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Bridging known and unknown dynamics by
transformer-based machine-learning
inference from sparse observations

Zheng-Meng Zhai 1, Benjamin D. Stern 2 & Ying-Cheng Lai 1,3

In applications, an anticipated issue is where the system of interest has never
been encountered before and sparse observations can bemade only once. Can
the dynamics be faithfully reconstructed? We address this challenge by
developing a hybrid transformer and reservoir-computing scheme. The
transformer is trained without using data from the target system, but with
essentially unlimited synthetic data from known chaotic systems. The trained
transformer is then tested with the sparse data from the target system, and its
output is further fed into a reservoir computer for predicting its long-term
dynamics or the attractor. The proposed hybrid machine-learning framework
is tested using various prototypical nonlinear systems, demonstrating that the
dynamics can be faithfully reconstructed from reasonably sparse data. The
framework provides a paradigm of reconstructing complex and nonlinear
dynamics in the situationwhere trainingdata donot exist and theobservations
are random and sparse.

In applications of complex systems, observations are fundamental to
tasks such as mechanistic understanding, dynamics reconstruction,
state prediction, and control. When the available data are complete in
the sense that the data points are sampled according to the Nyquist
criterion and no points are missing, it is possible to extract the
dynamics or even find the equations of the system fromdata by sparse
optimization1,2. In machine learning, reservoir computing has been
widely applied to complex and nonlinear dynamical systems for tasks
such as prediction3–23, control24, and signal detection25. Quite recently,
Kolmogorov–Arnold networks (KANs)26, typically small neural net-
works, were proposed for discovering the dynamics from data, where
even symbolic regression is possible in some cases to identify the exact
mathematical equations and parameters. It has also been
demonstrated27 that the KANs have the power of uncovering the
dynamical system in situations where the methods of sparse optimi-
zation fail. In all these applications, an essential requirement is that the
time-series data are complete in the Nyquist sense.

A challenging but not uncommon situation is where a new system
is to be learned and eventually controlled based on limited observa-
tions. Two difficulties arise in this case. First, being newmeans that the

system has not been observed before, so no previous data or record-
ings exist. If one intends to exploit machine learning to learn and
reconstruct the dynamics of the system fromobservations, no training
data are available. Second, the observations may be irregular and
sparse: the observed data are not collected at some uniform time
interval, e.g., as determined by the Nyquist criterion28, but at random
times with the total data amount much less than that from Nyquist
sampling. It is also possible that the observations can be made only
once. The question is, provided with one-time sparse observations or
time-series data, is it still possible to faithfully reconstruct the
dynamics of the underlying system?

Limited observations or data occur in various real-world
situations29,30. For example, ecological data gathered from diverse
and dynamic environments inevitably contain gaps caused by equip-
ment failure, weather conditions, limited access to remote locations,
and temporal orfinancial constraints. Similarly, inmedical systems and
human activity tracking, data collection frequently suffers from issues
such as patient noncompliance, recording errors, loss of followup, and
technical failures. Wearable devices present additional challenges,
including battery depletion, user error, signal interference from
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clothing or environmental factors, and inconsistent wear patterns
during sleep or specific activities where devices may need to be
removed. A common feature of these scenarios is that the available
data areonly fromrandomtimeswithout anydiscernible patterns. This
issue becomes particularly problematic when the data is sparse. Being
able to reconstruct the dynamics from sparse and random data is
particularly challenging for nonlinear dynamical systems due to the
possibility of chaos leading to a sensitive dependence on small varia-
tions. For example, large errors may arise when predicting the values
of the dynamical variables in various intervals in which data ismissing.
However, if training data from the same target system is available,
machine learning can be effective for reconstructing the dynamics
from sparse data31 (Additional background on machine-learning
approaches is provided in Supplementary Note 1).

It is necessary to define what we mean by random and sparse data.
We consider systems whose dynamics occur within certain finite fre-
quency band. For chaotic systems with a broad power spectrum, in
principle the cutoff frequency can be arbitrarily large, but power con-
tained in a frequency range near and beyond the cutoff frequency can
often be significantly smaller than that in the low frequency domain and
thus can be neglected, leading realistically to a finite yet still large
bandwidth (see Supplementary Note 3). A meaningful Nyquist sampling
frequency can then be defined. An observational dataset being com-
pletemeans that the time series are recorded at the regular time interval
as determined by the Nyquist frequency with no missing points. In this
case, the original signal can be faithfully reconstructed. Random and
sparse datamean that some portion of the data points as determined by
the Nyquist frequency are missing at random times. We aim to recon-
struct the system dynamics from random and sparse observations by
developing a machine-learning framework to generate smooth con-
tinuous time series. When the governing equations of the underlying
system are unknown and/or when historical observations of the full
dynamical trajectory of the system are not available, the resulting lack of
any training data makes the reconstruction task quite challenging.
Indeed, since the system cannot be fully measured and only irregularly
observed data points are available, direct inference of the dynamical
trajectory from these points is infeasible. Furthermore, the extent of the
available observed data points and the number of data points to be
interpolated can be uncertain.

In practice, the sampling rate Δs is chosen to generate the com-
plete dataset of a dynamical system. It should ensure that the attractor
remains sufficiently smooth while limiting the number of sampled
points. Specifically, the norm of the first derivative of the chaotic sig-
nals is ensured to stay below a predefined small threshold. Let the total
number of samples in the dataset be Ls and the actual number of
randomly selected observational points be LOs . The sparsitymeasure of
the dataset can be defined as Sm = ðLs � LOs Þ=Ls. However, this measure
depends on the sampling rate of the dynamical system.

To quantitatively describe the extent of sparsity in the observa-
tional data from an information-theoretic perspective, we introduce a
metric that incorporates the constraints from the Nyquist sampling
theorem:

Sr =
Ls � LOs
Ls � LNs

, ð1Þ

where LNs =2fmax � T represents the minimum number of samples
required according to the Nyquist theorem with fmax being the effec-
tive cutoff frequency of the signal and T the total time duration cor-
responding to Ls. In this definition, Sr =0 indicates fully observed data
(at the sampling rate), Sr = 1 corresponds to the theoretical minimum
sampling case (at the Nyquist rate), and Sr > 1 indicates sub-Nyquist
sampling where perfect reconstruction becomes theoretically impos-
siblewithout additional constraints.Our framework takes into account
not only high sparsity but also the randomness in observations. More

information about the determination of cutoff frequency of chaotic
systems can be found in Supplementary Note 3.

In this paper, we develop a transformer-based machine-learning
framework to address the problem of dynamics reconstruction and
prediction from randomand sparse observations with no training data
from the target system. Our key innovation is training a hybrid
machine-learning framework in a laboratory environment using a
variety of synthetic dynamical systems other than data from the target
system itself, and deploy the trained architecture to reconstruct the
dynamics of the target system from one-time sparse observations.
More specifically, we exploit the machine-learning framework of
transformers32 with training data not from the target systembut froma
number of known, synthetic systems that show qualitatively similar
dynamical behaviors to those of the target system, for which complete
data are available. The training process can thus be regarded as a
laboratory-calibrationprocessduringwhich the transformer learns the
dynamical rules generating the synthetic but complete data. The so-
trained transformer is then deployed to a real application with the
random and sparse data, and is expected to adapt to the unseen data
and reconstruct the underlying dynamics. To enable long-term pre-
diction of the target system, we exploit reservoir computing that has
been demonstrated to be particularly suitable for predicting nonlinear
dynamics3–22 by feeding the output of the transformer into the reser-
voir computer. The combination of transformer and reservoir com-
puting constitutes a hybrid machine-learning framework. We
demonstrate that it can successfully reconstruct the dynamics of
approximately three dozen prototypical nonlinear systems with high
reconstruction accuracy, providing a viable framework for recon-
structing complex and nonlinear dynamics in situationswhere training
data from the target system do not exist and the observations or
measurements are insufficient.

