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Abstract Dynamical patterns in complex networks of
coupled oscillators are of both theoretical and practical
interest, yet to fully reveal and understand the inter-
play between pattern emergence and network structure
remains to be an open problem. Among the many out-
standing issues, a fundamental one is how the network
structure affects the stability of dynamical patterns. To
address this issue, we focus on the spiral wave patterns
and investigate the effects of systematically added ran-
dom links on their stability and dynamical evolutions.
We find that, as the network structure deviates more
from the regular topology and thus becomes increas-
ingly more complex, an originally stable spiral wave
pattern can disappear but different types of patterns
can emerge. In addition, short-distance links added to
a small region containing the spiral tip can have a more
significant effect on thewave pattern than long-distance
connections. As more random links are introduced into
the network, distinct pattern transitions can occur, such
as the transition of the spiral wave pattern to a global
synchronization state, to a chimera-like state, or to a
pinned spiral wave. About the transition points, the
network dynamics are highly sensitive to small struc-
tural perturbations in that the addition of even a single
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link can change the pattern from one type to another.
These findings provide additional insights into the pat-
tern dynamics in complex networks, a problem that
is relevant to many physical, chemical, and biological
systems.
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1 Introduction

Pattern formation is ubiquitously observed in spa-
tiotemporal dynamical systems in nature [1,2], rang-
ing from granular materials [3] to ecosystems [4] and
plants [5]. Complex dynamical networks such as cou-
pled oscillators are naturally spatiotemporal systems.
The past two decades have witnessed a rapid growth
of research on various types of dynamical processes
in complex networks [6,7], including synchroniza-
tion [8,9], epidemic spreading [10,11], traffic conges-
tion [12–14], and cascading failures [15,16]. In these
studies, a primary issue was to address the interplay
between the dynamical processes and the underlying
network structure. In exploring the interplay between
network structure and dynamics, an interesting topic
is the formation of spatiotemporal patterns in com-
plex networks, where one of the central questions to be
answered is how thenetwork structure affects the stabil-
ity and evolution of the dynamical patterns [6–16]. To
our knowledge, in spite of the vast literature on dynam-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-018-4283-1&domain=pdf
http://orcid.org/0000-0002-6851-0109


1672 Y. Wang et al.

ics in complex networks, a systematic study of the inter-
play between pattern formation and network structure
is still lacking. The purpose of this paper is to fill this
knowledge gap by presenting results on pattern emer-
gence, evolution, and transitions on networks undergo-
ing systematic random structural perturbations.

To probe into the interplay between topological
structure and dynamical patterns in a concrete manner,
we focus on complex networks of coupled oscillators.
An interesting phenomenon in such dynamical net-
works is that, under certain conditions, the oscillators
can be self-organized to form spatial patterns [1].As the
formation of the patterns relies heavily on the symme-
try of the coupling structure of the network, an intuitive
thinking would suggest that it is unlikely for complex
networks to generate dynamical patterns [17,18]. Yet,
in natural and man-made systems, there do have sit-
uations where well-organized dynamical patterns are
formed on systems with complex network structure,
e.g., the firing patterns in the human brain [19]. A para-
doxwas then how spatially ordered patterns can emerge
from random or disordered coupling structures associ-
atedwith a complex network. There have been previous
efforts devoted to resolving this paradox. For example,
pattern formation in complex network of coupled acti-
vators and inhibitors was studied, where Turing-like
patternswere observed [20]. Complex networks of cou-
pled excitable nodeswere also studied [21]with respect
to pattern formation inwhich the technique of dominant
phase advanced driving was introduced, leading to the
discovery of target-like wave patterns. Desynchroniza-
tion patterns in complex network of coupled chaotic
oscillators were subsequently studied [22], where it
was found that reordering network nodes according
to the eigenvector of the unstable mode can be effec-
tive at identifying the stable synchronous pattern from
an asynchronous state. Recently, computational graph
algorithms were introduced into the field of network
synchronization to study synchronous patterns in large-
size complex networks [23,24], where the important
role of network symmetry in pattern formationwas elu-
cidated. In spite of the existing works, many questions
concerning pattern formation and transition in complex
networks remain, especially with respect to relatively
more sophisticated patterns possessing complex spatial
structures, e.g., the spiral waves [25].

