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Zhen Wang    1,4, Fangli Liu    5, Zlatko Papić    3, Lei Ying    1,4 , H. Wang    1,4  
and Ying-Cheng Lai    6 

Quantum many-body scarring (QMBS) is a recently discovered form of 
weak ergodicity breaking in strongly interacting quantum systems, which 
presents opportunities for mitigating thermalization-induced decoherence 
in quantum information processing applications. However, the existing 
experimental realizations of QMBS are based on systems with specific 
kinetic constrains. Here we experimentally realize a distinct kind of QMBS 
by approximately decoupling a part of the many-body Hilbert space in the 
computational basis. Utilizing a p ro gr am mable s up er co nd ucting processor 
with 30 qubits and tunable couplings, we realize Hilbert space scarring in a 
non-constrained model in different geometries, including a linear chain and 
quasi-one-dimensional comb geometry. By reconstructing the full quantum 
state through quantum state tomography on four-qubit subsystems, we 
provide strong evidence for QMBS states by measuring qubit population 
dynamics, quantum fidelity and entanglement entropy after a quench from 
initial unentangled states. Our experimental findings broaden the realm of 
scarring mechanisms and identify correlations in QMBS states for quantum 
technology applications.

Strongly coupled quantum systems provide a wealth of opportunities 
for fundamental physics as well as practical applications that utilize 
quantum entanglement1–4. However, the majority of such systems, even 
if they are perfectly isolated from the external world, undergo chaotic 
dynamics and information scrambling3,5–8—the process described by 
the so-called eigenstate thermalization hypothesis (ETH)9–12. Devel-
oping methods to defy the ETH so as to preserve quantum informa-
tion in long-lived dynamic states has become an important goal of  
quantum sciences13.

The recent discovery of quantum many-body scarring 
(QMBS)14,15—a many-body analogue of the scarring phenomena in 
quantum billiards16—has shown that certain many-body systems can 
host non-thermalizing eigenstates at high-energy densities above 
their ground state. In such systems, some special initial states have 
long-lived coherent dynamics, in stark contrast to the rapid thermaliza-
tion from other initial conditions. This offers a new route for designing 
non-ergodic dynamics compared with, for example, fine-tuning the 
couplings of systems to make them integrable, and it avoids the need 
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beyond the limits of classical simulation. The measurements of popu-
lation dynamics and quantum state tomography for entanglement 
entropy and quantum fidelity provide strong evidence of the emer-
gence of robust QMBS states, as we demonstrate by directly comparing 
their slow dynamics against conventional thermalizing states. Our 
realization of a new QMBS paradigm in a solid-state SC platform enables 
a systematic exploration of the fundamental physics of many-body 
scarring in systems with highly tunable interactions and configurable 
lattice topology beyond one spatial dimension.

Mechanism of Hilbert space scarring
Our experiment utilizes a two-dimensional SC qubit array4,41 (Fig. 1a), 
which features high-density integration and high degree of control-
lability over local couplings42,43, allowing to emulate different models  
in a single device. We first consider the ‘snake’-like qubit layout (Fig. 1a).  
This layout exploits the structure of the SSH chain40, where the intra-
dimer coupling Ji,i+1 = Ja (i ∈ odd) is slightly stronger than the inter-
dimer coupling Ji,i+1 = Je (i ∈ even). This model is motivated as follows. 
In the limit Ja ≫ Je, each dimer with one photon behaves as a nearly 
free two-level system. Hence, the SC qubit system is isomorphic to a 
free spin-1/2 paramagnet. Such a system supports quantum revivals, 
but they are essentially of the single-particle origin. When Ja and Je are 
comparable in magnitude, they are in the regime of the SSH model 
where quench dynamics from fully polarized and Néel initial states 
has recently been investigated44,45. Although the Néel state does not 
display persistent revivals, we will show below that it is possible to 
identify, based on the graph structure of the Hamiltonian, other initial 
states that do exhibit quantum revivals, even after the interactions 
break integrability and cause the system to thermalize for most of 
the other initial states.