Figure 1 highlights the challenge of reconstructing the dynamics
from sparse data without training data. In particular, Fig. 1a shows the
textbook case of a random time series uniformly sampled at a fre-
quency higher than the Nyquist frequency, which can be completely
reconstructed. To illustrate random and sparse data in an intuitive
setting, we consider a set of six available data points from a unit time
interval, as shown in Fig. 1b, c. The time interval contains approxi-
mately two periods of oscillation, which defines a local frequency
denoted as flocal = 2. As the signal is chaotic or random, the cutoff
frequency fmax in the power spectrum can be higher than the fre-
quency represented by the two oscillation cycles as shown. As a con-
crete example, we assume fmax = 3f local, so the Nyquist frequency is
fNyquist = 6flocal. If the signal is sampled at the corresponding Nyquist
time interval ΔT = 1/fNyquist = 1/12, 12 data points would be needed. If
these 12 points are sampled uniformly in time, then the signal in the
two oscillation cycles can be reconstructed. The task becomes quite
challenging due to two factors: the limited availability of only six data
points and their random distribution across the unit time interval.
Consider points #5 and #6, which occur during a downward oscillation
cycle in the ground truth data. Accurately reconstructing this down-
ward oscillation presents a key challenge. When training data from the
same target system is available, standardmachine learning techniques
can faithfully reconstruct the dynamics31, as illustrated in Fig. 1b.
However, without access to training data from the target system,
previousmethods were unable to reconstruct the dynamics from such
sparse observations. A related question is, after the reconstruction,
can the long-term dynamics or attractor of the system be predicted?
We shall demonstrate that both the reconstruction and long-term
prediction problems can be solved with hybrid machine learning, as
schematically illustrated in Fig. 1d–f.

Results
We test our approach on three nonlinear dynamical systems in the
deployment phase: a three-species chaotic food-chain system33, the
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classic chaotic Lorenz system34, and Lotka–Volterra system35. The
transformer had no prior exposure to these systems during its training
(adaptation) phase. We use sparse observational data from each sys-
tem to reconstruct their underlying dynamics. For clarity, in the main
text, we present the results from the food-chain system, with those the
other two testing systems in Supplementary Information.

Altogether, 28 synthetic chaotic systemswith same dimensions as
the target systems are used to train the transformer, enabling it to
learn to extract dynamic behaviors from sparse observations (see
Supplementary Note 2 for a detailed description). To enable the
transformer to handle data fromnew, unseen systems of arbitrary time
series length Ls and sparsity Sr, we employ the following strategy at
each training step: (1) randomly selecting a system from the pool of
synthetic chaotic systems and (2) preprocessing the data from the
systemusing a uniformly distributed time series length Ls � Uð1, Lmax

s Þ,
and uniformly distributed sparsemeasure Sm ~ U(0, 1). By so doing, we
prevent the transformer from learning any specific system dynamics
too well, encouraging it to treat each set of inputs as a new system. In
addition, the strategy teaches the transformer to master as many
features as possible. Figure 2a illustrates the training phase, with
examples shown on the left side. On the right side, the sampled
examples are encoded and fed into the transformer. The performance
is evaluated byMSE loss and smoothness loss between the output and
ground truth, and is used to update the neural network weights. For
predicting the long-term dynamics, reservoir computing (Supple-
mentary Note 4) is used. (Hyperparameter optimization for both the
transformer and reservoir computer is described in Supplemen-
tary Note 5).

Dynamics reconstruction
The three species food-chain system33 is described by

dR
dt

=R 1� R
K

� �
� xcycCR

R +R0
,

dC
dt

=xcC
ycR

R +R0
� 1

� �
� xpypPC

C +C0
,

dP
dt

=xpP
ypC

C +C0
� 1

� �
,

ð2Þ

where R, C, and P are the population densities of the resource, con-
sumer, and predator species, respectively. The system has seven
parameters: K, xc, yc, xp, yp, R0, C0 > 0. Figure 2b presents an example
of reconstructing the dynamics of the chaotic food-chain system for
Ls = 2000 and Sr = 1 (Sm =0.86). The target output time series for each
dimension should contain 2000points (about 40 cycles of oscillation),
but only randomly selected LNs =280 points are exposed to the trained
transformer. The right side of Fig. 2b shows the reconstructed time
series, where the three dynamical variables are represented by
different colors, the black points indicate observations, and the gray
dashed lines are the ground truth. Only a segment of a quarter of the
points is displayed. This example demonstrates that, with such a high
level of sparsity, directly connecting the observational points will lead
to significant errors. Instead, the transformer infers the dynamics by
filling the gaps with the correct dynamical behavior. It is worth
emphasizing that the testing system has never been exposed to the
transformer during the training phase, requiring the neuralmachine to
explore the underlying unknown dynamics from sparse observations

Fig. 1 | Dynamics reconstruction from random and sparse data. a The textbook
case of a random time series sampled at a frequency higher than the Nyquist
frequency. b Training data from the target system (left) and a segment of time
series of six data points in a time interval containing approximately two cycles of
oscillation. According to the Nyquist criterion, the signal can be faithfully recon-
structedwithmore than 12 uniformly sampleddata points (see text).When the data
points are far fewer than 12 and are randomly sampled, reconstruction becomes
challenging. However, if training data from the same target system are available,
existing machine-learning methods can be used to reconstruct the dynamics from
the sparse data31. c If no training data from the target system are available, hybrid

machine learning proposed here provides a viable solution to reconstructing the
dynamics from sparse data. d Problem statement. Given random and sparse data,
the goal is to reconstruct the dynamics of the target system governed by
dx/dt = f(x, t). A hurdle that needs tobeovercome is that, for any given threepoints,
there exist infinitely many ways to fit the data, as illustrated on the right side.
e Training of the machine-learning framework using complete data from a large
number of synthetic dynamical systems [h1, h2, ⋯ , hk]. The framework is then
adapted to reconstruct and predict the dynamics of the target systems [f1,⋯ , fm].
f An example: in the testing (deployment) phase, sparse observations are provided
to the trained neural network for dynamics reconstruction.
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based on experience learned from other systems. Extensive results
with varying values of the parameters Ls and Sr for the three testing
systems can be found in Supplementary Note 6.

Performance of dynamics reconstruction
To characterize the performance of dynamics reconstruction, we use
two measures: MSE and prediction stability Rs(MSEc), the probability
that the transformer generates stable predictions (see “Methods”).
Figure 3a shows the working of the framework in the testing phase: a
well-trained transformer receives inputs from previously unseen sys-
tems, with random sequence length Ls and sparsity Sr, and is able to
reconstruct the dynamics. Some representative time-series segments
of the reconstruction and the ground truth are displayed. Figure 3b, c
depict the ensemble-averaged reconstruction performance for the
chaotic food-chain system. As Ls increases and Sr decreases, the
transformer can gain more information to facilitate reconstructions.
When the available data become more sparse, the performance
degrades. Overall, under conditions with random noisy observations,
satisfactory reconstruction of new dynamics can be achieved for
Sr ≤ 1.0 and a sequence length larger than 500 (about 10 cycles of
oscillation).

It is essential to assess how noise affects the dynamics recon-
struction. Figure 3d shows the effects of the multiplicative noise (see
“Methods”) on the reconstruction performance. The results indicate
that, for reasonably small noise (e.g., σ < 10−1), robust reconstruction
with relatively lowMSE values can be achieved.We have also studied the
effect of additive noise, with results presented in Supplementary Note 7.