The starting point of our study is then spiral waves
in coupled oscillator networks, which are patterns
observed ubiquitously in physical, chemical and bio-

logical systems [1]. Different from other types of
patterns such as Turing patterns, the stability of a
spiral wave depends crucially on the motion of the
spiral tip [26,27], leading to the specially designed
methods for analyzing, inducing and controlling spiral
waves [28–31]. In most previous works, spiral waves
were studied for networks with a regular spatial struc-
ture, such as a periodic lattice. Nevertheless, there were
works on spiral waves in systems with an irregular spa-
tial structure [32–35]. For example, the formation of
spiral waves in a medium possessing random (small-
world) connections was studied [33] with the finding
that, while the structural irregularity is detrimental to
forming and sustaining a spiralwave, a small number of
random links can counterintuitively enhance the wave
stability. Another work [34] revealed that, random con-
nections added locally to a regular medium can cause
the meandering motion of the spiral tip to approach a
fixed point. It was later found [35] that random connec-
tions introduced globally into a regular medium can
lead to rich behaviors in the transition of the system
dynamics among global synchronization state, steady
state, and multiple spirals. These previous works indi-
cated that the network structure can have nontrivial
and intriguing effects on pattern formation and transi-
tion, yet a systematic study on the effects of structural
perturbations on pattern formation is still lacking. For
instance, it remains not clear how to eradicate spiral
wave effectively by introducing long-distance connec-
tions and, whether the spiral wave can be controlled
(switched) to other spatiotemporal patterns by adding
or removing just a single link.

To facilitate computation andmakeour analysis sim-
ple (but not simpler), we adopt the model of coupled
map lattices (CML) [36] to investigate the dynami-
cal responses of spiral waves to structural perturba-
tions. Historically, CMLs were used to understand spi-
ral wave patterns in complex media such as granu-
lar materials [37–40]. In our work, starting from a
two-dimensional regular lattice capable of generat-
ing stable spiral waves, we systematically introduce
random links into the network and study the transi-
tions in the pattern dynamics as the network structure
becomes increasingly random (complex). We uncover
dynamical patterns and richer bifurcations thatwere not
reported in previous works [33–35], such as chimera-
like states [41–44] where two synchronization clusters
coexist with many asynchronous oscillators and the
pinned multi-armed spirals [31] in which the arms of
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the spiral are pinned to a square-shape boundary. An
intriguing finding is that, in the region where pattern
transitions occur, the dynamics are extremely sensi-
tive to small changes in the network structure. These
findings shed new lights on pattern behaviors in com-
plex networks, which may lead to effective methods to
control pattern dynamics in spatiotemporal dynamical
systems.

In Sect. 2, we introduce our CMLmodel that is capa-
ble of generating spiral waves, and describe our strat-
egy to introduce random links. In Sect. 3,we investigate
pattern transitions as induced by a systematic change
in the network structure, and present evidence of two
types of patterns that have not been uncovered previ-
ously. In Sect. 4, we demonstrate the sensitivity of the
patterns in the transition regions to small structural per-
turbations, and elucidate the topological properties of
the critical links. Discussions will be given in Sect. 5.

2 Model and method

2.1 Network model

We study the following CML network model [36,40]:

xi (n+1) = f (xi (n))+ε

N2∑

j=1

ai j [ f (x j (n))− f (xi (n))],

(1)

with i, j = 1, . . . , N the nodal indices, N 2 = N × N
the system size, xi the state of the i th node at time
n, and ε the uniform coupling parameter. The isolated
dynamics of node i is governed by the nonlinear equa-
tion xi (n + 1) = f [xi (n)]. The coupling structure of
the system is characterized by the adjacency matrix A
whose elements are given as: ai j = 1 if maps i and
j are directly connected and ai j = 0 otherwise. The
degree of node i , the total number of links attached to
it, is ki = ∑

