0, i.e., λmax(J) � 1.

Proof. Using (26) and the Chebyshev inequality, we have:

P(λmax(J) ≤ 1 − δ) ≤ P
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]

= 2(5p − 2)

n2δ2
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asn → ∞. �

4.3. Symmetric mixtures

We have shown inSection 3that the energy levels of the symmetric, odds-mixture patternsηs converge in
probability to a fixed spectrum asn → ∞. Here, we show that there are lower bounds onλmax(J) of these solutions,
which converge to a fixed spectrum. By (26), we have:

λmax(J) ≥
p∑

µ=1

C̃2
µν + 2L̄s(�) ≥ 1 + 2L̄s(�). (48)

Suppose thatp = o(n). SinceL̄s(�) →P −1/2sm̄2
s by Theorem 1, it follows thatP(λmax(J) ≥ 1 − sm̄2

s − δ) → 1 as
n → ∞, for anyδ > 0. In other words,λmax(J), for largen andp = o(n), is at least7s ≡ 1 − sm̄2

s with probability
one. First few values of7s are:71 = 0, 73 = 1/4, 75 = 19/64, etc. In particular,λmax(J) for all symmetric mixture
patterns (except fors = 1) are above 1/4, implying that these spurious solutions will typically not be stable as long
asε < 1/8.

We note, however, that somewhat weaker condition onε seems to be sufficient for ensuring the instability of
the symmetric mixture solutions for a typical choice ofp andn. The distribution ofλmax(J) for the symmetric
three-mixture solution shown inFig. 2suggests thatλmax(J) is always significantly larger than 1/4, implying that
ε significantly larger than 1/8 will still guarantee the instability of the spurious solutions.

5. Basin of attraction

A natural question that arises after establishing the local stability of a solution is that of the global stability. The
existence of the energy functionL(θ; ε,�) in (6) ensures that any solution of the system converges to a phase-locked
solution ast → ∞. On the other hand, the local stability of the solutions representing the memory patterns means
that there is an open basin of attraction for each of these solutions. How large are these basins? Put in other words,
how close does the initial condition needs to be to one of the memory patterns, in order for the network to evolve
into the phase-locked state that encodes that pattern?

To quantify the size of these basins, we look at the relationship between initial and final overlaps defined by (8)
with initial and finalθ, respectively. Recall that overlap of one corresponds to zero distance, while overlap of zero
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Fig. 4. The final overlap after 1000 time units as a function of the initial overlap forn = 1000,p = 40, and different values ofε (= 0, 0.2, 0.4,
0.8). The final overlap is averaged over the results from 10 random initial conditions with the same initial overlap.

indicates that patterns are as far apart as possible3. Fig. 4shows typical plots of the (average) final overlap against
the initial overlap.

Each plot shares a general feature: As the initial overlap decreases from one, the final overlap stays approximately
constant until the initial overlap reaches the critical value, after which the final overlap drops sharply. The critical
initial overlap appears to be around 0.4 forε = 0,0.2,0.4 and around 0.5 forε = 0.8. This critical value of initial
overlap marks the boundary of the basin of attraction of the memory pattern solution in question, while the value of
the final overlap for initial overlaps above the critical value represents the error in the retrieval process of the memory
pattern.Fig. 4 illustrates two observations that can be made also for similar plots for other typical combinations of
n andp.

• As ε increases from zero, the retrieval error decreases (larger final overlap) until it becomes zero (final overlap is
one). Zero error seems to be achieved at a critical valueε = ε1, above which the stability condition inTheorem 2
for the averagedλmax is satisfied.

• Asε increases from zero, the critical value of initial overlap (the size of basin) does not change much until another
critical valueε = ε2 above which it increases (the basin shrinks). The transition atε = ε2 appears to correspond
to the point at which the first solution other than that of a memory pattern becomes stable. This solution is usually
the three-mixture solution.

Thus, in the rangeε1 < ε < ε2, the optimal performance as associative memory is achieved: No error in the retrieval
process and no other solution than that of memory patterns is stable, leading to maximal size of the basin of attraction
for the memory pattern solutions.

In order to see the trasitions more clearly, we present another set of numerics to quantify the size of the basin in
a different way. In this computation, the basin size is estimated via the probability that a randomly chosen initial
condition (uniformly over the entire phase space) leads to one of the solutions corresponding to the memorized
patterns.Fig. 5shows a typical plot of such probabilities as a function ofε. It clearly shows the first transition around
ε1 ≈ 0.2, after which almost all solutions converge to the memory pattern solutions as long asε < ε2 ≈ 0.6. For

3 A pattern and its inversion (e.g.{1, −1, −1} and{−1, 1, 1}) cannot be distinguished in our network, as well as in the Hopfield network.
Thus, such a pair is considered to be at distance zero (yielding overlap of one), while the distance between a pair is maximal when exactly half
of the bits differ, leading to overlap of zero.
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Fig. 5. The probability of perfect memory recall as a function ofε for n = 400,p = 4. The average probability over 10 realizations of memorized
patterns is shown with open circles. For each realization, 100 random initial conditions are chosen to be integrated for 200 time units for the
estimates of the probability that the overlap settles within 10−5 of one. The errorbars are drawn with the minimum and maximum estimates
found in the 10 realizations.

ε > ε2, the probability gradually descreases to almost zero atε = 2, due to the increasing size of the basins of other
solutions that become stable. By comparingFig. 5with Fig. 2, we see thatε1 ≈ 0.2 corresponds approximately to
the location of the distribution ofλmax(J) for the memory patterns, and thatε2 ≈ 0.6 corresponds to whereλmax(J)
is distributed for the three-mixture patterns. This confirms the observations we have made above that the two
transition points seem to arise from the stability conditions for the memory pattern solutions and the three-mixture
solutions.

6. Conclusions

In this article, we have presented a thorough analysis of the local stability of the perfect memory pattern solutions
for a new type of oscillatory model of associative memory. Our model includes an extra, second-order Fourier mode
in the coupling function, which enable us to control the stability of the solutions for all patterns and to distinguish the
memory pattern from others by their stability. The functionsθj(t) in our model are closely related to the cumulative
distribution function of spikes in neural networks[21]. The capacity of our model turns out to follow the same
scaling with the number of neurons as in the case of the classical Hopfield model, but with a prefactor that depends
on the new parameterε that control the relative strength of the two terms in the coupling function. Our conclusion is
that, with a simple modification, oscillatory models of associative memory based on phase locking with a Hebbian
connection scheme are capable of performing almost as well as the Hopfield model.

Our model can be modified to allow storage of patterns withns symbols instead of two. Similar stability results
should follow in a straightforward manner simply by replacing the second term of the coupling function with
(ε/n) sin(nsφ). More natural assumption for the coding of temporal information in terms of the phase would be to
encode patterns of continuous values asξµ = exp(iθµ), whereθµ is uniformly distributed on [0,2π). Unfortunately,
our method of modification do not extend to such a case.

Finally, we note that the inclusion of the second term in the coupling function does not change the locality of
the interactions between neurons. In fact, our coupling function can in principle be implemented using a known
electric circuitry, and thus it would be feasible to implement the entire network as a network of phase-locked
loops.
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