Key features of dynamics reconstruction
Transformer has the ability to reconstruct the time series of previously
unknown dynamical systems, particularly under high sparsity. This
capability stems from the generalizability of the transformer during its
training on sufficiently diverse chaotic systems with large data. Here
we study how reconstruction performance depends on the number of
training systems. Specifically, we train the transformer on k chaotic
systems, where k ranges from 1 to 28. For each value of k, we randomly
sample a subset from the pool of 28 chaotic systems and calculate the
average MSE over 50 iterations. To ensure robustness, the MSE is
averaged across the sparsity measure Sm whose value ranges from 0
to 1 at the interval of 0.05. As shown in Fig. 4a, the MSE decreases
with increasing k following a power-law trend with saturation,
demonstrating that training our transformer-based framework on a

Fig. 2 | Illustration of the transformer-based dynamics reconstruction frame-
work. a Training (adaptation) phase, where the model is trained on various syn-
thetic chaotic systems, each divided into segments with uniformly distributed
sequence lengths Ls and sparsity measure Sm. The data is masked before being
input into the transformer, and the ground truth is used tominimize theMSE (mean
squared error) loss and smoothness loss with the output. By learning a randomly

chosen segment from a random training system each time, the transformer is
trained to handle data with varying lengths and different levels of sparsity.
b Testing (deployment) phase. The testing systems are distinct from those in the
training phase, i.e., the transformer is not trained on any of the testing systems.
Given sparsely observed set of points, the transformer is able to reconstruct the
dynamical trajectory.
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diverse of chaotic systems with sufficient data is crucial for successful
dynamics reconstruction. Moreover, once themodel has acquired this
generalization ability, it can infer the governing dynamics of new sys-
tems from sparse observations. To demonstrate this, we have shown
that our trained transformer performs well on 28 additional unseen
target systems36 (Supplementary Note 12).

To assess the frequency properties of the training and target
systems more systematically, we analyze the power spectral density
(PSD) for each system. The calculated PSDs are shown in Supplemen-
tary Note 3. Since each chaotic system is assigned a different sampling
timeΔs, chosen to ensurea smooth attractorwhile limiting thenumber
of sample points, it is important to also compare the experimental

Fig. 4 | Demonstration of the capabilities of the transformer-based dynamics
reconstruction. a Power-law decrease of MSE as the number of training systems k
increase. b Scaled frequency f ds of training and target systems. c Example of a time
series reconstructed by the transformer, compared with linear and spline inter-
polations, shown in blue, green, and orange, respectively. Traditional interpolation
methods fail to recover the time series accurately due to their inability to capture

the underlying dynamics. d MSE versus sparsity. While all methods perform simi-
larly under low sparsity, the transformer outperforms the other two methods in
reconstructing dynamics when the observational points are sparse. In all cases, 50
independent realizations are used. Error bars and shaded areas represent standard
deviations across these realizations.

Fig. 3 | Performance of dynamics reconstruction. a Illustration of reconstruction
results for the chaotic food-chain and Lotka–Volterra systems as the testing targets
that the transformer has never been exposed to. For each target system, two sets of
sparse measurements of different length Ls and sparsity Sr are shown. The trained
transformer reconstructs the complete time series in each case. b Color-coded
ensemble-averaged MSE values in the parameter plane (Ls, Sr) (b1). Examples of
testing MSE versus Sr and Ls only are shown in (b2) and (b3), respectively.

c Ensemble-averaged reconstruction stability indicator Rs(MSEc) versus Sr and Ls,
the thresholdMSE isMSEc = 0.01.d Robustness of dynamics reconstruction against
noise: ensemble-averaged MSE in the parameter plane (σ, Sr) (d1) and (σ, Ls) (d2),
with σ being the noise amplitude. An example of reconstruction under noise of
amplitude σ =0.1 is shown in (d3). The values of the performance indicators are the
result of averaging over 50 independent statistical realizations.
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frequencies in a consistent manner. We normalize both the dominant
frequency by the sampling time to achieve this. Specifically, we com-
pute the scaled dominant frequency as f sd = f d � Δs for each system,
ensuring a fair comparison across the systems. As depicted in Fig. 4b,
f sd exhibits a broad distribution across the systems. It can be seen that
the target systems fall within the wide range of the training systems in
both measures, contributing to the strong generalizability observed.

While our method is applicable across a wide range of sparsity,
traditional techniques such as linear and spline interpolations can also
achieve high accuracy when the sparsity level is low. These classical
methods are simple and computationally efficient, and perform ade-
quately in regimes with sufficient observational data. However, as the
data sparsity level increases, the limitations of traditional interpolation
become evident. To explicitly demonstrate this, we take two examples
of traditional interpolation methods as an example: linear and spline
interpolation, where the former approximates missing values by con-
necting the nearest available data points with straight lines and the
latter constructs piecewise polynomial functions to produce smooth
transitions between observed points37,38. Both methods, despite their
simplicity, bydesign lack the capacity to capture the intrinsic dynamics
of complex systems. Figure 4c shows a representative example for
sparsity Sr = 1.0 (Sm =0.86), where the transformer successfully
reconstructs the underlying dynamics, but the linear and spline
interpolation methods fail to recover the correct temporal structure.

To quantify the performance, we calculate the MSE between the
reconstructed time series and the ground truth. Figure 4d shows the
reconstructionperformance across a range of sparsity levels for afixed
sequence length, Ls = 2000 (approximately 400 oscillation cycles).
Results are averaged over 50 independent realizations, with shadowed
areas indicating the standard deviation. When the sparsity measure Sr

is low, all three methods—transformer, linear, and spline interpolation
—perform comparably. However, once Sr exceeds approximately 0.7,
the transformer begins to outperform the other methods, with its
advantage becoming more pronounced as the available data become
increasingly more sparse.

In addition to traditional interpolation methods, compressed sen-
sing (CS) can also work as a signal reconstruction framework. CS
assumes the the signal is sparse in a known basis and often employs
optimization-based recovery39,40. It is important to note that the defini-
tion of the term sparse in CS is referred to as the signal having only a few
non-zero components when expressed in an appropriate basis (e.g.,
Fourier or wavelet). However, the strict assumption can limit the
applicability of CS. In contrast, our method is model-free, data-driven,
and capable of generalizing across unseen complex dynamical systems,
regardless of the dynamics are sparse or not. Simulation results show
that, for a target system, when the observational sparsity is low to
moderate, CS performs better than the transformer. However, when the
observational sparsity is high, our hybrid machine-learning framework
outperforms CS significantly (Supplementary Note 10). Hereafter, the
term high sparsity in this study is used to mean not only a limited
number of available observations but also the failure to reconstruct the
system accurately at this level of sparsity by the traditional methods
such as linear and spline interpolation, CS, and conventional machine-
learning techniques.

Prediction of long-term dynamical climate
The results presented so far are for reconstruction of relatively short-
termdynamics, where the sequence length Ls is limited to below 3000,
corresponding to approximately 60 cycles of dynamical oscillation
in the data. Can the long-term dynamical behavior or climate as

Fig. 5 | Reservoir-computing based long-term dynamics prediction. a An illus-
tration of hybrid transformer/reservoir-computing framework. The time series
reconstructed by the transformer is used to train the reservoir computer that
generates time series of the target system of arbitrary length, leading to a recon-
structed attractor that agrees with the ground truth. b RMSE and DV versus the

sparsity parameter. Shaded areas represent the standard deviation. c Color-coded
ensemble-averaged DV in the reservoir-computing hyperparameter plane (Tl, Ns)
for Sr =0.93 (Sm =0.8). d DV versus training length Tl for Ns = 500 and versus
reservoir network size Ns for Tl = 105. In all cases, 50 independent realizations
are used.
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characterized by, e.g., a chaotic attractor, be faithfully predicted? To
address this question, we note that reservoir computing has the
demonstrated ability to generate the long-term behavior of chaotic
systems5,7,13,16,21. Our solution is then employing reservoir computing to
learn the output time series generated by the transformer so as to
further process the reconstructed time series. The trained reservoir
computer can predict or generate any length of time series of the
target system, as exemplified in Fig. 5a. It can be seen that the
reservoir-computing generated attractor agreeswith the ground truth.
More details about reservoir computing, its training and testing can be
found in Supplementary Note 4.