j ai j .
Initially, the network takes the structure of two-

dimensional regular lattice, where each interior node
is coupled to its four nearest neighbors. We assume
the free boundary condition and fix the system size to
be 300 × 300 (i.e., N = 300). The spatial location
of a node in the network is denoted as (lx , ly), where
1 ≤ lx , ly ≤ N . For the nodal dynamics, we adopt the
piecewise linear map [40,46]:

f (x) =
{
ax, x < xg,
b, x ≥ xg,

(2)

where x ∈ (0, 1), xg = 1/a, a and b the indepen-
dent parameters. Equation (2) is the discrete version
of the differential Chay model used widely in com-
putational neuroscience, and is capable of generating
the similar bifurcation scenario of inter-spike interval
(ISI) observed from experiments [45]. To be concrete,
we fix (a, b) = (2.5, 0.1), for which an isolated node
possesses a super-stable period-three orbit [40,46]:
x∗
1 = b ≡ A, x∗

2 = ab ≡ B, and x∗
3 = a2b ≡ C .

2.2 Generation of spiral waves

For a CML system, spiral waves can be stimulated
through special initial conditions [40]. For example, we
can choose the initial states of the nodes within a nar-
row strip in the lattice, say lx ∈ [280, 300], randomly
within the range (0, 1), while nodes outside the strip are
set to have the initial value zero. For ε = 0.166, after
a transient period of n = 2.5 × 103 iterations, a sta-
ble three-armed spiral pattern is generated, as shown
in Fig. 1a, which is a snapshot of the system state.
As the system evolves, the spiral arms rotate in a syn-
chronous fashion and propagate outward from the tip.
This feature of wave propagation is similar to that of
spiral waves observed in other contexts, e.g., excitable
media [1]. A close examination of the motion of the
spiral tip reveals a difference: In an excitable medium,
the tip trajectory is often regular [47], but in our sys-
temofCML itmoves randomly inside the central region
100 < lx , ly < 200, as shown in Fig. 1b. In addition, in
regions separated by the spiral arms, the nodes are syn-
chronized into three distinct clusters,with nodes in each
cluster being synchronized to the trajectory of a peri-
odic point of the period-three orbit. The synchronous
clusters have approximately the same size. The spiral
arms themselves comprise asynchronous nodes, which
constitute the cluster boundaries [46]. In the following
studies, we shall adopt the spiral pattern in Fig. 1a as the
initial state, and investigate the impacts of the randomly
added links on the stability and transition of this pattern.

2.3 Effect of adding random links on spiral wave
patterns

As the dynamics of the spiral wave is slaved to the
tip, applying random structural perturbations to the
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Fig. 1 (Color online) For ε = 0.166, the three-armed spiral
wave pattern generated in the regular lattice of 300×300 coupled
chaotic maps. a A snapshot of the system dynamics taken at the
iteration step n = 2.5× 103. b The random motion of the spiral
tip inside the central area marked by the (red) square

tip region often induce characteristic changes in the
wave pattern [26,27]. To gain insights, we first sup-
ply links between randomly chosen, unconnected pairs
of nodes over the entire network [33–35]. This fash-
ion of introducing new links is named strategy 1 in
the present work. The total number of such links is
M , with the same coupling function and coupling
parameter as the regular links. For a fixed value of
M , the network is initialized with the spiral wave
pattern in Fig. 1a and the network state is recorded
after 5 × 103 iterations. To characterize the deteriora-
tion of the perturbed spiral, we introduce the quan-
tities ρmax = max{NA, NB , NC }/N 2 and ρmin =
min{NA, NB, NC }/N 2, with NA (NB , NC ) the num-

