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ABSTRACT: Experiments on spin transport through a chiral
molecule demonstrated the attainment of significant spin polar-
ization, demanding a theoretical explanation. We report the
emergence of spin Fano resonances as a mechanism in the chiral-
induced spin-selectivity (CISS) effect associated with transport
through a chiral polyacetylene molecule. Initializing electrons
through optical excitation, we derive the Fano resonance formula
for the spin polarization. Computations reveal that quasidegener-
acy is common in this complex molecular system. A remarkable
phenomenon is the generation of pronounced spin Fano
resonances due to the contributions of two near-degeneracy states.
We also find that the Fano resonance width increases linearly with
the coupling strength between the molecule and the lead. Our
findings provide another mechanism to explain the experimental observations and lead to new insights into the role of the CISS
effect in complex molecules from the perspective of transport and spin polarization resonance, paving the way for chiral molecule-
based spintronics applications.
KEYWORDS: Chiral-induced spin selectivity, spin transport in molecules, spin polarization, spin Fano resonance, near-degeneracy states,
Green’s function method

■ INTRODUCTION
When electrons pass through a complex chiral molecule, the
phenomenon of chiral-induced spin selectivity (CISS) can
arise,1 where the electrons acquire a certain degree of spin
polarization due to a combination of space inversion symmetry
breaking, induced by the intrinsic chirality of the molecule
itself, time-reversal symmetry breaking, and spin−orbit
interaction. The phenomenon opens the door to manipulating
the spin degree of freedom of electrons in complex quantum
biological systems. CISS has attracted growing attention, both
experimentally2−10 and theoretically.11−24 Despite important
theoretical research advances in understanding the mechanism
for the CISS effect,22,24 there still remains significant work to
do to explain some of the experimental results. In particular,
CISS has been observed in various molecular systems such as
DNA,2−4 proteins (bacteriorhodopsin),5,6 oligopeptides,7,8 and
helicenes.9,10 The existing experiments can be categorized into
four main classes:25 photoemission,1,3,5,7,9,26−28 where a laser is
shown at a substrate to excite the electrons to go through a
chiral molecule, photoexcitation,29−33 in which a low-energy
laser in the range of visible light excites an electron−hole pair
in a nanoparticle or dye attached to a chiral molecule,
transport,2,6,8,10,34−39 where the chiral molecule is sandwiched
between two leads with one lead being ferromagnetic or
without a magnetic lead, and electrochemistry,4,40−42 in which

the electron conductance through chiral molecules is measured
in an electrochemical fluidic cell. Experimentally, the spin
polarization associated with current flowing through a chiral
molecule as high as 85% has been achieved at room
temperatures,43 and the spin polarization can transport over
many tens of nanometers, e.g., through 50 nm chiral perovskite
films.44,45 The purpose of this Letter is to develop a theoretical
model for another unexplored mechanism, involving spin Fano
resonances, to explain the significant spin polarization
associated with CISS.
As a quantum phenomenon at the scale of large biological

molecules, CISS is remarkable because the underlying complex
molecular system does not possess any intrinsic magnetization
that would otherwise affect the spin-dependent responses.
Because of the lack of any internal magnetism, a theoretical
description of CISS must include spin−orbit coupling
(SOC):46 a weak relativistic effect on the order of a few
millielectronvolts. Consequently, in order to achieve appreci-
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able spin polarization, some cumulative effect is necessary,
such as multiple scattering16 in a complex molecule.
Specifically, during transport through a large molecule, an
electron will encounter, visit, and pass through many atoms. At
each encounter where the electron orbits the nucleus, the
spin−orbit interaction depends on the orbital orientation,
which leads to weak spin polarization. For a large chiral
molecule such as DNA, there is a preference in the orbital
orientation so the effects on the spin polarization from the
many atoms on the electron’s way through are cumulatively
enhanced, leading to CISS. To understand the experimentally
observed large spin polarization has remained a theoretical
challenge.
There were previous studies indicating that multiple energy

levels can enhance SOC. For example, for coupled nuclear-spin
dynamics near a conical intersection, a massive Berry force can
arise as the result of even a small amount of SOC, which can in
turn dramatically change the pathway selection and result in
nearly perfect spin selectivity47 (close to 100%). Spin-
dependent electron−phonon coupling originated from SOC
can introduce an exchange splitting between the spin channels
in the structure.48 The electron correlations originated from
molecular vibrations can also lead to the emergence of finite
spin polarization in chiral molecules coupled to a metal,49

where the emergence of a spatially localized polaron due to the
electron’s coupling with the surrounding lattice distortions can
significantly enhance the spin polarization50 (to about 70%). A
theorem based on the Onsager reciprocal principle states that
the CISS effect should vanish when thermally averaging over
all electron states. However, if the incoming electrons are
generated optically, as in experiments, this null result will not
arise because of the nonthermal character of the electrons.23 In
a molecular circuit, the molecules represent open systems in
contact with electrodes, a fact that tends to be overlooked. The
interface between a molecule and a contact surface, particularly
a ferromagnetic contact, can provide SOC and can thus be
included in the model to explain the large CISS effect.51,52 In
our study, there is no SOC or any related effect from the leads
because our focus is on the accumulation effect of SOC inside
the molecule.
In electronic transport through mesoscopic, solid-state

systems, various resonances in experimental quantities such
as conductance and scattering cross sections can arise and are
described by the universal Fano formula.53,54 In terms of spin
transport, resonances in the spin polarization arising from the
edge of a zigzag graphene nanoribbon were studied using the
nonequilibrium Green’s function formalism within the frame-
work of density functional theory.55 Quite recently, a Fano
formula characterizing the resonances associated with spin
transport was derived.56 In quantum biology, there were
studies of Fano resonances in molecular charge transport.57,58

For example, control of electronic transport through Fano
resonances in molecular wires was investigated using a first-
principle approach, where the resonances are induced and can
be controlled by the side groups attached to the molecule.59 A
similar approach has also been invoked to understand some
features of surface enhanced Raman scattering in non-
plasmonic nanoparticles.60 Control of quantum interference
in T-shaped molecules was investigated theoretically,61 and it
was found that a Fano resonance can lead to a giant thermal
power.62 Fano resonances can also arise from Andreev
reflection in molecular wires.63 Recent experiments have

exploited conformal control of quantum interference to
modulate single-molecule charge transport.64