to strongly disorder the system to drive it into a many-body localized 
phase17–20. Because of their ability to suppress thermalization for only 
those selected states, QMBS is expected to be useful for storing quan-
tum information14, generating Greenberger–Horne–Zeilinger entan-
gled state21 and in quantum-enhanced sensing22. However, although 
there has been a proliferation of theoretical studies on QMBS23–34, the 
experimental realizations of QMBS remain in short supply. The existing 
QMBS experiments remain focused on the kinetically constrained PXP 
model35,36, which has been effectively realized using Rydberg atoms13,37 
and ultracold bosons in optical lattices38. More recently, ultracold 
lithium-7 atoms in an optical lattice, which realize the Heisenberg spin 
model, have been explored as a host of non-thermalizing helix states, 
reminiscent of QMBS39.

In this Article, we report the observation of a new class of QMBS 
states on a superconducting (SC) processor. In contrast to previous 
realizations in kinetically constrained Rydberg atom arrays, we design 
QMBS by weakly decoupling one part of the Hilbert space in the com-
putational basis. Our approach is inspired by the topological structure 
of the Su–Schrieffer–Heeger (SSH) model of polyacetylene40, which 
we utilize to create a nearly decoupled subspace with the structure 
of the hypercube graph. This subspace gives rise to emergent QMBS 
phenomena, including many-body revivals from special initial states 
residing in the hypercube, as well as the band of scarred eigenstates. 
Meanwhile, the entire system thermalizes due to weak cross-couplings 
between non-nearest-neighbouring qubits. One of the advantages of 
our SC platform is the tunable XY coupling between qubits (Methods) 
on a 6 × 6 square lattice configuration, which enables us to emulate 
many-body systems with both one-dimensional (1D) and quasi-1D 
systems with a comb shape. We investigate circuits of up to 30 qubits 
and 29 couplers, with the Hilbert space dimension of 155,117,520—far 
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Fig. 1 | Experimental setup and identification of QMBS states via quantum 
state tomography. a, Experimental SC circuit of device I with qubits and 
couplers in a square geometry. The light-grey dashed rectangles represent 
dimers that constitute the chain with intracoupling Ja, intercoupling Je and small 
cross-coupling Jx. b, Schematic (upper left) of the dynamics of the collective 
dimer states |Π〉 and |Π′〉. Numerics of the ratio Δ/Γ as a function of system size L 
for different ratios of Ja/Je, with Jx/2π in the range of [0.3, 1.2] MHz (lower left). 
Four-dimensional hypercube in the Hilbert space (right). c, Quantum state 
tomography for the four-qubit fidelity FA(t) and entanglement entropy SA(t) in a 

30-qubit chain for thermalizing initial states, namely, |0101…0110〉 (i) and 
|01001…100110110〉 (ii), and the QMBS state Π′ (green). The couplings are 
Ja/2π = 1.5Je/2π ≃ −9 MHz. The inset shows the Fourier transform of the four-qubit 
fidelity with the peak at ω1/2π ≈ 21 MHz. The dashed grey line in the bottom panel 
represents the maximal thermal entropy for the subsystem, approaching to 
4ln(2). d, Same data as c, but for different couplings, namely, 
Ja/2π = 2.5Je/2π ≃ −10 MHz from device II and ω′

1/2π ≈ 22 MHz. Schematics in c and 
d illustrate the bipartition of the system.