Fig. 2 (Color online) Sustainability of spiral wave pattern sub-
ject to different strategies of network structural perturbations. a
The variation in the normalized size of the smallest synchronous
cluster, ρmin, with M , the number of random links newly intro-
duced. Strategy 1: adding random links over the entire network
(filled squares); Strategy 2: introducing long-distance random
links (filled upper triangles); Strategy 3: supplying random links
only in the central area (filled circles); Strategy 4: distributing
random links between the central and peripheral regions (filled
downward triangles). b–d Schematic illustrations of strategies 2,
3 and 4. Results in (a) are averaged over 200 network realizations

ber of nodes with the state A (B,C). ρmax and ρmin rep-
resent, respectively, the normalized size of the largest
and the smallest synchronous clusters associated with
the spiral pattern. For the initial spiral [Fig. 1a], as the
three clusters have approximately the same size, we
have ρmax ≈ ρmin ≈ 1/3. If the sizes of the clusters
are different,wehaveρmax > 1/3 and0 < ρmin < 1/3,
indicating a deformed but still sustained spiral. When
one cluster is disappeared, we have ρmin ≈ 0, but the
value of ρmax may either be close to unity (if the system
reaches global synchronization) or 1/2 (if two equal-
size clusters coexist). In this case, the original spiral is
regarded as destroyed. A simple criterion to determine
the destruction of the spiral wave thus is ρmin ≈ 0.
Figure 2a shows the variation of ρmin with M (strategy
1). We see that, as M is increased from 10 to 150, ρmin

decreases from the value of about 0.26 to 0.05. That
is, by strategy 1, the spiral wave pattern is statistically
destroyed when 150 random links are introduced.

In order to understand the role played by the spiral
tip in the pattern stability, we design and compare three
alternative perturbation strategies [33–35]: introducing
long-distance random links (Strategy 2), supplying ran-
dom links only in the central area (Strategy 3), and dis-
tributing random links between the central and periph-
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eral regions (Strategy 4). These three strategies are dif-
ferent from strategy 1, and are schematically illustrated
in Fig. 2b–d, respectively. For strategies 2 and 3, the
pairs of nodes connected by the new links are ran-
domly chosen from the regions (0, 150) × (150, 300)
and (150, 300) × (0, 150) on the lattice, and from the
central area (100, 200) × (100, 200), respectively. For
strategy 4, one map is randomly chosen from the cen-
tral area, while another is chosen from the peripheral
region. The results of applying perturbation strategies
2–4 are shown in Fig. 2a, where we see that, strate-
gies 3 and 4 are more effective at suppressing the spiral
wave pattern than strategies 1 and 2. For example, the
value of ρmin is reduced to 0 at about M = 140 for
strategy 2; while for strategies 3 and 4, this occurs at
about M = 100. For the rest of the paper, we will adopt
strategy 3 to introduce the new links.

3 Pattern transitions

To uncover and understand the pattern transitions as
the network topology deviates from that of a regular
lattice and becomes increasingly random, we calculate
the variations of ρmax and ρmin with M (the total num-
ber of randomly added links according to perturbation
strategy 3). As shown in Fig. 3, for a few randomly
added links, sayM < 10, we have ρmax ≈ ρmin ≈ 1/3.
In this region, the network exhibits a stable spiral wave
similar to that in Fig. 1a. As M is increased from 10,
the value of ρmax increases but ρmin decreases. For
M ≈ 100, we have ρmax = 1 and ρmin = 0, signifying
that the network has reached a uniform synchroniza-
tion state without any spatial pattern. Figure 4a shows,
for M = 100, with time the spiral tip shifts from the
central to the peripheral area [Fig. 4a2]. The spiral tip
vanishes when it reaches the lattice boundary. Subse-
quently, one of the synchronous clusters expands while
the other two clusters are pushed toward the boundary,
leading finally to the state of global synchronization,
as shown in Fig. 4a3.