In this Letter, we investigate spin transport through a chiral
polyacetylene molecule. Calculating the spin polarization
versus the energy, we find the occurrence of a large number
of sharp resonances that are characteristic of generalized Fano
resonances. To establish this, we derive the Fano formula and
test its suitability to describe the numerically observed
resonance profiles. In the conventional Fano formula, typically
a resonance occurs at a single energy level. However, the
structural complexity of the chiral molecule stipulates that level
degeneracy is common where, for instance, two energy levels
can be arbitrarily close to each other. Our computations reveal
that the quasidegeneracy can lead to large spin polarization
manifested as a resonance. We find that, in order to explain the
resonant enhancement in the spin polarization, both levels
must be taken into account, and this leads to a generalized
Fano formula. Imposing proper approximations enables us to
calculate the resonance width. Based on the energy level
spacing and the resonance width, we obtain a criterion to
determine whether one or two energy levels are necessary to
account for an observed resonance. To our knowledge, prior to
our work, spin Fano resonance associated with spin transport
in chiral molecules had not been studied. Our finding of Fano
resonance-induced and -enhanced spin polarization provides a
mechanism to explain some of the experimental results in this
field and leads to new insights into understanding and
exploiting CISS in transport through complex molecules in
general.

■ MODEL AND METHOD
We consider a carbohydrate molecule, namely polyacetylene, a
flat chain of conjugated carbon atoms that form a helix with a
fixed radius, where each atom is oriented an angle θ apart.23

The pitch of the helix is held fixed so that the geometrical
structure of the chain is described by a single parameter: the
angle θ. An extra hydrogen atom is attached to the carbon
atom at both ends. In the limit θ → π, the resulting molecule
becomes nonchiral. Each end of the chain is connected to a
gold electrode. The starting point is electrons prepared in a
localized state in the left lead. A current flows through the
molecule while the electrons either pass through the whole
molecule to the right lead or are back scattered into the left. A
schematic figure of the twisted polyacetylene molecule is
shown in Figure 1a.
We employ the standard tight-binding model for the chiral

molecule with the generic set of Slater−Koster hopping
parameters.23 For simplicity, we assume that each lead
connects only to the outermost carbon atom in the chain.
The carbon atoms are modeled using the four n = 2 orbitals, 2s,
2px, 2py, and 2pz, such that the spinless couplings Γ are
positive, semidefinite 4 × 4 matrices. We set the coupling to be
diagonal to stipulate that chirality is originated from the
molecule, not from the chiral coupling to the lead. In addition,
to ensure that the SOC is small in comparison with the
coupling to the leads, the diagonal components are set to be
10λ to 100λ, i.e., ten to hundred times the atomic SOC of a
carbon atom, where the coupling constant λ = 6 meV.
The general Hamiltonian for the complex molecule can be

written as a sum of three terms:

H H Ho SÔ = ̂ + ̂ + Σ (1)
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where Ĥo is the molecular spinless Hamiltonian, ĤSO is the
Hamiltonian for spin−orbit coupling (SOC), and Σ is the lead-
induced self-energy term. Explicitly, the SOC Hamiltonian can
be written as

LH /SO σλ̂ = · ℏ
where L is the orbital angular momentum vector and σ = (σx,
σy, σz) is the vector of Pauli matrices. The Hamiltonian Ĥ
preserves the time-reversal symmetry, and there is Kramers
degeneracy between the 2-fold degenerate state |n⟩ and its
time-reversed state T̂|n⟩.
We use the Landauer formula to calculate the charge and

spin current:23ÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑT G GaTr 1
2 L M R M

σ γ= + · Γ†
(2)

ÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑS G Ga nTr 1
2 L M R M

σ σγ= + · Γ ·†
(3)

where

G
E H H

1
M

o SO R L
= − − − Σ − Σ (4)

is the Green’s function for the molecule, ΣL and ΣR are the self-
energies from the left and right leads, respectively, ΓL and ΓR
are the molecular couplings to the left and right leads with

iL R L R L R/ / /Γ = [Σ − Σ ]† , γL denotes the coupling about how
electrons come into the left lead, a is the initial spin direction
unit vector, which we set to be zero to assume that there is an
equal number of the spin up and down electrons (along the z
direction), and n is the unit directional vector that the spin
points at when passing through the molecule. Note that, if all
states in the left lead with a given energy are equally probable,
which is the case for an equilibrium thermal distribution, then
γL will be proportional to ΓL. In this case, combining the
Onsager’s reciprocal relation with current conservation leads to
zero spin polarization. In an actual experiment, the leads are
more complicated, where certain initial states in the density
matrix are more probable than others so that γL is not
proportional to ΓL. A significant CISS effect can then arise. In
our study, we inject optically excited electrons to the molecule,
thereby breaking the Onsager’s reciprocal relation. The spin
polarization along a certain direction n is defined as24

P S
T

=
(5)

We calculate the spin polarization as a function of incident
energy E for different values of the twist angle, with a
representative example shown in Figure 1b. When there is no
chirality, the spin polarization is zero. However, when the
molecule is chiral, there are spin polarization peaks, whose

Figure 1. Chiral molecule and CISS effect. (a) Illustration of a twisted
polyacetylene molecule with filled and open circles denoting carbon
and hydrogen atoms, respectively. (b) Spin polarization with respect
to energy for a nonchiral (θ = π), a left-handedness (θ = π/2), and a
right-handedness (θ = −π/2) molecule, respectively. The number of
carbon atoms is N = 8.

Figure 2. Spin Fano resonance in a chiral molecule. (a) Fano resonance curve for electronic transmission, where the blue solid and black dashed
curves are numerical and theoretical results, respectively. (b) Spin Fano resonance curve. The red solid and black dashed curves are numerical and
theoretical results, respectively. (c and d) Real and imaginary parts of the total eigenenergies in a certain range, respectively. The number of carbon
atoms is N = 8, and the twist angle is θ = π/4.
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values have opposite signs for the two opposite handednesses.
Figure 1b thus illustrates that there are resonant peaks in the
spin polarization curve with relatively large spin polarizations.

■ SPIN FANO RESONANCE IN CHIRAL MOLECULES
Utilizing the Green’s function method, we have derived the
following Fano formula for spin polarization.

P S
T

q y( )

1
f f f

f

2

2α= =
ϵ + +

ϵ + (6)

where the explicit formulas of the different quantities involved
are presented in the Supporting Information (SI). The width
of the Fano resonance peak γα can also be calculated through a
perturbation approach (see the SI).