To evaluate the performance of the reservoir-computing gener-
ated long-term dynamics, we use two measures: root MSE (RMSE) and
deviation value (DV) (“Methods”). Figure 5b presents the short- and
long-term prediction performance by comparing the reservoir-
computing predicted attractors with the ground truth. We calculate
the RMSE using a short-term prediction length of 150 (corresponding
to approximately 3 cycles of oscillation), and the DV using a long-term
prediction length of 10,000 (approximately to 200 cycles of oscilla-
tion). The reconstructed time series and attractors are close to their
respective ground truth when the sparsity parameter Sr is below 0.93,
i.e., sparse measure is below 0.8, as indicated by the low RMSE and DV
values. The number of available data segments from the target system
tends to have a significant effect on the prediction accuracy. Figure 5c,
d show the dependence of the DV on two reservoir-computing
hyperparameters: the training length Tl and the reservoir network size
Ns. As the training length and network size increase, DV decreases,
indicating improved performance.

Discussion
Exploiting machine learning to understand, predict and control the
behaviors of nonlinear dynamical systems have demonstrated
remarkable success in solving previously deemed difficult
problems24,41. However, an essential prerequisite for these machine-
learning studies is the availability of training data. Often, extensive and
uniformly sampled data of the target system are required for training.
In addition, in most previous works, training and testing data are from
the same system, with a focus on minimizing the average training
errors on the specific system and greedily improving the performance
by incorporating all correlations within the data (iid—independently
and identically distributed assumption). While the iid setting can be
effective, unforeseen distribution shifts during testing or deployment
can cause the optimization purely based on the average training errors
to perform poorly42. Several strategies have been proposed to handle
nonlinear dynamical systems. One approach trains neural networks
using data from the same system under different parameter regimes,
enabling prediction of new dynamical behaviors including critical
transitions16. Anothermethod uses data frommultiple systems to train
neural networks in tasks like memorizing and retrieving complex
dynamical patterns43,44. However, this latter approach fails when
encountering novel systems not present in the training data. Meta-
learninghasbeen shown to achieve satisfactoryperformancewith only
limiteddata, but training data from the target systemsare still required
to fine-tune the network weights45. In addition, a quite recent work
used well-defined, pretrained large languagemodels not trained using
any chaotic data and showed that these models can predict the short-
term and long-term dynamics of chaotic systems46.

We have developed a hybrid transformer-basedmachine-learning
framework to construct the dynamics of target systems, under two
limitations: (1) the available observational data are random and sparse
and (2) no training data from the system are available. We have
addressed this challenge by training the transformer using synthetic or
simulated data fromnumerous chaotic systems, completely excluding
data fromthe target system. This allowsdirect application to the target
system without fine-tuning. To ensure the transformer’s effectiveness

on previously unseen systems, we have implemented a triple-
randomness training regime that varies the training systems, input
sequence length, and sparsity level. As a result, the transformer will
treat eachdataset as a new system, rather than adequately learning the
dynamics of any single training system. This process continues with
data from different chaotic systems with random input sequence
length and sparsity until the transformer is experienced and able to
perceive the underlying dynamics from the sparse observations. The
end result of this training process is that the transformer gains
knowledge through its experience by adapting to the diverse synthetic
datasets. It is worth noting that the dimension of the systems (i.e., the
number of variables) provided to the transformer in the inference
phase should match those in the testing phase. During the testing or
deployment phase, the transformer reconstructs dynamics from
sparse data of arbitrary length and sparsity drawn from a completely
new dynamical system. When multiple segments of sparse observa-
tions are available, we were able to reconstruct the system’s long-term
climate through a two-step process. First, the transformer repeatedly
reconstructs system dynamics from these data segments. Second,
reservoir computing uses these transformer-reconstructed dynamics
as training data to generate system evolution over any time duration.
The combination of the transformer and reservoir computing con-
stitutes our hybrid machine-learning framework, enables reconstruc-
tion of the target system’s long-term dynamics and attractor from
sparse data alone.

We emphasize the key feature of our hybrid framework: recon-
structing the dynamics from sparse observations of an unseen dyna-
mical system, even when the available data has a high degree of
sparsity.Wehave tested the frameworkon twobenchmark ecosystems
and one classical chaotic system. In all cases, with extensive training
conducted on synthetic datasets under diverse settings, accurate and
robust reconstruction has been achieved. Empirically, the minimum
requirements for the transformer to be effective are: the dataset from
the target system should have the length of at least 20 average cycles
of its natural oscillation and the sparsity degree is less than 1. For
subsequent learning by reservoir computing, at least three segments
of the time series data from the transformer are needed for recon-
structing the attractor of the target system. We have also addressed
issues such as the effect of noise and hyperparameter optimization.
The key to the success of the hybrid framework lies in versatile
dynamics: with training based on the dynamical data from a diverse
array of synthetic systems, the transformer will gain the ability to
reconstruct the dynamics of the never-seen target systems. In essence,
the reconstruction performance on unseen target systems follows a
power-law trend with respect to the number of synthetic systems used
during the training phase. We have provided a counter example that,
when dynamics are lacking in the time series, the framework fails to
perform the reconstruction task (Supplementary Note 8).

It is worth noting that both the training and target dynamical
systems in our experiments are autonomous. However, real-world
systems can often be nonautonomous. To adapt the framework to
target nonautonomous systems, we have developed a mixed training
strategy that involves both autonomous and nonautonomous systems
(Supplementary Note 9). With regard to long-term prediction, climate
dynamics are not stationary but often time-variant, i.e., non-
autonomous. When providing the reservoir computer with high-
fidelity outputs generated by the transformer from sparse observa-
tions, long-term climate prediction becomes feasible. Moreover, we
have demonstrated the superiority of our proposed hybrid machine-
learning scheme to traditional interpolation methods, traditional
recurrent neural networks, and CS (Supplementary Note 10). Addi-
tional results from chaotic systems are presented in Supplementary
Note 12. While the proposed machine-learning framework demon-
strates promising performance onmost of the target systems, we note
that there are few cases where the transformer struggles to produce
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accurate reconstruction due to the particularly complex dynamics and
high sparsity observation (Supplementary Notes 11 and 12).

A question is whether our proposed framework can function as a
universal. The observed power-law relationship between the recon-
struction error and training set diversity suggests its potential to
function as a foundationmodel. In addition, extensive experiments on
a broad set of target systems have demonstrated the emergence of
extrapolation capabilities, where the model utilizes global patterns in
sparse observations to infer the underlying dynamics. However,
establishing the theoretical base for this generalization remains chal-
lenging. Classical statistical learning theory (e.g., VC dimension, bias-
variance trade-off) has proven inadequate in explaining the empirical
success of over parameterized deep neural networks47,48. As stated in
the Standford CRFM report49, the community currently has a quite
limited theoretical understanding of foundation models. Our current
insights are empirical and based on physical intuition, warranting the
development of a rigorous formalization of the inner mechanisms of
the proposed hybrid machine-learning framework.

Moreover, there are constraints related to data segment length
and sparsity. Specifically, performance deteriorates if the available
data is insufficient or the sparsity exceeds a critical threshold. These
thresholds are not universal across different systems, and determining
them for a new target system is challenging. A reasonable solution is
to supply longer observation windows or more segments when pos-
sible. In this work, we have provided such conditions through exten-
sive experiments and the statistical results consistently reveal trends
that are likely to generalize to other systems with similar levels of
sparsity and sequence length. It is worth mentioning that this chal-
lenge in fact emerges commonly in time series analysis. For example,
while weather forecasts can be extensively validated using historical
data, it remains fundamentally uncertain whether predictions for the
coming days will be accurate. Only statistical confidence can be
offered.