Figure 3 indicates that the global synchronization
state is stable for M � 550. As M is increased further,
ρmax decreases gradually but the value of ρmin remains
about 0. For M ≈ 850, another platform emerges in
the variation of ρmax with M , where ρmax ≈ 0.9 for
M ∈ [850, 1100]. Since ρmin ≈ 0 still holds, there is
no spiralwave. In fact, in this region the systemcontains
at most two synchronous clusters. Because the value of

Fig. 3 (Color online) Pattern transitions as the network structure
becomes increasingly random. Shown areρmax andρmin (the nor-
malized sizes of the largest and the smallest synchronous cluster,
respectively) versusM , the total number of randomly added links
according to perturbation strategy 3. Spiral wave (SW) patterns
exist in the parameter interval M ∈ [0, 10]. Global synchroniza-
tion (SY) occurs for M ∈ [100, 550]. Chimera-like state (CS)
arises in M ∈ [850, 1100]. For M > 1400, there is pinned spiral
(PS). Ensemble average of 200 network realizations is used

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Fig. 4 (Color online) Characteristically distinct dynamical
states in the network system that structurally becomes increas-
ingly random for (a1–a3) M = 100 (global synchronization)
(b1–b3) M = 1000 (chimera-like state) and (c1–c3) M = 1500
(pinned spiral wave). The left, middle, and right columns are
snapshots of the system dynamics taken, respectively, at the ini-
tial, middle, and end of the evolution. Black dots in the central
area mark the ending nodes of the randomly added links

ρmax is close to unity, most nodes in the network are
synchronized into a giant cluster. To provide evidence
for this scenario, we calculate a series of snapshots of
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the system dynamics for M = 1000, which are shown
in Fig. 4b. We see that, the original spiral wave first
breaks into a pair of anti-spiral waves [Fig. 4b2] that
move gradually to the system boundary and disappear
after reaching it. In the meantime, two synchronous
clusters emerge: a small cluster consisting of nodes in
the central area (except for the nodes connected by the
randomly added links) and a large cluster comprising
nodes in the peripheral area. There is a narrow bound-
ary of asynchronous nodes separating the two clusters,
as shown in Fig. 4b3. The distinct synchronous clus-
ters represent effectively a chimera-like state observed
previously in systems of non-locally coupled oscilla-
tors [41–44].

The chimera-like state becomes unstable as M is
increased through 1100, since ρmax and ρmin tend to
decrease and increase, respectively. For M � 1400,
the values of ρmax and ρmin are stabilized about 1/3 and
1/4, respectively. Figure 4c shows, for M = 1400, the
typical states emergedduring the systemevolution.Due
to the added random links, the spiral tip first drifts from
the central to the peripheral area [Fig. 4c1], but the drift
stops at the boundary of the central area after which the
tip disappears. During this time interval, the spiral arms
are separated from each other. As will be demonstrated
below, the three arms are attached to the boundary of
the central area and rotate in a synchronous fashion,
signifying the phenomenon of pinned spirals [31]. As
M is increased further, the pinned spiral state can be
maintained (even for M = 1 × 104).

Figures 3 and 4 suggest the following transition sce-
nario as more random links are added to the network:
spiral wave→ global synchronization→ chimera-like
state → pinned spiral wave, where each state exists in
a finite parameter region. Within each region, the val-
ues of ρmax and ρmin are hardly changed, suggesting
that the respective patterns are stable to random struc-
tural perturbations. A transition region is associated
with dramatic changes in the value of ρmax or ρmin, in
which one type of pattern is destroyed and a new type is
born. To better characterize the transition regions, we
calculate, by numerical simulations, the probability of
certain pattern, pstate, with respect to M . The results
are shown in Fig. 5. Comparing Figs. 3 and 5, we see
that two different patterns coexist in each transition
region. Taking M = 30 as an example, we see that,
over 200 independent network realizations, about 80%
of these realizations lead to a spiral wave (pSW ≈ 0.8)
whereas the remaining cases correspond to the global

Fig. 5 (Color online) Continuous nature of pattern transition.
Shown is pstate versus M , which denotes the probability of
generating a specific pattern for M randomly added links. The
terms SW, SY, CS and PS stand for, respectively, spiral wave,
global synchronization, chimera-like state, and pinned spiral
wave. Results are averaged over 200 network realizations

synchronization state (pSY ≈ 0.2). In the transition
region between spiral wave and global synchronization
(10 < M < 100), pSW decreases from unity to zero,
which is accompanied by an increase in pSY in the
opposite direction. This feature of gradual and contin-
uous transition appears also in other transition regions,
as shown in Fig. 5.