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | January 2023 | 120–125 122

Article https://doi.org/10.1038/s41567-022-01784-9

We identify candidate QMBS states based on their special loca-
tion in the Hamiltonian adjacency graph. Each dimer has four states: 
|d0〉 = |00〉, |d1〉 = |11〉, |d+〉 = |10〉 and |d–〉 = |01〉. At half-filling, that is, with 
the number of photons N equal to half the total number of qubits L, a 
special class of dimerized states can be identified. All these states have 
one photon in each dimer (that is, they only contain d+ or d−); they form 
the vertices of an N-dimensional hypercube, with all the edges (that is, 
Hamiltonian matrix elements) of equal weight (Fig. 1b). Among these, 
the collective states |Π〉 = |d+d–d+d–⋯〉 and |Π′〉 = |d–d+d–d+⋯〉 have the 
unique property of only having intradimer couplings and they are 
located at opposite corners of the hypercube (Fig. 1b). This suppresses 
the leakage of information in the states |Π〉 and |Π′〉, with the other states 
in the hypercube playing the role of a ‘buffer’ area. To show that |Π〉 and 
|Π′〉 are bona fide QMBS, it is crucial to demonstrate that (1) revivals 
from |Π〉 and |Π′〉 states persist when we break integrability and allow 
all the states to thermalize; (2) the revivals are a ‘many-body’ effect, 
that is, they are not due to the hypercube being trivially decoupled 
from the rest of the Hilbert space.

In our setup, thermalization is naturally induced by irregular 
cross-couplings, Jx/2π, experimentally in the range of [0.3, 1.2] MHz—
the couplings between two next-nearest-neighbour qubits with a physi-
cal separation distance of aij = √2a0, where a0 ≈ 0.8 mm is the 
separation distance of two nearest-neighbour qubits. These random 
couplings break the reflection symmetries of the circuit and thermalize 
the system, as confirmed by the energy-level spacings following the 
Wigner–Dyson distribution with the parameter 〈r〉 ≈ 0.53 (Supplemen-
tary Information). We note, however, that it is also possible to break 
integrability via translation-invariant perturbations that even enhance 
the revivals from the |Π〉 and |Π′〉 states, further demonstrating the 
importance of many-body effects (Supplementary Information).

To quantify the impact of the hypercube on the dynamics, note that 
the sum of the hypercubic-thermal couplings (interdimer couplings 

and cross-couplings) gives the decay rate Γ of the hypercube to the ther-
malized parts. The summation of intra-hypercubic couplings Δ is given 
by the number of hypercubic edges, that is, Δ = N × 2N−1Ja. Their ratio Δ/Γ 
converges to a finite value for different values of Ja/Je (Fig. 1b), which 
shows that the hypercube is not trivially disconnected from the rest of 
the Hilbert space. At the same time, although other parts of the Hilbert 
space are frustrated by irregular Jx couplings, no two states within the 
hypercube are linked by them; therefore, the hypercubic structure is 
robust since the cross-couplings do not affect the dynamics within it.

Tomographic measurements
The experimental observations of QMBS states in our SC processor are 
presented in Fig. 1c,d. With high-precision control and readouts, we 
were able to perform tomography measurements to directly obtain ele-
ments of the reduced density matrix ρA of subsystem A. From these, we 
evaluate the dynamics of the subsystem fidelity as FA(t) = Tr[ρA(0)ρA(t)] 
and bipartite entanglement entropy as SA(t) = Tr[ρA(t)log[ρA(t)]]. The 
complexity of such measurements rapidly grows with the size of sub-
system A; below, we consider A to be four qubits (schematic above 
Fig. 1c). We emphasize that although we consider a relatively small 
subsystem here, the four-qubit fidelity FA mirrors the behaviour of the 
full fidelity, as numerically shown in the Supplementary Information. 
The data points in Fig. 1c give, for a 30-qubit chain, the time evolution 
of the four-qubit fidelity for the collective state |Π′〉 and two typical 
thermalizing states. The fidelity of the QMBS state exhibits revivals with 
a period of about 50 ns and the peak value of the first revival can be as 
high as 0.5, whereas no such revivals occur for the thermalizing states.