Im 0 , 0 ,γ ψ ψ= − [⟨ |Σ| ⟩]α α μ
σ

α μ
σ

(7)

where Hc 0 , 0, 0 ,ψ ψ̂ | ⟩ = ϵ | ⟩α μ α α μ , with Ĥc = Ĥo + ĤSO.
Equation 6 is the Fano resonance formula for spin

polarization. To provide numerical validation, we first consider
a molecule with eight carbon atoms at the twist angle π/4.
Selecting a peak with energy about E = 1.68 eV, we see that the
Fano formula (eq 6) matches remarkably well with the
numerical curve for both the spin polarization and charge
transmission, as shown in Figure 2a and b. From the energy
levels in Figure 2c, we have that the two Kramers degenerate
states with real part of the energy about 1.68 eV contribute to
the spin Fano resonance. The predicted width agrees with the
numerical value, as shown in Figure 2d.

■ DEGENERACY ENHANCED SPIN FANO
RESONANCE

The Fano resonances presented in Figure 2 result from a single
energy level (including the Kramers’ degeneracy of two

identical levels). For a complex molecule, situations can arise
where several nearby energy levels collectively contribute to a
resonance. This typically occurs for different twist angles when
the number of carbon atoms in the molecule is relatively large.
To treat such a case, we include more related Green’s function
terms in the transmission coefficient in the decomposition of
the Green’s function (eq S1.12 in the SI). The modified form
can be written as

G G G

x x

E

x x

E

( ) ( )

( ) ( )

R

r l

r l

0 1

1,2

, ,

1,2

, ,

∑ ∑

∑ ∑

ψ

ψ

= +

=
Φ

− ϵ

+
Φ

− ϵ

σσ σσ σσ

μ β α

β μ
σ

β μ
σ

β

α μ

α μ
σ

α μ
σ

α

′ ′ ′

= ≠

′†

=

′†

(8)

where the second term contains two near-degenerate energy
levels contributing to the transmission coefficient. For the spin
transmission, we haveikjjj y{zzzikjjj y{zzz

S q
T
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q
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= [ ϵ + ϵ + Δ + ϵ +

ϵ + Δ + ϵ + + ϵ +

+ ϵ ϵ − ϵ − ϵ + ]

[ ϵ + ϵ + ] (9)

The details of the derivation and the meaning of each term can
be found in the Supporting Information. An exemplary Fano
resonance peak with two contributing levels is shown in Figure
3a and b for transmission and spin polarization, respectively. It

Figure 3. Spin Fano resonance in a chiral molecule associated with near-degenerate levels. (a) Fano resonance peak for electronic transmission,
where blue solid and black dashed curves are numerical and theoretical results, respectively. (b) Spin polarization Fano resonance peak, with red
solid and black dashed curves being numerical and theoretical results, respectively. (c and d) Real and imaginary parts of the eigenenergies,
respectively, where the red squares and blue circles represent the exact and perturbation results, respectively. The molecule has N = 27 carbon
atoms, and the twist angle is θ = π/2.
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can be seen that the result from the fast−slow variable
approximation fits well with the numerical calculation. In a
general sense, this is still a Fano resonance, as the
corresponding transmission and spin polarization curves can
still be fit by a kind of Fano formula.
A challenging question is, given a resonance, how can one

determine if it is contributed by a single energy level or by
several. Here we provide a criterion to identify the pertinent
states by comparing the resonance peak width γ and the energy
level spacing between the levels of the resonance peak and its
neighbors. As shown in Figure 3c, there are two levels which
are quite near the Fano resonance peak with energies E = 2.506
and E = 2.516, and the energy difference is ΔE = 0.01. We then
check the corresponding peak width γ, as shown in Figure 3d.
We find that the peak widths for the two levels are γ ≈ 0.02
and γ ≈ 0.015, which are larger than the level spacing, so both
levels ought to be taken into account when calculating the
resonance peak. This peak-width-based criterion can be
checked in the single-level case. For example, Figure 2 shows
that the resonance peak corresponds to the energy value E =
1.676, while the level difference between this level and its
nearby levels is about ΔE ≈ 0.3. We also have that the peak
widths for the three levels are γ = 0.13, γ = 0.015, and γ =
0.014, respectively. These data indicate that there is no
significant spin polarization overlap between the central state
and its neighboring states, so the resonance is the result of a
single energy level.
In comparison with spin Fano resonances due to a single

energy level, what effects do nearly degenerate levels have on
the resonance? For example, do multiple levels lead to
enhanced spin polarization? To address these questions, we
focus on the parameter plane of incident energy E and twist
angle θ and calculate the spin polarization Pz, the total
electronic transmission, and the spin z component trans-
mission in the plane, for a relatively large molecule of N = 28
carbon atoms. The results are shown in Figure 4a−c with
coupling strength cL = cR = 1 eV. It can be seen that, near a
level crossing point, a large spin polarization component can
emerge, where its sign remains unchanged near the level
crossing points. This should be compared with the case of a

nondegenerate region where there is also larger spin polar-
ization but in opposite directions. We examine the spin
polarization about the near-degeneracy point and far from the
near-degeneracy point and find that two levels contribute to
the resonance curve in the former while only one level is
involved in the latter case. Detailed criteria for identifying the
contribution to the spin Fano resonance as due to two
quasidegenerate levels or a single level can be found in the
Supporting Information.

■ EFFECT OF COUPLING STRENGTH ON
RESONANCE WIDTH

The coupling strength between the molecule and the leads can
affect the transport behavior and thus the resonance profile. To
study this effect, we set the coupling strength to 0.1 and
calculate T, Tz, and Pz in the parameter plane (E, θ), as shown
in Figure 4d−f, respectively. Comparing the results in Figure
4a and d, we see that the transmission area with values above
0.6 is much larger along the energy axis for the case of unity
molecule−lead coupling strength as compared with the case of
a smaller coupling strength. A similar behavior occurs for the
spin transmission, where a larger area of high transmission
along the energy axis near a level-crossing point or a
nondegenerate lower single level arises for the large coupling
case, as shown in Figure 4b and e. As spin polarization is the
ratio between the spin and total charge transmission, the areas
in which large polarization transport arises are similar in both
cases, as shown in Figure 4c and f.