4 Pattern sensitivity in the transition regions

In the transition regions the system dynamics is sen-
sitive to random structural perturbations in the sense
that the introduction of a single random link is able
to switch the system dynamics from one pattern to
another. For example, for a network with M = 49
random links, the stable state of the system is a spiral
wave pattern. With a new random link being added, the
state of global synchronization emerges and becomes
stable, as exemplified in Fig. 6a–d, where the time evo-
lutions of the difference between the two pattern states,
δX = XM=49 − XM=50, are shown, with XM = {xi }
denoting the pattern state for the network with M ran-
dom links. Initially [Fig. 6a], except for the pair of
nodes connected by the 50th link (the new link), the
two patterns are essentially identical as the two net-
works (one with 49 and another with 50 random links)
start from the same initial condition [the spiral wave in
Fig. 1a]. Then, as the two systems evolve, the difference
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Fig. 6 (Color online) Pattern sensitivity in the transition regions.
a–d Time evolution of the difference δX between the spiral wave
(M = 49) and the global synchronization state (M = 50). e
Normalized distance distribution of the critical (filled squares)
and non-critical links (filled circles). f Normalized distribution
of the local connectivity of the critical (filled squares) and non-
critical links (filled circles). Results in e and f are averaged over
500 realizations of the 50th link

at one of the ending nodes of the 50th link disappears,
whereas the difference at the other ending node sustains
and gradually propagates to its neighboring region, as
shown in Fig. 6b. At a later time the difference at this
node vanishes but appears on a remote ending node of
a random link in the lattice, as shown in Fig. 6c. This
propagation and switching process occurs repeatedly in
the central area, resulting in the formation of a three-
armed spiral gradually, as shown in Fig. 6d. Finally, a
spiral wave similar to that in Fig. 1 is generated. Sim-
ilar behaviors arise in other transitional regions, e.g.,
M ∈ (550, 850) and M ∈ (1100, 1400).

Do the critical connections observed in the transi-
tion regions possess any special topological property?
To address this question, we focus on still the transition
from spiral wave to global synchronization [Fig. 6a–
d], but adding the 50th link in the central area in a
random fashion. If the system evolves finally into the

state of global synchronization, we mark this link as
critical and record the locations of the ending nodes,
denoted by (lx , ly) and (l ′x , l ′y). For comparison, we
also record the ending nodes of non-critical links that
do not lead to the destruction of the spiral wave.Wefirst
examine the Euclidean distances of the critical links,
defined as d = [(lx − l ′x )2 + (ly − l ′y)2]1/2. Previous
studies [48,49] revealed that long-distance links have
a more significant effect on the network dynamics than
short range links. A higher probability for a critical
link to be long-ranged can then be intuitively expected.
Figure 6e shows the normalized distribution of the dis-
tances of the critical links. Surprisingly, the distribution
is unimodal with the maximum probability occurring
at about d = 50. For comparison, the distance distribu-
tion of the non-critical is also shown, where we see that
the two distributions are nearly identical. As the aver-
aged distance between nodes in the central area is also
about 50, the analysis thus indicates that the critical
links are uncorrelated with the distance.

The local connectivity of the ending nodes associ-
ated with the critical links represents another topolog-
ical feature. To examine it, for each ending node, we
count the number nr of nodes of degree larger than 4
within the distance dr = 10 from it, for the reason that
there is at least one random link attached to such a node.
If the critical links were attached to the existing nodes
following the preferential attachment rule, such links
would be more likely to lie in regions containing large
degree nodes. In this case, the distribution of nr should
exhibit a heavy tail. A representative distribution of
kr , the sum of the critical links of the ending nodes,
is shown in Fig. 6f, which exhibits a unimodal feature
too. For comparison, the kr distribution of the non-
critical links is also shown, which is indistinguishable
from that associated with critical links. We find that the
distance d has no effect on the unimodal feature, i.e.,
the local connectivity is uncorrelated with the critical
links.