In Fig. 1c (bottom), we measure the time evolution of SA(t) for QMBS 
and two conventional thermalizing states. Compared with the thermal-
izing states, the scarred dynamics leads to a slightly slower growth of 
entanglement entropy, superposed with oscillations whose frequency 
is twice that of fidelity revivals (Fig. 1c). This double frequency is due 
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L = 20 from experimental measurements (green hexagrams) and numerical 
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to the fact that the system oscillates between |Π〉 or |Π′〉 states. Thus, 
entropy is locally minimized or maximized (depending on the choice of 
subsystem) when the system is near either of these states, whereas the 
fidelity only measures the return to the initial state |Π′〉. In our experi-
ment, both scarred and thermalizing states ultimately approach the 
Page entropy, that is, 4ln(2), of the four-qubit subsystem.

We note that scarring, particularly the rate of entanglement 
entropy growth, can be improved by increasing the coupling ratio Ja/Je to 
2.5 (Fig. 1d). This ratio controls the coupling of the hypercube to the rest 
of the Hilbert space, as we emphasized above. Furthermore, as shown in 
the Supplementary Information, some regular perturbations, for exam-
ple, a next-next-nearest-neighbour coupling, can efficiently suppress 
the entropy growth of the scarred state. Similarly, the periodic driving 
of a local potential can noticeably enhance the scarred fidelity revivals 
and inhibit the entropy growth, as also observed in Rydberg atoms13.

Qubit dynamics beyond the limit of classical 
simulations
The measurement of the qubit population dynamics is more time sav-
ing than tomography; therefore, it allows us to further probe ther-
malization by randomly choosing many initial product states. The 
g e n e r a l i z e d  p o p u l a t i o n  i m b a l a n c e  i s  d e f i n e d  a s 
I(t) = (1/L)∑L

i ⟨𝒮𝒮
z
i (0)⟩⟨𝒮𝒮z

i (t)⟩. The imbalance is determined by the over-
laps ∣〈En∣α〉∣2 of energy eigenstates ∣En〉 with initial state ∣α〉 and phase 
factors exp(–i(En – Em)t/ℏ), where m and n are eigenstate indices and ℏ 
is the reduced Planck constant. For a thermalizing initial state, the 
phases are essentially random and the initial state has roughly equal 
support on all the energy eigenstates. Thus, any imbalance rapidly 
diffuses to a value exponentially small in the system size and it cannot 
be detected via local operators at late times. By contrast, a QMBS initial 
state has appreciable overlap only on a few eigenstates with phases set 
to integer multiples of a single frequency. This allows a QMBS state to 
display a persistent quantum revival even at relatively late times.

The evolution of population imbalance in a 30-qubit chain is shown 
in Fig. 2a,b, which contrasts a QMBS state against a typical thermalizing 
state. The QMBS state exhibits remarkable oscillations that are absent 
in the thermalizing state. The imbalance I(t) is plotted in Fig. 2c,d, 
which distinctly reveals the differences between the two initial states. 
In general, for the thermalizing state, after about 30 ns, the imbalance 
has nearly fully decayed to about half a photon in each qubit.

The distinct features of QMBS states can be further highlighted 
through the overlap between the product states and eigenstates ∣
〈α∣En〉∣2, which can be represented by the Fourier spectrum of the imbal-
ance for the QMBS (Fig. 2e) and thermalizing (Fig. 2f) states. The peak 
value of the Fourier spectrum gα(ω) with the first-order domain eigen-
states is ω1/2π ≈ 21 MHz. We test 120 random initial product states and 
find that the g2α(ω = ω1) values of the QMBS states are unambiguously 
distinct from those of conventional thermalizing states (Fig. 2h). Note 
that, for the cases shown in Fig. 2a–f, carrying out the exact simulations 
is computationally impractical. Instead, the experimental data have 
been validated by a numerical simulation on a smaller system with 
L = 20 (Fig. 2c–f, insets), demonstrating excellent agreement.