Overall, our hybrid transformer/reservoir-computing framework
has been demonstrated to be effective for dynamics reconstruction
and prediction of long-term behavior in situations where only sparse
observations from a newly encountered system are available. In fact,
such a situation is expected to arise in different fields. Possible appli-
cations extend to medical and biological systems, particularly in
wearable healthmonitoring where data collection is often interrupted.
For instance, smartwatches and fitness trackers regularly experience
gaps due to charging, device removal during activities like swimming,
or signal interference. Another potential application is predicting cri-
tical transitions from sparse and noisy observations, such as detecting
when an athlete’s performance metrics indicate approaching over
training, or when a patient’s vital signs suggest an impending health
event. In these cases, our hybrid framework can reconstruct complete
time series from incomplete wearable device data, serving as input to
parameter-adaptable reservoir computing16,50 for anticipating these
critical transitions. This approach is particularly valuable for con-
tinuous health monitoring where data gaps are inevitable, whether
from smart devices being charged, removed, or experiencing con-
nectivity issues.

Methods
Hybrid machine learning
Consider a nonlinear dynamical system described by

dxðtÞ
dt

=FðxðtÞ, tÞ, t 2 ½0,T �, ð3Þ

where xðtÞ 2 RD is a D-dimensional state vector and F(⋅) is the
unknown velocity field. Let X = ðx0, � � � ,xLs

Þ> 2 RLs ×D be the full uni-
formly sampled data matrix of dimension Ls ×D with each dimension
of the original dynamical variable containing Ls points. A sparse

observational vector can be expressed as

~X=gαðXÞð1 + σ � ΞÞ, ð4Þ

where ~X 2 RLs ×D is the observational data matrix of dimension Ls ×D
and gα( ⋅ ) is the following element-wise observation function:

XO
ij = gαðXijÞ=

Xij , if Xij is observed,

0, otherwise ,

�
ð5Þ

with α representing the probability of matrix element Xij being
observed. In Eq. (4), Gaussian white noise of amplitude σ is present
during the measurement process, where Ξ � N ð0, 1Þ. Our goal is uti-
lizing machine learning to approximate the system dynamics function
F( ⋅ ) by another function F0ð�Þ, assuming that F is Lipschitz continuous
with respect to x and the observation function produces sparse data:
g : X ! ~X. To achieve this, it is necessary to design a functionF ð~XÞ=X
that comprises implicitly F0ð�Þ � Fð�Þ so that it reconstructs the system
dynamics by filling the gaps in the observation, where F ð~XÞ should
have the capability of adapting to any given unknown dynamics.

Selecting an appropriate neural network architecture for recon-
structing dynamics from sparse data requires meeting two funda-
mental requirements: (1) dynamical memory to capture long-range
dependencies in the sparse data, and (2) flexibility to handle input
sequences of varying lengths. Transformers32, originally developed for
natural language processing, satisfy these requirements due to their
basic attention structure. In particular, transformers has been widely
applied and proven effective for time series analysis, such as
prediction51–53, anomaly detection54, and classification55. Figure 6 illus-
trates the transformer’s main structure. The data matrix ~X is first
processed through a linear fully-connected layer with bias, trans-
forming it into an Ls ×N matrix. This output is then combined with a
positional encoding matrix, which embeds temporal ordering infor-
mation into the time series data. This projection process can be

Fig. 6 | Transformer architecture. The transformer receives the sparse and ran-
dom observation as the input and generates the reconstructed output. Nb refers to
the number of transformerblocks. See text for a detailedmathematical description.
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described as56:

Xp = ~XWp +Wb +PE, ð6Þ

where Wp 2 RD×N represents the fully-connected layer with the bias
matrix Wb 2 RLs ×N and the position encoding matrix is PE 2 RLs ×N .
Since the transformer model does not inherently capture the order
of the input sequence, positional encoding is necessary to provide
the information about the position of each time step. For a given
position 1≤pos≤ Lmax

s and dimension 1 ≤ d ≤D, the encoding is given
by

PEpos, 2d = sin
pos

100002d=N

� �
, ð7Þ

PEpos, 2d + 1 = cos
pos

100002d=N

� �
, ð8Þ

The projected matrix Xp 2 RLs ×N then serves as the input sequence for
Nb attention blocks. Each block contains a multi-head attention layer, a
residual layer (add& layer norm), and a feed-forward layer, and a second
residual layer. The core of the transformer lies in the self-attention
mechanism, allowing the model to weight the significance of distinct
time steps. The multi-head self-attention layer is composed of several
independent attention blocks. The first block has three learnable weight
matrices that linearly mapXp into queryQ1 and keyK1 of the dimension
Ls×dk and value V1 of the dimension Ls×dv:

Q1 =XpWQ1
, K1 =XpWK1

, V1 =XpWV1
, ð9Þ

whereWQ1
2 RN ×dk ,WK1

2 RN ×dk , andWV1
2 RN ×dv are the trainable

weight matrices, dk is the dimension of the queries and keys, and dv is
the dimension of the values. A convenient choice is dk = dv =N.
The attention scores between the query Q1 and the key K1 are
calculated by a scaled multiplication, followed by a softmax function:

AQ1 ,K1
= softmax

Q1K
T
1ffiffiffiffiffiffi

dk

p
 !

, ð10Þ

where AQ1 ,K1
2 RLs × Ls . The softmax function normalizes the data with

softmaxðxiÞ= expðxiÞ=
P

j expðxjÞ, and the
ffiffiffiffiffiffi
dk

p
factor mitigates the

enlargement of standard deviation due to matrix multiplication. For
the first head (in the first block), the attentionmatrix is computed as a
dot product between AQ1 ,K1

and V1:

O11 = AttentionðQ1,K1,V1Þ,

= AQ1 ,K1
V1 = softmax

Q1K
T
1ffiffiffiffiffiffi

dk

p
 !

V1,
ð11Þ

where O11 2 RLs ×dv . The transformer employs multiple (h) attention
heads to capture information from different subspaces. The resulting
attention heads O1i (i = 1, …, h) are concatenated and mapped into a
sequence O1 2 RLs ×N , described as:

O1 = CðO11,O12, � � �O1hÞWo1, ð12Þ

where C is the concatenation operation, h is the number of heads, and
Wo1 2 Rhdv ×N is an additional matrix for linear transformation for
performance enhancement. The output of the attention layer under-
goes a residual connection and layer normalization, producing XR1 as
follows:

XR1 = LayerNormðXp +DropoutðO1ÞÞ ð13Þ

A feed-forward layer then processes this data matrix, generating
output XF1 2 RLs ×N as:

XF1 = max 0,XR1WFa
+ba

� �
WFb

+bb, ð14Þ

whereWFa
2 RN ×df ,WFb

2 Rdf ×N , ba and bb are biases, and maxð0, �Þ
denotes a ReLU activation function. This output is again subjected to a
residual connection and layer normalization.

The output of the first block operation is used as the input to the
second block. The same procedure is repeated for each of the
remainingNb–1 blocks. The final output passes through a feed-forward
layer to generate the prediction. Overall, the whole process can be
represented as Y=F ð~XÞ.

The second component of our hybrid machine-learning frame-
work is reservoir computing, which takes the output of the transfor-
mer as the input to reconstruct the long-term climate or attractor of
the target system. A detailed description of reservoir computing used
in this context and its hyperparameters optimization are presented in
Supplementary Notes 4 and 5.