■ DISCUSSION
Spin−orbit coupling providing a source of magnetic fields for
electrons in an atom is a relativistic effect and is thus weak: on
the order of a few millielectronvolts. However, it is still
possible to generate a sizable spin polarization through some
cumulative effect, such as multiple scattering.16 For example,
for transport through a large molecule, an electron will
encounter, visit, and pass through many atoms. At each
encounter where the electron orbits the nucleus, the spin−
orbit interaction depends on the orbital orientation and will

Figure 4. Near-degeneracy-enhanced spin Fano resonance. (a−c) Transmission (T), spin-z transmission (Tz), and spin polarization (Pz) (colors)
versus the electron energy E and the twist angle θ for coupling strength equals to 1 eV. (d−f) Similar plots as those in parts a−c but for a coupling
strength of 0.1 eV. The number of carbon atoms is N = 28.
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lead to some weak spin polarization. For chiral molecules such
as DNA, there is a preference in the orbital orientation so the
effects on an electron’s spin polarization from the many atoms
on the electron’s way through will be cumulatively enhanced,
leading to an unexplored variant of the phenomenon of CISS.1

It has been a challenge to explain the experimentally
observed significant spin polarization caused by the CISS effect
for transport through a large molecule. A recent result23 was
that the CISS effect vanishes when all electron states with the
same energy are equally likelya consequence of the Onsager
reciprocal principle. Notwithstanding the apparent generality
of this result, the CISS effect is observed under nonequilibrium
conditions for open systems. In the situation studied here,
three important elements need to be taken into account:23 the
electronic states with the same energy not being equally
probable (e.g., electrons generated optically by a laser), the
presence of accidental degeneracy in the molecular spectrum
which enhances the spin−orbit coupling, or a magnetic lead.
More recently, an analysis based on symmetry in electronic
transmission was carried out to gain insights into the origin of
CISS.24

The main contribution of this work is the discovery and
analysis of spin Fano resonance associated with transport
through a complex molecule, which can serve as a plausible
mechanism underlying the CISS effects and can explain the
experimental findings of relatively large spin polarization under
the conditions considered here. Using chiral polyacetylene
molecules of different number of carbon atoms, we find the
occurrences of various resonance peaks in the curve of spin
polarization versus the electron energy. Extending the recently
derived formula of spin Fano resonances for transport through
a two-dimensional mesoscopic quantum dot56 to complex
molecules, we obtain a general formula for spin Fano
resonances, which can be important to quantum biology.
Our formula is more general than previous formulas in
electronic transport through solid-state devices, because it
includes multiple energy levels. This is particularly relevant and
important for complex molecules, where quasidegeneracies in
the energy levels are ubiquitous. Our formula fits the
numerically observed resonance peaks remarkably well for
both the straightforward case of a single energy level and the
more challenging cases where multiple energy levels are
involved. To our knowledge, for the latter case no existing
Fano formulas in the literature are applicable. We also develop
a criterion for determining the energy levels involved in a Fano
resonance, based on the resonance width relative to the
spacing of the neighboring energy levels. In general, a spin
Fano resonance due to multiple energy levels can lead to
enhanced spin polarization, and this can find potential
applications in biological-molecule-based spintronics. It should
be noted that, at room temperatures, there are atomic
oscillations that can affect coherent transport. To ensure
coherence, the length of the molecular chain cannot be too
large. As a reference, we note that a double-stranded DNA
chain with base pairs of up to 80 was used in the experiments.3

For larger molecules, e.g., a 50 nm chiral perovskite film,
effectively the density of states is a continuum. In this case, our
model may not be applicable and further investigation is
warranted.
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I. SPIN FANO RESONANCE IN CHIRAL MOLECULES

Because of the inclusion of the self-energy term S, the Hamiltonian is non-Hermitian with
complex eigenvalues as well as non-identical left and right eigenstates. The eigenequations for the
right and left eigenstates, respectively, are

Ĥ|ya,µi= ea|ya,µi, (S1.1)
hfa,µ|Ĥ = hfa,µ|ea, (S1.2)

where µ = 1,2 denotes the two Kramer’s degenerate eigenstates. The eigenstates |ya,µi and |fa,µi
constitute a biorthonormal basis set under the normalization

|Fa,µi= |fa,µi/hyb,n|fa,µi. (S1.3)

The biorthonormal conditions are

hFa,µ|yb,ni= hya,µ|Fb,ni= da,bdµ,n, (S1.4)

with the completeness relation of the eigenwavefunctions

Â
µ

Â
a
|ya,µihFa,µ|= Â

µ
Â
a
|Fa,µihya,µ|= 1. (S1.5)

Using Eqs. (S1.4) and (S1.5), we have the Green’s function for the molecule as

GR(r,r0) = hr| 1
E � Ĥ

|r0i= Â
a,µ

Â
b,n

hr|ya,µihFa,µ|
1

E � Ĥs
|yb,nihFb,n|r0i

= Â
a,µ

Â
b,n

ya,µ(r)
1

E � eb
da,bdµ,nF†

b,n(r
0) = Â

µ
Â
a

ya,µ(r)F†
a,µ(r0)

E � ea

=

✓
GR
""(r,r

0) GR
"#(r,r

0)
GR
#"(r,r

0) GR
##(r,r

0)

◆
, (S1.6)

where the eigenfunctions are

Fa,µ(r0) =

 
F"

a,µ(r0)
F#

a,µ(r0)

!
, (S1.7)

ya,µ(r) =

 
y"

a,µ(r)
y#

a,µ(r)

!
. (S1.8)

The spin-resolved Green’s function can be written as

GR
ss0(r,r0) = Â

µ=1,2
Â
a

ys
a,µ(r)F

s0†
a,µ(r0)

E � ea
. (S1.9)

where a denotes the eigenstates corresponding to different eigen energies of the Hamiltonian de-
fined in Eq. (1) in the main text and µ = 1,2 denotes the two Kramer’s degenerate eigenstates. We
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use the Fisher-Lee relation to connect the S matrix with the Green’s function [1–3]. The transmis-
sion coefficient is given by

tss0 = i
p

cLcRGR
ss0 , (S1.10)

where cL and cR are coupling energies of the molecule to the left and right leads. For each trans-
mission component, we can write

Tss0 = Tr(tss0t†
ss0) (S1.11)

Based on Green’s function formula in Eq. (S1.9), we separate the fast from the slow variables.
Let E0 be the energy. If E0 approaches an eigenenergy of the corresponding closed system, a pole
will arise in R, so we can separate the sum into two terms: one term slowly varying and the other
rapidly changing, where the former acts effectively as the background and the latter varies rapidly
in the small energy interval. Explicitly, we have

GR
ss0 = G0

ss0 +G1
ss0 = Â

µ=1,2
Â

b6=a

ys
b,µ(xr)Fs0†

b,µ(xl)

E � eb
+ Â

µ=1,2

ys
a,µ(xr)Fs0†

a,µ(xl)

E � ea
. (S1.12)

where ea = Ea � iga. The transmission coefficient can be expanded as

tss0 = t0
ss0 + t1

ss0 . (S1.13)

For each transmission component, we can write

Tss0 = Tr(tss0t†
ss0). (S1.14)