The advantage of our experimental system—the tunable effec-
tive couplings between two nearest-neighbour qubits—allows us to 
systematically probe the stability of QMBS states as the ratio of the 
intra- and interdimer couplings (Ja/Je) is varied. As shown in Fig. 2g, 
the numerical and experimental results indicate that QMBS states 
consistently emerge in the regime of Ja/Je ≳ 1. Moreover, even for a chain 
with uniform nearest-neighbouring couplings (Ja/Je = 1), the value of 
gΠ(ω1) ≈ 0.0080 is sufficiently large compared with the average value 
of the thermal states, which is around 0.0035 (Fig. 2h). This implies that 
scarring is not trivially induced by the imbalance between intra- and 
interdimer couplings since this value difference of ~0.0045 is above the 
measurement standard deviations given in the Supplementary Infor-
mation. In the regime of large coupling (Ja,e/2π > 12 MHz), the effective 

Hamiltonian describing our system (equation (3)) is no longer accurate 
due to the population leakage to couplers. Due to the fast growth of 
the Hilbert space dimension, we did not explore this coupling regime.

To verify the persistence of the QMBS states for different system 
sizes, we perform measurements on chains of sizes of L = 12–30. The 
time evolution of imbalance, four-qubit fidelity and entanglement 
entropy were found to behave consistently for different system sizes, 
confirming the robustness of scarring in the collective states |Π〉 and 
|Π′〉. The relatively small variations between the imbalance and entan-
glement entropy for different system sizes are due to the difference 
in the cross-couplings and couplers. The Fourier amplitude gΠ(ω1) 
and fidelity FA(t1) at the first revival exhibit a plateau for L > 16 (Fig. 3), 
whereas for a random initial state, these quantities are expected to 
exponentially decrease with system size. The plateau in scaling sug-
gests that the QMBS states persist in the regime of large system sizes 
approaching the thermodynamic limit.

Many-body scars on a comb
Our programmable SC circuit allows us to emulate more complex topol-
ogy beyond one dimension. We have experimentally studied the QMBS 
states in a comb geometry (Fig. 4a), which consists of a 1D ‘backbone’ 
decorated with linear ‘offshoots’. Previous studies of quantum comb 
systems with offshoots of random lengths were shown to exhibit locali-
zation, including ‘compact’ localized states for which the localization 
length can vanish along the backbone29,46. In our realization, we take 
the offshoots to be of the same length, and we fix L = 2N = 20. We con-
sider each offshoot to be a dimer; similar to the 1D chain, we set the 
interdimer couplings to Je/2π ≃ −6 MHz and intradimer couplings to 
Ja/2π ≃ −9 MHz. In contrast to the chain geometry, the QMBS states in 
the comb geometry are |Θ〉 = |d+d+⋯〉 and |Θ′〉 = |d–d–⋯〉. These states 
are also characteristically distinct from the conventional thermalizing 
states, as revealed by the squared Fourier amplitude (Fig. 4b). The strik-
ing contrast between a QMBS state and thermalizing state can be seen 
at a more detailed level (Fig. 4c–e), which shows the time evolution of 
imbalance I(t), four-qubit fidelity, and entanglement entropy for the 
|Θ′〉 state and a typical thermalizing state.
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Our experimental results show that the scarring signatures are 
the most striking at intermediate times, whereas at very late times, the 
system relaxes to a thermal ensemble with nearly maximum entropy. 
To some extent, one could play with lattice geometry to induce the 
non-thermal behaviour. For example, in the case of the comb lattice 
structure, the model is non-integrable without any perturbation and 
the entropy growth of the scarred state is much slower than the ther-
malizing states for Ja/Je = 1.5 (Fig. 4e, inset). In a two-dimensional-lattice 
SC device, the cross-couplings are still present and they lead to the scar 
state fully thermalizing by about 300−400 ns. Nevertheless, the ther-
malization timescale can be noticeably extended by periodic driving 
in the range of experimental capability (Supplementary Information).