Examination of additional topological properties [6]
such as the degree assortativity, network modularity,
and average network diameter revealed no clear differ-
ence between the critical and non-critical links. Topo-
logical analyses have also been carried out for other
transition regions, with the results essentially the same.
Our conclusion is that, so far as the topological proper-
ties are concerned, there is no clear difference between
the critical and non-critical links.
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5 Discussion and conclusion

In a regular lattice of coupled nonlinear oscillators
capable of generating spiral wave patterns, a suffi-
cient number of random links will destroy the patterns,
but how? This paper addresses this question through a
detailed computational study of the effect of random
links on spiral wave pattern as their number is system-
atically increased. From the point of view of network
structure, adding random links to a regular network
makes it complex, thus our work effectively addresses
the general problem of pattern formation and transi-
tion in complex networks. We find, as the number of
randomly added links is increased, the underlying net-
worked system can exhibit distinct types of dynamical
patterns and rich transitions among them.Our study has
revealed two types of patterns in complex networks,
which to our knowledge have not been reported pre-
viously: a chimera-like pattern and the pinned multi-
armed spiral waves. We also find that a transition
between two distinct types of patterns can be triggered
through only a single, critical random link. The topo-
logical properties of the set of critical links are found
to be of no difference from those of the non-critical
links. With respect to spiral waves, our study reveals
that random links added into the region of the spiral tip
can have a devastating effect on the pattern, a result that
is consistent with those from previous works [33–35].

A key difference fromprevious studies of networked
oscillators is that, in our CMLmodel, the tip of the spi-
ral is moving randomly in the central area, which could
be the underlying reason for the sensitivity of the sys-
tem pattern to structural perturbations in the transition
regions. This has consequences. In particular, in previ-
ous studies of synchronization transitions in complex
networks [9], a general finding is that as the network
becomes increasingly more complex, the order param-
eter characterizing the degree of network synchroniza-
tionwill be increasedprogressively.Asdemonstrated in
the present work, for the spiral wave patterns, the order
parameter, which is characterized by the normalized
size of the largest synchronous cluster (ρmax), exhibits a
non-monotonous behavior. As shown in Fig. 3, with the
increase of M (the number of random links), the order
parameter first increases (in the transition from spiral
wave to global synchronization), then reaches 1 (in the
global synchronization state), and finally decreases (in
transitions from global synchronization to the chimera-
like state and pinned multi-armed spiral). This peculiar

phenomenon of non-monotonous behavior of the order
parameter is disappeared when the links are introduced
randomly over the entire lattice (strategy 1). When
random links are added to the network on a global
scale (as with theNewman–Watts small-world network
model [50]), preliminary simulations show that as the
network structure becomes more complex, the order
parameter of the system is monotonically increased
(not shown).

We would like to note that the three-armed spiral,
while is sensitive to the long-distance connections, is
hardly affected by the parameter or state perturbations.
Numerical results show that given the maps are of
period-three orbits (a ∈ [2.16, 3.16]), the three-armed
spiral can always be generated by the described initial
conditions, even under small noise perturbations. In
the meantime, we have to mention that the phenomena
are observed for only the case of three-armed spiral
so far, and it remains a challenge to us how to gen-
erate more complicated spirals, e.g., four-armed spi-
ral, by a proper setting of the initial conditions. Fur-
ther studies on the generation of more complicated
spirals and their responses to network structural per-
turbations might lead to intriguing and fascinate new
findings.

To summarize, by the model of coupled map lat-
tice, we have studied the dynamical responses of spiral
wave pattern to network structural perturbations. It is
found that as more random connections are introduced
into the network, the system dynamics undergoes rich
bifurcations. In particular, two new patterns, namely
the chimera-like state and the pinned multi-armed spi-
ral wave, are reported for the first time. Furthermore,
in the transition regions of the patterns, it is found that
the system dynamics could be changed from one type
of pattern to another one by just adding (removing) one
critical connection. Our study sheds new lights on the
pattern dynamics in complex networks and the find-
ings provide insights into the issue of pattern control
on networks.
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