Machine learning loss
To evaluate the reliability of the generated output, we minimize a
combined loss function with two components: (1) a mean squared
error (MSE) loss that measures absolute error between the output and
ground truth, and (2) a smoothness loss that ensures the output
maintains appropriate continuity. The loss function is given by

L=α1Lmse +α2Lsmooth, ð15Þ

where α1 and α2 are scalar weights controlling the trade-off between
the two loss terms. The first component Lmse measures the absolute
error between the predictions and the ground truth:

Lmse =
1
n

Xn
i= 1

ðyi � ŷiÞ2, ð16Þ

with n being the total number of data points, yi and ŷi denoting the
ground truth and predicted value at time point i, respectively. The
second component Lsmooth of the loss function consists of two terms:
Laplacian regularization and total variation regularization, which pena-
lize the second-order differences and absolute differences, respectively,
between consecutive predictions. The two terms are given by:

Llaplacian =
1

n� 2

Xn�1

i = 2

ðŷi�1 + ŷi+ 1 � 2ŷÞ2, ð17Þ

and

Ltv =
1

n� 1

Xn�1

i= 1

jŷi � ŷi+ 1j: ð18Þ

We assign the sameweights to the twopenalties, so the final combined
loss function to be minimized is

L=Lmse +αsðLlaplacian +LtvÞ: ð19Þ

We set αs =0.1. It is worth noting that the smoothness penalty is a
crucial hyperparameter that should be carefully selected. Excessive
smoothness leads the model to learn overly coarse-grained dynamics,
while absence of a smoothness penalty causes the reconstructed
curves to exhibit poor smoothness (Supplementary Note 5).

Computational setting
Unless otherwise stated, the following computational settings for
machine learning are used. Given a target system, time series are
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generated numerically by integrating the system with time step dt =
0.01. The initial states of both the dynamical process and the neural
network are randomly set from a uniformdistribution. An initial phase
of the time series is removed to ensure that the trajectory has reached
the attractor. The training and testing data are obtained by sampling
the time series at the interval Δs chosen to ensure an acceptable gen-
eration. Specifically, for the chaotic food-chain, Lorenz and
Lotka–Volterra systems, we setΔs = 1,Δs =0.02, andΔs = 1 respectively,
corresponding to approximately 1 over 30 ~ 50 cycles of oscillation. A
similar procedure is also applied to other synthetic chaotic systems
(See Table S3 for Δs values for each system). The time series data are
preprocessed by using min-max normalization so that they are in the
range [0,1]. The complete data length for each system is 1,500,000
(about 30,000 cycles of oscillation), which is divided into segments
with randomly chosen sequence lengths Ls and sparsity Sr. For the
transformer, we use a maximum sequence length of 3000 (corre-
sponding to about 60 cycles of oscillation)—the limitation of input
time series length. We apply Bayesian optimization57 and a random
search algorithm58 to systematically explore and identify the optimal
set of various hyperparameters. Two chaotic Sprott systems—Sprott0
and Sprott1—are used as validation systems to find the optimal
hyperparameters and to train thefinalmodelweights, ensuringnodata
leakage from the testing systems. The optimized hyperparameters for
the transformer are listed in Table 1. All simulations are run using
Python on computers with six RTX A6000 NVIDIA GPUs. A single
training run of our framework typically takes about 30min using one
of the GPUs.

Prediction stability
The prediction stability describe the probability that the transformer
generates stable predictions, which is defined as the probability that
the MSE is below a predefined stable threshold MSEc:

RsðMSEcÞ=
1
n

Xn
i= 1

½MSE<MSEc�, ð20Þ

wheren is the number of iterations and [ ⋅ ] = 1 if the statement inside is
true and zero otherwise.

Deviation value
For a three-dimensional target system, we divide the three-
dimensional phase space into a uniform cubic lattice with the cell
sizeΔ =0.05 and count the number of trajectory points in each cell, for
both the predicted and true attractors in a fixed time interval. The DV

measure is defined as21

DV �
Xmx

i= 1

Xmy

j = 1

Xmz

k = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i, j, k � f̂ i, j, k
� �2r

, ð21Þ

where mx, my, and mz are the total numbers of cells in the x, y, and z
directions, respectively, fi,j,k and f̂ i, j, k are the frequencies of visit to the
cell (i, j, k) by the predicted and true trajectories, respectively. If the
predicted trajectory leaves the phase space boundary, we count it as if
it has landed in the boundary cells where the true trajectory
never goes.

Noise implementation
We study how two types of noise affect the dynamics reconstruction in
this work: multiplicative and additive noise. We use normally dis-
tributed stochastic processes of zero mean and standard deviation σ,
while the former perturbs the observational points x to x + x ⋅ ξ after
normalization and the latter perturbs x to x + ξ. Note thatmultiplicative
(demographic) noise is common in ecological systems.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study is publicly available via Zenodo at
https://doi.org/10.5281/zenodo.1401497459.

Code availability
The code is publicly available via Zenodo at https://doi.org/10.5281/
zenodo.1427934760 and via GitHub at https://github.com/Zheng-
Meng/Dynamics-Reconstruction-ML.
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SUPPLEMENTARY NOTE 1: ADDITIONAL BACKGROUND

For dynamical systems reconstruction, machine-learning methods are basically complex ap-
proximators mapping inputs to the outputs, or fit relationships among the variables. Deep learn-
ing, in particular, is a purely data-driven method that relies on extensive datasets to discover the
input-output relationships. This process inherently causes the model to overfit to a specific do-
main distributed about the training data. As a result, models trained on one dataset often struggle
to adapt to unseen data from new distributions, a phenomenon known as out-of-distribution gen-
eralization or distribution (covariate) shift [1]. This limitation is particularly pronounced when
learning nonlinear dynamics. The challenge is compounded not only by the nonstationary nature
of the dynamics but also by changes in the system parameters, which can cause distribution shifts.
More extreme shifts can occur when switching between different systems.

Recent years have witnessed a growth of interest in machine learning methods leading to pre-
dictive frameworks to estimate data values using unsupervised or supervised learning, due to their
nonlinearity, flexibility, and ability to capture useful information embedded in the observed data.
Traditional methods include K-nearest neighbor (KNN) [2], support vector machine (SVM) [3],
and MissForest [4], etc., but deep learning models are able to deliver more accurate predictions,
which include three major categories: recurrent neural network (RNN)-based, generative models,
and self-attention based [5]. RNN-based methods [6], featured by their recurrent neural-network
structure, are time-consuming and memory-constrained, making it difficult to capture the long-
term dependencies within the time series. In addition, the RNN methods are commonly iterative,
which inevitably introduces compounding errors through the process. Generative models include
generative adversarial network (GAN) [7], variational autoencoder (VAE) [8], and diffusion mod-
els [9]. For example, the GAN-based method GAIN [7] takes a generator and a discriminator to
predict the data values, where the former imputes the missing values conditioned on the observed
data and outputs a reconstructed complete time series, and the latter determines which values are
predicted and which belong to the observed data. Generative models provide an adversarial point
of view to improve the performance of the generator, but it may suffer from non-convergence or
mode collapse due to the loss formulation, and thus are difficult to train [10]. Self-attention-based
methods, e.g., transformer models [11], focus on capturing the long-range dependencies and com-
plex relationships within the time series. They excel at handling multi-dimensional data and at
tackling input and output sequences of arbitrary length [12]. However, transformer models require
substantial amounts of data for effective training and for avoiding overfitting. For instance, a vision
transformer (ViT) usually yields low accuracies on mid-size datasets but attains high accuracies
when trained on sufficiently large datasets (e.g., 14M-300M images) [13]. Transformer model is
thus preferable when the resources are adequate due to its computational efficiency and scalability.
Overall, most previous works focused on predicting unobserved values by assembling observable
points in various ways, while marginalizing the underlying dynamics, which can be effective for
specialized applications but is difficult to be generalized to complex dynamical systems.