Discussion and outlook
In summary, we have presented the first experimental realization of 
QMBS states in a solid-state SC platform. Our circuit emulates the 
effective hard-core Bose–Hubbard model—a model of particles freely 
hopping on both 1D and quasi-1D lattices, with local interactions. This 
is in contrast with previous realizations of QMBS in ultracold atomic 
systems37,38, in which the particles’ motion is kinetically constrained. 
Moreover, the underlying mechanism of scarring—approximate decou-
pling of a hypercube subgraph of the Hilbert space in the computational 
basis—is distinct from other platforms where QMBS is related to an 
underlying semiclassical periodic orbit47. Our study provides the first 
in-depth characterization of QMBS using quantum state tomography 
on large subsystems. By observing the population dynamics and entan-
glement entropy, we distinguished the weak ergodicity breaking associ-
ated with QMBS initial states from the conventional thermalizing states.

The realization of long-lived quantum states in strongly interact-
ing solid-state systems has notable practical advantages compared 
with other mechanisms of ergodicity breaking, such as integrability 
and many-body localization. For example, although integrability 
is known to be fragile and limited to 1D systems, we demonstrated 

that QMBS is robust to various imperfections such as random 
cross-couplings between qubits, and it persists beyond 1D systems. 
On the other hand, although strong ergodicity breaking in many-body 
localization systems may offer a more robust way of storing the 
initial-state information for longer times, for applications such as 
quantum-enhanced sensing and metrology22, QMBS has the appealing 
property of extensive multipartite entanglement48. In this sense, it is 
important to note that the coupling strength of two qubits (associated 
with the oscillation frequency of a coherent many-body state, ~107 Hz) 
in our SC platform is extremely larger than other platforms such as 
a 1D Bose gas49 (only around 103 Hz) and Rydberg atom13 (~106 Hz), 
which means that the SC platform can process the same quantum 
information in a shorter time. These advantages of QMBS in an SC 
platform could be utilized for more practical quantum-sensing and 
metrology applications. On the fundamental side, our SC devices—
with a rich palette of tomography-based probes—present a convenient 
setting to probe the interplay of scarred dynamics with localization on 
geometries with fractional dimensions and the emergence of diffusive 
transport in the conventional ETH limit.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Device
We use an SC quantum processor in a flip-chip package, which hosts a 
square of 6 × 6 transmon qubits (Qi) with 60 couplers (Qc), each inserted 
between two neighbouring qubits (Fig. 1a). Each qubit (coupler) is a 
quantum two-level system with ground state |0〉 and excited state |1〉, 
whose energy separation can be dynamically tuned in the frequency 
range of 4.3−4.8 GHz (4.9−6.0 GHz). Each qubit has individual micro-
wave (XY) and flux (Z) controls, and it is capacitively coupled to a read-
out resonator for state discrimination. Each coupler has an individual 
flux (Z) control and remains in the ground state during the experiment. 
We use high-precision synchronized analogue signals to control the 
qubits and couplers, with microwave pulses for qubit XY rotations 
and state readout, and square flux pulses for tuning the qubit and 
coupler frequencies. A complete experimental sequence consists of 
three stages: (1) state preparation where single-qubit π-pulses are 
applied to half the qubits, (2) multiqubit interaction stage where the 
nearest-neighbour qubit couplings are programmed by adjusting the 
couplers’ frequencies and (3) the measurement stage where all the 
qubits are jointly read. We use two devices in main text, and the values 
of the relevant qubit parameters for device I such as the qubit operation 
frequencies, energy relaxation times (mean, ~50 μs) and single-qubit 
randomized benchmarking fidelities (mean, ~0.993) can be found in 
Supplementary Table 1 (also see the improved energy relaxation times 
for device II in Supplementary Table 2).