Imposing the approximation about ea, we get the spin transmission as

S =
T""+T"# �T#" �T##

2
=

T 00
s (E0)

2
(e+ xs)2 + ys

e2 +1
. (S1.15)

Similarly, for electronic transmission T , we have

T =
T""+T"#+T#"+T##

2
=

T 00
c (E0)

2
(e+ xc)2 + yc

e2 +1
. (S1.16)

The spin polarization can be written as

P =
S
T

= a
(e f +q f )2 + y f

e2
f +1

, (S1.17)

where the explicit formulas of the different variables involved are presented in the next Section.
The width of the Fano resonance peak ga can also be calculated through a perturbation approach

as

ga =�Im
⇥
hys

0a,µ|S|ys
0a,µi

⇤
. (S1.18)

where Ĥc|y0a,µi= e0,a|y0a,µi, with Ĥc = Ĥo + ĤSO.
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II. DERIVATION OF FANO FORMULA FOR A SINGLE LEVEL

We derive the Fano formula for spin polarization. Based on the Green’s function formula in
the main text, we separate the fast from the slow variables. Let E0 be the energy. If E0 approaches
an eigenenergy of the corresponding closed system, a pole will arise in R, so we can separate
the sum into two terms: one slowly varying and the other rapidly changing, where the former
acts effectively as the background and the latter varies rapidly in the small energy interval [see
Eq. (S1.12)]. The transmission coefficient is given by

tss0 = icLcRGR
ss0 , (S2.19)

where cL and cR are coupling energies of the molecule to the left and right leads, respectively. The
transmission coefficient can be written as

tss0 = t0
ss0 + t1

ss0 . (S2.20)

For each transmission component, we have

Tss0 = Tr(tss0t†
ss0) = Tr[(t0

ss0 + t1
ss0)(t0†

ss0 + t1†
ss0)]

= Tr(t0
ss0t0†

ss0)+Tr(t0
ss0t1†

ss0)+Tr(t1
ss0t0†

ss0)+Tr(t1
ss0t1†

ss0)

= T 00
ss0 +T 01

ss0 +T 10
ss0 +T 11

ss0 . (S2.21)

We impose the following approximations:

T 00
ss0(E)⇡ T 00

ss0(E0), (S2.22)

T 01
ss0(E)⇡ T 01

ss0(E0)
E0 �Ea � iga
E �Ea � iga

= T 01
ss0(E0)

e0 � i
e� i

, (S2.23)

T 10
ss0(E)⇡ T 10

ss0(E0)
E0 �Ea + iga
E �Ea + iga

= T 10
ss0(E0)

e0 + i
e+ i

, (S2.24)

T 11
ss0(E)⇡ T 11

ss0(E0)
(E0 �Ea)2 + g2

a
(E �Ea)2 + g2

a
= T 11

ss0(E0)
e2

0 +1
e2 +1

, (S2.25)

where e ⌘ (E � Ea)/ga and e0 ⌘ (E0 � Ea)/ga. For E0 = Ea, we have e0 = 0. For the spin
transmission S, we obtain

2S = T""+T"# �T#" �T##

= [T 00
"" +T 00

"# �T 00
#" �T 00

## ]+ [T 01
"" +T 01

"# �T 01
#" �T 01

## ]
e0 � i
e� i

+[T 10
"" +T 10

"# �T 10
#" �T 10

## ]
e0 + i
e+ i

+[T 11
"" +T 11

"# �T 11
#" �T 11

## ]
e2

0 +1
e2 +1

= T 00
s (E)+T 01

s (E)+T 10
s (E)+T 11

s (E)

= T 00
s (E0)+T 01

s (E0)
e0 � i
e� i

+T 10
s (E0)

e0 + i
e+ i

+T 11
s (E)

e2
0 +1

e2 +1
. (S2.26)

Setting e0 = 0 and denoting

DTs = T 01
s (E0)+T 10

s (E0)+T 11
s (E0), (S2.27)

qs =
i
2

T 10
s (E0)�T 01

s (E0)

DTs
, (S2.28)
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we get

2S = T 00
s (E0)

(e+ qsDTs
T 00

s
)2 +(1+ DTs

T 00
s

� q2
s DT 2

s
(T 00

s )2 )

e2 +1
= T 00

s
(e+ xs)2 + ys

e2 +1
, (S2.29)

where

xs =
qsDTs

T 00
s

and ys = 1+
DTs

T 00
s

� q2
s DT 2

s
(T 00

s )2 . (S2.30)

Similarly, for spin transmission T , we have

2T = T""+T"#+T#"+T##

= [T 00
"" +T 00

"# +T 00
#" +T 00

## ]+ [T 01
"" +T 01

"# +T 01
#" +T 01

## ]
e0 � i
e� i

+[T 10
"" +T 10

"# +T 10
#" +T 10

## ]
e0 + i
e+ i

+[T 11
"" +T 11

"# +T 11
#" +T 11

## ]
e2

0 +1
e2 +1

= T 00
c (E)+T 01

c (E)+T 10
c (E)+T 11

c (E)

= T 00
c (E0)+T 01

c (E0)
e0 � i
e� i

+T 10
c (E0)

e0 + i
e+ i

+T 11
c (E)

e2
0 +1

e2 +1
. (S2.31)

Setting e0 = 0 and denoting

DTc = T 01
c (E0)+T 10

c (E0)+T 11
c (E0), (S2.32)

qc =
i
2

T 10
c (E0)�T 01

c (E0)

DTc
, (S2.33)

we get

2T = T 00
c (E0)

(e+ qcDTc
T 00

c
)2 +(1+ DTc

T 00
c

� q2
cDT 2

c
(T 00

c )2 )

e2 +1
, (S2.34)

where

xc =
qcDTc

T 00
c

and yc = 1+
DTc

T 00
c

� q2
cDT 2

c
(T 00

c )2 . (S2.35)

The spin polarization can be written as

P =
S
T

=
T 00

s
T 00

c

(e+ xs)2 + ys

(e+ xc)2 + yc
=

T 00
s

T 00
c

( e+xcpyc
+ xs�xcpyc

)2 + ys
yc

( e+xcpyc
)2 +1

= a
(e f +q f )2 + y f

e2
f +1

,

which is Eq. (S1.17), where

a =
T 00

s
T 00

c
, e f =

e+ xcpyc
, q f =

xs � xcpyc
, and y f =

ys

yc
. (S2.36)
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The width of the Fano resonance peak can also be calculated through a perturbation approach. In
particular, with the eigenfunctions in Eqs. (12) and (13) in the main text, and treating the self-
energy S as a perturbation, we expand the eigenenergies and the eigenstates as

ea = e0,a �da � iga, (S2.37)
|ya,µi= |y0a,µi� |yra,µi� i|yia,µi. (S2.38)

Substituting Eqs. (S2.37) and (S2.38) into Eq. (6) in the main text, we get

(Ĥc +S)(|y0a,µi� |yra,µi� i|yia,µi) = (e0,a �da � iga)(|y0a,µi� |yra,µi� i|yia,µi), (S2.39)

where Ĥc|y0a,µi = e0,a|y0a,µi, with Ĥc = Ĥo + ĤSO. Left-multiplying hy0a,µ| and after some
approximations, we obtain

da + iga ⇡�hy0a,µ|S|y0a,µi. (S2.40)

The resonance width ga is obtained as in Eq. (S1.18).