It is worth mentioning the related problem of missing data imputation. Handling missing data
can be approached through deletion or imputation. Deletion entails removing all entries with miss-
ing values [14]. This method is simple and effective when the missing data rate is low, typically
less than 10% or 15%, so the removal procedure does not significantly affect the analysis [15].
However, as the missing rate increases, the deletion method becomes less effective and can lead to
biased conclusions [16]. In contrast, imputation replaces missing data with estimated values us-
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ing statistical or machine learning techniques [17]. Simple imputation methods, such as replacing
missing values with the mean or median of the available values, can be readily implemented and
are often used during data preprocessing. However, these methods can produce biased or unreal-
istic results, especially for high-dimensional datasets. Regression is another common imputation
technique, where missing values are predicted using a regression model built from complete ob-
servations [18]. While effective, this method requires a large amount of data and does not account
for any inherent variability. A more advanced approach is the Bayesian method, which treats miss-
ing values as unknown parameters drawn from an appropriate probability distribution [19]. This
approach allows for the incorporation of prior knowledge about the data distribution and specifies
a probabilistic model that captures the relationship between the observed and missing values.

SUPPLEMENTARY NOTE 2: ADAPTATION (TRAINING) AND DEPLOYMENT (TESTING)
SYSTEMS

(a) (b)

(l)(k)

(q)
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FIG. S1. The chaotic systems for adaptation learning during the training and the target systems for testing.
(a-c) Target testing systems: food-chain, Lorenz, and Lotka-Volterra systems, respectively. Systems for
learning: (d) Aizawa, (e) Bouali, (f) Chua, (g) Four wing, (h) Hastings-Powell, (i) Rikitake, (j) Wang, and
(k-y) Sprott systems.

We provide the details of the systems employed during both the adaptation and deployment
phases of our hybrid machine-learning framework as in Fig. S1, some of which are from Ref. [20].
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The equations and parameters used to simulate the time series are listed in Tabs. S1 and S2. For
the target testing systems, in addition to the three-species food chain system discussed in detail in
the main text, two other systems are tested: the classic chaotic Lorenz and Lotka-Volterra systems.

The Lorenz system is described by

dx

dt
= σlo(y − x),

dy

dt
= x(ρlo − z)− y, (S1)

dz

dt
= xy − βloz,

where σlo = 10, ρlo = 28, and βlo = 2.67 are parameters. The Lotka-Volterra system was
originated from the modeling of predator-prey interactions and of certain chemical reactions [21].
For a system of Nc species with population Pi (i = 1, . . . , Nc) competing for finite resources, the
equations are given by

dPi

d
= riPi(1−

Nc∑
j=1

aijPj), (S2)

where ri is the growth rate of species i and aij represents characterizes the interaction between
species j and i. We use the four-species Lotka-Volterra model [21], with the parameter values:

ri =


1

0.72

1.53

1.27

 , aij =


1 1.09 1.52 0

0 1 0.44 1.36

2.33 0 1 0.47

1.21 0.51 0.35 1

 , (S3)

While transformer has the advantage of flexible input data length, the dimension of the input vector
needs to be fixed. Since the trained systems are three-dimensional, the target systems should have
the same dimension. For the generated four-dimensional Lotka-Volterra time series, we take only
data from the first three variables as the target. Since this operation discards the information of the
fourth dynamical variable, the reconstruction task becomes even more challenging.

When obtaining time series data from different dynamical systems, it is necessary to carefully
choose the sampling rate. The goal of our work is to reconstruct the dynamics of new target sys-
tems that are smooth dynamical systems. To maintain the smoothness, selecting an appropriate
sampling rate ∆s for data generation is essential. An excessively large ∆s can produce jagged
attractors that inadequately represent the long-term dynamics, while some too-small sampling rate
leads to oversampling. We determine the appropriate ∆s values for each system by ensuring
the attractors remain smooth while limiting the number of sampled points, as listed in Tab. S3.
Figure S2 presents examples of the attractors of the simulated target systems under varying sam-
pling rates, where the orange-colored attractors represent the data ultimately utilized in training
our hybrid machine-learning framework. Note that that the orange-colored attractors represent
the ground-truth trajectories, i.e., the target smooth signals we aim to recover. They are not the
input data to the machine: the machine-learning model does not receive these orange trajectories
as input (unless the data is fully observed, i.e., with zero sparsity). Instead, the inputs typically
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∆!= 0.5(a)

(b)

(c)

∆!= 1 ∆!= 2 ∆!= 7

∆!= 0.5 ∆!= 1 ∆!= 2 ∆!= 7

∆!= 0.01 ∆!= 0.02 ∆!= 0.04 ∆!= 0.16

FIG. S2. Simulated attractors of several target systems with varying sampling rate ∆s. (a-c) Target testing
systems: chaotic food-chain, Lorenz, and Lotka-Volterra systems, respectively. The orange attractors are
those reconstructed (ground-truth) using the sampling rate stated in the main text, which ensures that the
attractors remain sufficiently smooth while maintaining a limited number of sampled points. The attractors
in the right most column are simulated according to the Nyquist criterion.

consist of randomly and sparsely sampled (and visually jagged) trajectories, and our framework is
designed to reconstruct the smooth ground-truth trajectory from them.

It is also worth noting that the the third column of Fig. S2 corresponds to doubling the selected
sampling rate, which reduces the data availability to approximately 50%. The last column shows
that a sampling rate 7-8 times higher than the selected rate yields about 14% data availability,
which is consistent with the Nyquist criterion (Sr = 1). This demonstrates a nonlinear (concave)
relationship between the sampling rate and sparsity. For example, in the chaotic food chain system,
increasing ∆s from 1 to 2 reduces the data availability to 50% (corresponding to Sr = 0.58),
whereas further increasing it to 7 results in Sr = 1 (only a 0.42 increment).

SUPPLEMENTARY NOTE 3: EFFECTIVE BANDWIDTH OF CHAOTIC SYSTEMS

The Nyquist sampling theorem in signal processing establishes the conditions for reconstruct-
ing a continuous time band-limited signal from its discrete samples. Specifically, to perfectly
reconstruct a band-limited signal, the sampling rate must be at least twice the highest frequency
component present in the signal; this minimum sampling rate is known as the Nyqusit sampling
rate. Mathematically, if a continuous-time signal x(t) contains no frequency components above
fmax Hz, it can be faithfully represented by discrete samples taken at a rate fs > 2fmax Hz. It is
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worth noting that the theorem requires perfect uniformly sampling with no noise in the measure-
ment with ideal reconstruction filters.

For periodic signals such as sinusoidal waves, the bandwidth determination is straightforward,
as the highest harmonic component determines the Nyquist rate. Chaotic systems present unique
challenges for bandwidth determination due to their complex and broad spectra. In particular,
chaotic systems typically contain continuous, broadband power spectra rather than discrete fre-
quency components, and the power spectral density decays with the frequency, theoretically ex-
tending to infinite frequencies with diminishing power. In addition, different chaotic systems
exhibit distinct spectral distributions. Since chaotic signals can contain energy across an infinitely
wide frequency range in principle, a strict application of the Nyquist theorem would require an
infinitely high sampling rate. However, this is neither practical nor necessary for applications.
To address this challenge, we define the “effective bandwidth” based on the cumulative power
spectral density, which defines a practical frequency limit that captures the significant dynamical
information of the system, while excluding negligible high-frequency components.

Specifically, we define a “cutoff” frequency fmax as the frequency below which 98% of the total
signal power is contained. We calculate the power spectral density (PSD) by employing Welch’s
method [22], where the time series x(t) is divided into overlapping segments and a window func-
tion is applied to each segment. The PSD is then computed and averaged as:

Pxx(f) =
1

K

K∑
i=1

|
Nx−1∑
n=0

w(n)xi(n)e
−j2πfn|2,

where K is the number of segments, Nx is the segment length, w(n) is the window function, and
xi(n) is the i-th segment of the signal. The dominant frequency fd is computed as the maximum
frequency across all dimensions, where in each dimension, it is identified as the frequency corre-
sponding to the maximum value in PSD. Afterward, we compute the cumulative power distribution
by integrating the PSD from zero frequency to each frequency point:

C(f) =

∫ f

0
Pxx(ξ)dξ∫∞

0
Pxx(ξ)dξ

.