Effective model
We derive the effective spin-1/2 XY model for our experimental SC pro-
cessor. The full Hamiltonian of the SC circuit system with both qubits 
and couplers is given by42,50

ℋfull/ℏ = ∑
i
(ωi𝒮𝒮+i 𝒮𝒮−i + ηi

2
𝒮𝒮+i 𝒮𝒮+i 𝒮𝒮−i 𝒮𝒮−i )

+ ∑
c
(ωc𝒮𝒮+c 𝒮𝒮−c + ηc

2
𝒮𝒮+c 𝒮𝒮+c 𝒮𝒮−c 𝒮𝒮−c )

+ ∑
⟨i,j⟩

gij(𝒮𝒮+i 𝒮𝒮−j + 𝒮𝒮−i 𝒮𝒮+j )

+ ∑
⟨i,c⟩

gic(𝒮𝒮+i 𝒮𝒮−c + 𝒮𝒮−i 𝒮𝒮+c ),

(1)

where ωi (ωc) is the frequency of the ith qubit (coupler c), ηi (ηc) is the 
anharmonicity (or nonlinearity) of the ith qubit (coupler c), 𝒮𝒮+i (𝒮𝒮−i ) is 
the creation (annihilation) operator of Qi, gij (gic) is the coupling 
strength between Qi and Qj (Qc) and the rotating-wave approximation 
is imposed on the qubit–coupler and qubit–qubit couplings. The sub-
scripts (i, j) and c represent the indices of qubits and couplers, respec-
tively. Also, 〈i, j〉 or 〈i, c〉 stands for the nearest-neighbour qubit–qubit 
or qubit–coupler pair, respectively. In these experiments, anharmonic-
ity ηi is much larger than the couplings between the nearest-neighbour 
qubits (typically, ηi/gij > 50); therefore, the full Hamiltonian (1) can be 
reduced to the spin-1/2 XY Hamiltonian:

ℋ/ℏ = ∑
i
ωi𝒮𝒮+i 𝒮𝒮−i +∑

c
ωc𝒮𝒮+c 𝒮𝒮−c

+ ∑
⟨i,j⟩

gij(𝒮𝒮+i 𝒮𝒮−j + 𝒮𝒮−i 𝒮𝒮+j ) + ∑
⟨i,c⟩

gic(𝒮𝒮+i 𝒮𝒮−c + 𝒮𝒮−i 𝒮𝒮+c ).
(2)

We apply the Schrieffer–Wolff transformation 𝒰𝒰 = e𝒲𝒲 to the Hamilto-
nian with

𝒲𝒲 =∑
c

∑
i

gic
∆ic

(𝒮𝒮+i 𝒮𝒮−c − 𝒮𝒮−i 𝒮𝒮+c ),

since all the qubits are far detuned from the couplers with 
∣Δic∣ = ∣ωi − ωc∣ ≫ ∣gic∣. The effective Hamiltonian can then be approxi-
mated as

ℋeff/ℏ ≈ ∑
⟨i,j⟩

Jij(𝒮𝒮+i 𝒮𝒮−j + 𝒮𝒮−i 𝒮𝒮+j ) +∑
i

Ωi𝒮𝒮+i 𝒮𝒮−i , (3)

where the effective coupling strength and transition frequencies are 
given by

Jij = gij +∑
c

gicgjc [
1

∆ic
+ 1

∆jc
] , (4)

Ωi = ωi +∑
c

g2
ic

∆ic
, (5)

respectively. The strength of indirect coupling can be tuned by adjust-
ing the coupler frequency; therefore, the effective coupling strength 
Jij/2π can be dynamically tuned over a wide range, typically within 
[−15, 1] MHz.

In our experiment, the chain and comb structures are formed by 
a snake-like qubit layout on a square lattice device; hence, the domi-
nant cross-coupling cannot be neglected. The cross-perturbation 
Hamiltonian is given by

ℋx/ℏ = ∑
Rij=√2a0

Jx(i, j) [𝒮𝒮+i 𝒮𝒮−j + 𝒮𝒮−i 𝒮𝒮+j ] , (6)

where Rij = |ri – rj| is the separation distance of a qubit pair {i, j}. The cou-
plings are in the range Jx(i, j)/2π ∈ [0.3, 1.2] MHz and their measured val-
ues are given in the Supplementary Information. The magnitude of this 
perturbation is sufficiently large to break integrability of the model, as 
numerically demonstrated in the Supplementary Information.