III. DERIVATION OF GENERALIZED FANO FORMULA FOR NEAR-DEGENERATE TWO
LEVELS

Based on the Green’s function formula in the main text, we separate the fast from the slow
variables:

GR
ss0(E) = G0

ss0 +G1
ss0 +G2

ss0 = Â
µ=1,2

Â
b 6=a1,a2

ys
b,µ(xr)Fs0†

b,µ(xl)

E � eb

+ Â
µ=1,2

ys
a1,µ(xr)Fs0†

a1,µ(xl)

E � ea1

+ Â
µ=1,2

ys
a2,µ(xr)Fs0†

a2,µ(xl)

E � ea2

. (S3.41)

The transmission coefficient is given by

tss0 = icLcRGR
ss0 , (S3.42)

where cL and cR are coupling energies of the molecule to the left and right leads, respectively. The
transmission coefficient can be written as

tss0 = t0
ss0 + t1

ss0 + t2
ss0 . (S3.43)

For each transmission component, we have

Tss0 = Tr(tss0t†
ss0) = Tr[(t0

ss0 + t1
ss0 + t2

ss0)(t0†
ss0 + t1†

ss0 + t2†
ss0)]

= Tr(t0
ss0t0†

ss0)+Tr(t0
ss0t1†

ss0)+Tr(t0
ss0t2†

ss0)+Tr(t1
ss0t0†

ss0)+Tr(t2
ss0t0†

ss0)

+ Tr(t1
ss0t1†

ss0)+Tr(t2
ss0t2†

ss0)+Tr(t1
ss0t2†

ss0)+Tr(t2
ss0t1†

ss0)

= T 00
ss0 +T 01

ss0 +T 02
ss0 +T 10

ss0 +T 20
ss0 +T 11

ss0 +T 22
ss0 +T 12

ss0 +T 21
ss0 . (S3.44)
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Denoting ea1 ⌘ E1 � ig1 and ea2 ⌘ E2 � ig2, letting E01 and E02 be constants near E1 and E2, and
further denoting e1 ⌘ (E �E1)/g1, e2 ⌘ (E �E2)g2, e01 ⌘ (E01 �E1)/g1, and e02 ⌘ (E02 �E2)g2,
we get

T 00
ss0(E)⇡ T 00

ss0(E01,E02), (S3.45)

T 01
ss0(E)⇡ T 01

ss0(E01,E02)
E01 �E1 � ig1

E �E1 � ig1
= T 01

ss0(E01,E02)
e01 � i
e1 � i

, (S3.46)

T 02
ss0(E)⇡ T 02

ss0(E01,E02)
E02 �E2 � ig2

E �E2 � ig2
= T 02

ss0(E01,E02)
e02 � i
e2 � i

, (S3.47)

T 10
ss0(E)⇡ T 10

ss0(E01,E02)
E01 �E1 + ig1

E �E1 + ig1
= T 10

ss0(E01,E02)
e01 + i
e1 + i

, (S3.48)

T 20
ss0(E)⇡ T 20

ss0(E01,E02)
E02 �E2 + ig2

E �E2 + ig2
= T 20

ss0(E01,E02)
e02 + i
e2 + i

, (S3.49)

T 11
ss0(E) = T 11

ss0(E01,E02)
(E01 �E1)2 + g2

1
(E �E1)2 + g2

1
= T 11

ss0(E01,E02)
e2

01 +1
e2

1 +1
, (S3.50)

T 22
ss0(E) = T 22

ss0(E01,E02)
(E02 �E2)2 + g2

2
(E �E2)2 + g2

2
= T 22

ss0(E01,E02)
e2

02 +1
e2

2 +1
, (S3.51)

T 12
ss0(E) = T 12

ss0(E01,E02)
(E01 �E1 + g1)(E02 �E2 � g2)

(E �E1 + g1)(E �E2 � g2)
= T 12

ss0(E01,E02)
(e01 + i)(e02 � i)
(e1 + i)(e2 � i)

,

(S3.52)

T 21
ss0(E) = T 21

ss0(E01,E02)
(E01 �E1 � g1)(E02 �E2 + g2)

(E �E1 � g1)(E �E2 + g2)
= T 12

ss0(E01,E02)
(e01 � i)(e02 + i)
(e1 � i)(e2 + i)

,

(S3.53)

where in the approximation T mn
ss0(E) ⇡ T mn

ss0(E01,E02) (m = 0,1,2, n = 0,1,2), we have used E =
E01 +a0(E02 �E01) with a0 2 [0,1]. The spin transmission S is given by

2S = T""+T"# �T#" �T## = [T 00
"" +T 00

"# �T 00
#" �T 00

## ]

+ [T 01
"" +T 01

"# �T 01
#" �T 01

## ]
e01 � i
e1 � i

+[T 02
"" +T 02

"# �T 02
#" �T 02

## ]
e02 � i
e2 � i

+[T 10
"" +T 10

"# �T 10
#" �T 10

## ]
e01 + i
e1 + i

+[T 20
"" +T 20

"# �T 20
#" �T 20

## ]
e02 + i
e2 + i

+[T 11
"" +T 11

"# �T 11
#" �T 11

## ]
e2

01 +1
e2

1 +1
+[T 22

"" +T 22
"# �T 22

#" �T 22
## ]

e2
02 +1

e2
2 +1

+[T 12
"" +T 12

"# �T 12
#" �T 12

## ]
(e01 + i)(e02 � i)
(e1 + i)(e2 � i)

+ [T 21
"" +T 21

"# �T 21
#" �T 21

## ]
(e01 � i)(e02 + i)
(e1 � i)(e2 + i)

,

= T 00(E01,E02)+T 01(E01,E02)
e01 � i
e1 � i

+T 10(E01,E02)
e01 + i
e1 + i

+T 02(E01,E02)
e02 � i
e2 � i

+T 20(E01,E02)
e02 + i
e2 + i

+T 11(E01,E02)
e2

01 +1
e2

1 +1
+T 22(E01,E02)

e2
02 +1

e2
2 +1

+T 12(E01,E02)
(e01 + i)(e02 � i)
(e1 + i)(e2 � i)