Experimental sequence
Experimentally, we prepare a set of product states as the initial states 
and measure the final states of all the qubits as a function of the interac-
tion time (the pulse sequence is shown in Extended Data Fig. 1). A typical 
experimental session starts by preparing the initial product state of all 
the qubits: each qubit Qi is biased from its sweet spot to the correspond-
ing idle frequency, where we apply single-qubit XY rotations. To prepare 
a high-fidelity state, during this period, the couplers are tuned such that 
the net couplings between the neighbouring qubits are turned off. To 
switch on the interactions among the qubits, we bias all the qubits to 
the interaction frequency and tune the coupler frequencies to turn on 
the couplings between the neighbouring qubits. After the interaction 
process, we bias all the qubits to their readout frequencies for meas-
urements. All the directly measured qubit occupation probabilities are 
corrected to eliminate the measurement errors.

Numerics
We use the exact diagonalization method to numerically solve  
the eigenvalue problem and simulate the dynamics of the system. 
The basis of the Hamiltonian matrix is spanned by product states  
|α〉 = |z1〉 ⊗ |z2〉 ⊗ |z3〉 ⊗⋯⊗ |zL〉, also written as |z1z2z3⋯zL〉, where zj = 0 or 1  
represents the jth qubit at state |0〉 or |1〉, respectively. The elements 
of the Hamiltonian matrix are written as

Hαβ = ⟨α|ℋ ||β⟩ , (7)

where α and β denote the index of the basis product states. Then, the 
eigenstate |n〉 and its eigenvalue En can be numerically solved from this 
Hamiltonian matrix. They are used to compute the spectrum-related 
quantities, such as entanglement entropy and overlap, as well as the 
dynamics of qubit populations, imbalance and wavefunction fidelity.

The Hamiltonian matrix is exponentially large in the number of 
qubits; to facilitate its diagonalization, we decompose it into smaller 
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sectors based on the symmetries of the model. For our spin-1/2 XY 
model with the open-boundary condition, these include particle 
conservation, reflection and symmetries. The original basis can be 
naturally divided into L + 1 uncoupled sectors, which conserve the 
particle number. The numerics throughout this paper are for the par-
ticle number equal to half the system size. Furthermore, to construct 
subspaces invariant under reflection and symmetries, we define a new 
set of basis states as

|α̃(r, z)⟩ = 1
√Nα

(1 + rℛ) (1 + z𝒵𝒵) |α⟩ . (8)

Here r = ±1 and z = ±1 are the eigenvalues of reflection- and 
inversion-symmetry generators ℛ and 𝒵𝒵, respectively. Also, Nα is the 
normalization factor. The cross-couplings Jx break the reflection sym-
metry and the basis in this case is given by |α̃(z)⟩ = ((1 + z𝒵𝒵) /√Nα) |α⟩.

We note that exact diagonalization is not the only numerical 
method available for this problem. However, alternative options are 
not well suited for studying QMBS in large systems. Methods based on 
Krylov subspace and matrix-product states could potentially access the 
dynamics from Π or Π′ states for a few more qubits than 24. However, to 
show scarring requires studying the dynamics from a large number of 
initial states. In contrast to exact diagonalization, these two methods 
require an independent computation for each initial state. Further-
more, for MPS methods, it would also be costly to simulate the dynam-
ics of thermalizing states as their entanglement entropy very quickly 
reaches the Page value. This would limit the simulation to a relatively 
short time, as the bond dimension of the matrix-product states (and 
consequently, the computational resources needed) required to faith-
fully capture the dynamics would rapidly become large.
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Extended Data Fig. 1 | Experimental sequence diagram. Sequence with strongly interacting many-body dynamics, where injecting a π pulse (red wave pulse) serves 
to lift the two-level qubit from the ground state to the excited state.
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