+T 21(E01,E02)
(e01 � i)(e02 + i)
(e1 � i)(e2 + i)

(S3.54)
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Taking E01 = E1 and E02 = E2, we have e01 = e02 = 0. After a lengthy calculation, we obtain

2S = [(e2
1 +1)(e2

2 +1)T 00 +(1+2e1q1)(e2
2 +1)DT1 +(1+2e2q2)(e2

1 +1)DT2

+2(e1e2 +1)T 12
r �2(e1 � e2)T 12

i ]/[(e2
1 +1)(e2

2 +1)]

=
⇥
(e2

2 +1)(e1 +2q1
DT1

T 00 )
2 +(e2

1 +1)(e2 +2q2
DT2

T 00 )
2 +(e2

2 +1)p1 +(e2
1 +1)p2

+ e1e2
4T 12

r
T 00 � (e1 � e2)

4T 12
i

T 00 +
4T 12

r
T 00

⇤
T 00/[2(e2

1 +1)(e2
2 +1)] (S3.55)

where

DT1 ⌘ T 01 +T 10 +T 11, DT2 ⌘ T 02 +T 20 +T 22,

q1 ⌘
i(T 10 �T 01)

2DT1
, q2 ⌘

i(T 20 �T 02)

2DT2
,

p1 ⌘ 1+
2DT1

T 00 �4q2
1

DT 2
1

(T 00)2 , p2 ⌘ 1+
2DT2

T 00 �4q2
2

DT 2
2

(T 00)2 ,

T 12
r ⌘ ¬(T 12) and T 12

i ⌘ ¡(T 12).

Similarly, we can follow the same procedure, and obtain the charge transmission T as

2T = T""+T"#+T#"+T## (S3.56)

=
⇥
(e2

2 +1)(e1 +2q̃1
DT̃1

T̃ 00 )
2 +(e2

1 +1)(e2 +2q̃2
DT̃2

T̃ 00 )
2 +(e2

2 +1)p̃1 +(e2
1 +1)p̃2

+ e1e2
4T̃ 12

r
T̃ 00 � (e1 � e2)

4T̃ 12
i

T̃ 00 +
4T̃ 12

r
T̃ 00

⇤
T̃ 00/[2(e2

1 +1)(e2
2 +1)] (S3.57)

where

DT̃1 ⌘ T̃ 01 + T̃ 10 + T̃ 11,

DT̃2 ⌘ T̃ 02 + T̃ 20 + T̃ 22,

q̃1 ⌘
i(T̃ 10 � T̃ 01)

2DT̃1
,

q̃2 ⌘
i(T̃ 20 � T̃ 02)

2DT̃2
,

p̃1 ⌘ 1+
2DT̃1

T̃ 00 �4q̃2
1

DT̃ 2
1

(T̃ 00)2 ,

p̃2 ⌘ 1+
2DT̃2

T̃ 00 �4q̃2
2

DT̃ 2
2

(T̃ 00)2 ,

T̃ 12
r ⌘ ¬(T̃ 12),

T̃ 12
i ⌘ ¡(T̃ 12),

T̃ mn
ss0 ⌘ T̃ mn

ss0(E01,E02) = [T mn
"" +T mn

"# +T mn
#" +T mn

## ],

with m = 0,1,2, n = 0,1,2.
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IV. EFFECT OF COUPLING STRENGTH ON RESONANCE WIDTH

To further study the transport, we set the twist angle to be q = 1.69, where the Fano reso-
nance peak value is about E = 2.528. Figure S1 shows the transmission versus energy about this
resonance. We find that the resonance peak is much narrower for the total transmission and spin
transmission in the weak molecule-lead coupling case [comparing Figs. S1(d,e) with Figs. S1(a,b),
respectively]. For the spin polarization, the resonance is also narrower in the weak coupling case
[comparing Fig. S1(f) with Fig. S1(c)].

(a) (b) (c)

(d) (e) (f)

FIG. S1. Effect of molecule-lead coupling strength on electronic and spin transport. (a-c) Transmission
(T ), spin-z transmission (Tz), and spin polarization (Pz) versus electron energy E for unity molecule-lead
coupling strength. (d-f) The corresponding results for the case of coupling strength 0.1. In both cases, the
chain has N = 28 carbon atoms and the twist angle is q = 1.69.

To gain more insights, we calculate the imaginary part of the eigenenergy and the resonance
peak width versus the molecule-lead coupling strength, as shown in Fig. S2(a). It can be seen
that the resonance width increases linearly with the coupling strength. The spin transmission
also increases with the coupling strength, as shown in Fig. S2(b). Due to the distinct increasing
behaviors in the electronic and spin transmission, the spin polarization first increase, reaches a
maximum, and then decreases with the coupling strength, as shown in Fig. S2(c).

V. QUASIDEGENERACY AND LEVEL SEPARATION FOR DIFFERENT VALUES OF THE
MOLECULAR TWIST ANGLE

To assess the effects of fine-tuning the molecular twist angle on the spin polarization resonance,
we choose five slightly different angles: q = 1.61, 1.63, 1.65, 1.67, and 1.69, and calculate the
spin polarization associated with quasidegenerate energy levels and well separated single energy
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(a) (b) (c)

FIG. S2. Fano resonance width and peak values versus the molecule-lead coupling strength. (a) Resonance
peak width (blue curve) and the imaginary part of eigenenergies (red lines and open circles) versus the
coupling strength. (b) Resonance peak values of Tz versus the coupling strength. (c) Resonance peak
values of Pz versus the coupling strength. The parameter values are N = 28 and q = 1.69. The real part of
eigenenergy at the Fano resonance is about E = 2.528.

levels, as shown in Fig. S3. As the angle increases, there is a change in the contribution to the spin
polarization resonance from two-state quasidegeneracy points to well separated single-level points.
Take the case q = 1.63 [Figs. S3(b1-b5)] as an example. Figure S3(b1) shows the energy levels in
a certain range. There is a pair of nearby levels with energy E = 2.53 and E = 2.536, where each
level corresponds to two degenerate states due to Kramer’s degeneracy. Figure S3(b2) shows that
the two quasidegenerate levels correspond to two different imaginary parts of the eigenenergies:
g ⇡ 0.017 and g ⇡ 0.014, respectively, which determine the width of the spin Fano resonance peak.
Figure S3(b3) shows the theoretical result of the spin resonance peak induced by the E = 2.53
states, as represented by the black dashed curve, where the red curve is the exact result. The
spin resonance peak corresponding to the E = 2.536 states is shown as the black dashed curve in
Fig. S3(b4). It can be seen that all these peaks with contribution from a single energy level cannot
match the exact spin resonance peak. Note that the theoretical resonance curve in Fig. S3(b3) is
wider than that in Fig. S3(b4) due to the larger g value in the former case. We then insert both
levels in the fast changing part of the NEGF formula to produce the corresponding theoretical spin
resonance curve, as shown by the black-dashed curve in Fig. S3(b5). In this case, there is a good fit
between the theoretical and numerical resonance curves. For the other four rows (corresponding
to the four other values of the twist angle), the legends are the same as those in Figs. S3(b1-b5).
In Figs. S3(a1-a5), the two target levels are well separated from each other and the exact spin
resonance peak is not so sharp. In fact, the theoretical fit from each level or their combination
does not produce any result that matches the resonance peak at E = 2.53. For q = 1.63 and
q = 1.65, as shown in Figs. S3(b1-b5) and Figs. S3(c1-c5), respectively, where the two levels are
quite close to each other. While the theoretical resonance curve from each level does not match
with the numerical curve, the combination of the two levels produces a spin resonance curve that
agrees well with the numerical one. For q = 1.67 and q = 1.69, as shown in Figs. S3(d1-d5) and
Figs. S3(e1-e5), respectively, the two levels gradually move away from each other. In both cases,
the first level (the lower one) gives the correct resonance curve, while the second level does not
contribute significantly to the resonance curve. It can then be concluded that, when there are two
nearby levels, they contribute collectively to the spin Fano resonance. However, when the levels
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

FIG. S3. Single level or two quasidegenerate levels contributing to a Fano resonance. (a1) The energy
levels for a chiral molecule of N = 28 carbon atoms with the twist angle q = 1.63. (a2) Imaginary part of
system eigenenergies. (a3,a4) Examples of single-level contribution to spin Fano resonance for E = 2.53
[black dashed curve, the lower level in (a1)] and E = 2.536 [black dashed curve, the higher level in (a1)],
respectively, where the red curves are numerical results from the exact NEGF calculation. (a5) Two-level
contribution to spin Fano resonance [black dashed curve, the two levels labeled in (a1)]. The results in
panels (b1-b5), (c1-c5), and (d1-d5) are for twist angles q = 1.65, 1.67, and 1.69, respectively, with the
same legends as those in (a1-a5).

are well separated from each other, only one level contributes to the resonance peak.

VI. CRITERIA FOR IDENTIFYING CONTRIBUTION TO SPIN FANO RESONANCE AS DUE
TO A SINGLE LEVEL OR TWO QUASIDEGENERATE LEVELS

The results in Figs. 4 in the main text and S3 indicate that a pair of nearby levels, e.g., in the
vicinity of a level crossing point, can lead to a large spin Fano resonance peak, to which both
levels contribute. Away from the crossing point, there can also be large resonance peaks but they
are contributed to by a single state. Here we give a general criterion for identifying whether a
spin Fano resonance is due to one or two levels in terms of the energy level difference and the
imaginary part g of the eigenenergy. In particular, denoting the energy of the main state as E1 and
the corresponding energy imaginary part as g1, we find the energy level that is the closest to E1
and denote it as E2 with imaginary part of the eigenenergy as g2. If the level difference |E1�E2| is

11



Angle E1 E2 |E1 �E2| g1 g2 levels

1.62 2.523 2.537 0.015 0.0156 0.0155 two

1.63 2.53 2.536 0.006 0.0168 0.0142 two

1.64 2.531 2.54 0.009 0.0123 0.0183 two

1.65 2.529 2.546 0.017 0.0096 0.02 two

1.66 2.528 2.553 0.025 0.0074 0.021 two

1.67 2.527 2.558 0.031 0.0055 0.0217 one

1.68 2.527 2.562 0.035 0.0043 0.0218 one

1.69 2.528 2.565 0.037 0.0036 0.0214 one

TABLE S1. Identification of one or two-level contribution to spin Fano resonance. The chiral molecule has
N = 28 carbon atoms.

(a) (b)

FIG. S4. Near-degeneracy enhanced spin Fano resonance. (a) Colored-coded spin-polarization value in
the parameter plane of electron energy and molecular twist angle. (b) Magnification of part of (a) about a
specific degeneracy point. The chiral molecule has N = 37 carbon atoms.

smaller than or comparable to the larger value of g1 and g2, we deem the second level a contributor
to the Fano resonance and include it in the fast changing part of the NEGF formula. Otherwise,
we simply choose one level. An example is shown in Table S1.
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(a) (b)

FIG. S5. Length and angle dependence of the peak value of spin polarization resonance. (a) Peak resonance
value versus the carbon atom number for molecule twist angle q = p/2. (b) Peak resonance value versus
the twist angle for N = 8.

VII. SPIN POLARIZATION FOR A CHIRAL MOLECULE OF N = 37 CARBON ATOMS

To provide further support for our finding of near-degeneracy enhanced spin Fano resonance,
we calculate the spin polarization in the parameter plane of electron energy and twist angle for
a chiral molecule of N = 37 carbon atoms, as shown in Fig. S4. Near the energy-level crossing
points, there is significant spin polarization, so is the case for the well separated single levels.
In addition,, the spin polarization has negative values about the quasidegenerate points and is
positive about the well separated single levels. These results are consistent with those from a
chiral molecule of N = 28 carbon atoms in the main text.

VIII. LENGTH AND ANGLE DEPENDENCE OF PEAK SPIN POLARIZATION RESONANCE

To confirm the cumulative effect in CISS due to the electron spin-orbit coupling associated with
all the atoms in the molecule, we calculate the spin polarization as a function of the carbon atom
number N. As shown in Fig. S5(a) for q = p/2, the spin polarization increases with N and reaches
the value about 30%, in spite of fluctuations. Figure S5(b) shows the peak resonance value versus
the twist angle q for N = 8. Note that, for q = p, the molecule is no longer chiral. In this case, the
spin polarization peak value is approximately zero. As the angle decreases from q = p to q = p/2,
the molecule becomes progressively more chiral, and the spin polarization increases accordingly,
indicating the role of chirality in generating spin polarization.
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