We identify the frequency fmax at which the cumulative power reaches our predefined threshold,
i.e., C(fmax) = 0.98. Table S3 shows the dominant frequency fd, effective bandwidth fmax, and
the sampling rate ∆s for each chaotic system in our study. The quantity LN

s defined in the main
text, where LN

s = 2fmax · T , can be calculated as LN
s = 2fmax · Ls ·∆s.

We analyze the power spectral density for each system, to assess the frequency properties of
the training and target systems more systematically. The calculated PSDs are shown in Fig. S3,
with the black dashed vertical line in each panel indicating the dominant frequency fd. The three
colors in each panel represent the PSDs of the three state variables of the system. A common
feature across all systems in both the training and testing phases is that, due to their nonlinear
and chaotic nature, they exhibit broadband spectra with no dominant single frequency. We find
that the target systems share similar frequency components with the training systems, providing
an intuitive explanation of the ability of the transformer to generalize to the target systems.

In addition, we emphasize that, for chaotic systems that typically exhibit broad and continuous
power spectral densities, if one were to apply a sliding window and approximate the dominant fre-
quency within each window, the instantaneous frequency content would vary significantly across

6



time. In high-frequency windows, sampling several points may not be sufficient, and random sam-
pling worsens the situation. This variability, in combination with the random sparsity patterns,
make Fourier interpolation or other classical methods inappropriate, providing further justification
for our proposed framework.

(d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

(n) (o) (p) (q) (r)

(s) (t) (u) (v) (w)

(x) (y) (z) (aa) (ab)

(ac) (ad) (ae)

(a) (b) (c)

FIG. S3. Power spectral density for the training and the target systems for testing. (a-c) Target testing
systems: food-chain, Lorenz, and Lota-Volterra systems, respectively (d) Aizawa, (e) Bouali, (f) Chua, (g)
Four wing, (h) Hastings-Powell, (i) Rikitake, (j) Rossler, (k-ad) Sprott, (ae) Wang systems.
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SUPPLEMENTARY NOTE 4: RESERVOIR COMPUTING

𝑖(𝑡) 𝑟(𝑡) 𝑜(𝑡)
Input Hidden Output

FIG. S4. Basic configuration of reservoir computing.

Reservoir computing, a class of recurrent neural networks, is a computational framework de-
signed for efficient training and dynamical systems modeling. It consists of three layers: an input
layer, a hidden recurrent layer, and an output layer. Unlike traditional recurrent neural networks
where the weights associated all layers are trained, in reservoir computing the input weights and in-
ternal recurrent connections remain fixed after random initialization, while only the output weights
are adjusted during training through a linear regression. This setting enables efficient training with
performance similar to that of the conventional recurrent neural networks [23].

Figure S4 illustrates the basic structure of reservoir computing, where the input signal i(t),
typically a low-dimensional vector, is mapped into the high-dimensional state space in the hidden
layer with Ns nodes by the input matrix Win. Activated by the sequence of reservoir input signals
[i(:, 1), i(:, 2), · · · , i(:, t)], the hidden layer state r(t) is updated step-by-step according to

r(t+ 1) = (1− αr) · r(t)+
αr · tanh [A · r(t) +Win · i(t)] , (S4)

where αr is the leaking parameter that controls the speed of reservoir memory decays and the
nonlinear activation function is of the hyperbolic tangent type. The dimensions of the input signal
i(t), hidden state r(t), and output signal o(t) are denoted as Di, Ns, and Do, respectively. For
three-dimensional chaotic systems, we have Do = Di = 3. The elements of the input matrix
Win, which has the dimension of Ns ∗Di, are generated uniformly in the range [−γr, γr] prior to
training. The elements of the hidden network A of the dimension Ns ∗ Ns, are Gaussian random
numbers generated before training, given the network size Ns, network link probability dr, and
spectral radius ρr. The reservoir network size Ns is typically much larger than input dimension Di

to ensure that it has sufficient capacity to learn the complex dynamics underlying the input signal.
The output matrix Wout has the dimension of Do ∗ Ns. During the training phase, the reservoir
state r(t) is updated according to Eq. (S4) and is concatenated into a matrix R of the dimension
Ns ∗Tl, where Tl is the total training length. With the corresponding input concatenated matrix U ,
the output matrix Wout can be obtained by Tikhonov regularization [24] as

Wout = U · R⊺(R · R⊺ + βrI)−1, (S5)
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where βr is the regularization coefficient, I is the identity matrix of the dimension Ns. In the
testing phase, the trained model takes the input i(t), updates the reservoir state r(t), and predicts
the output o(t) via a linear combination of the reservoir state:

o(t) = Woutr(t). (S6)

As the ground truth data is no longer provided to the reservoir during the testing phase, the output
from Eq. (S6) is fed back as the input at the next time step and used to update the hidden states.
This process is repeated for any long time until the desired length of dynamical prediction is
reached. An assumption of our hybrid machine-learning framework is that a number of sparse
data segments are available. The corresponding transformer-reconstructed segments are then used
as the training data for the reservoir computer for it to find the relationship between the dynamical
state at the current step and that in the immediate future. The trained reservoir computer can then
predict the attractor or generate arbitrarily long time series of the target system.

SUPPLEMENTARY NOTE 5: HYPERPARAMETER OPTIMIZATION

Hyperparameter values are essential for machine-learning methods, which can have a signif-
icant effect on the performance. We optimize the hyperparameters of transformer and reservoir
computing through random search and Bayesian optimization, respectively.

Transformer hyperparameter optimization

Random search is a simple yet effective method for hyperparameter optimization. Unlike grid
search where hyperparameters are tested exhaustively over each possible combination, random
search allows sampling hyperparameter values in a larger space. Each time, it randomly selects
a combination of the hyperparameters from the search space, evaluates the performance on the
validation dataset, and chooses the best performance combination. Due to the large number of
hyperparameters the transformer contains, random search is practically effective in terms of the
trade-off between the computational cost and performance.

We optimize eleven hyperparameters for transformer through random search, with their values
listed in Table. I in the main text. To gain an intuitive understanding of how these hyperparameter
values impact the performance, we test the target systems as they are not used in training and
therefore are not used during the hyperparameter optimization process. We compare the prediction
performance between the two cases where the hyperparameters are optimized and not. Two chaotic
Sprott systems, Sprott0 and Sprott1, are used to find optimal hyperparameters. As transformer
is typically “data-greedy,” we not only prepare multiple systems, but for each system, we also
provide a sufficient amount of data for training. To demonstrate statistically how much data is
required from each training system, we use varying training data length Dl and evaluate the model
performance on target systems. Representative results are shown in Fig. S5. It can be seen that the
MSEs are large when Dl is small, but after reaching a threshold about Dl = 105, the performance
improves dramatically. Notably, the sparsity affects the model performance as well: if it is large,
increasing Dl hardly yields any improvement. This is reasonable, as merely increasing the training
data for a specific system does not enhance the transformer’s ability to generalize. In fact, it may
even hinder the capacity of the model to learn new dynamics due to overfitting on a specific system.
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(a) (b)

(c)

FIG. S5. Effects of the training length Dl on dynamics reconstruction performance, for different sparsity
Sr. (a-c) Color-coded ensemble-averaged MSE values in the plane of (Dl, Sr) for the food-chain, Lorenz,
and Lotka-Volterra systems, respectively. Each value of the averaged MSE is obtained using 50 statistical
realizations. Increasing the training length can often dramatically improve the prediction performance.

To demonstrate the effectiveness of random search in finding optimal or near-optimal hyperpa-
rameter sets, we present the results on the effects of typical hyperparameters on the performance,
as depicted in Fig. S6, where all hyperparameters are fixed except one. We train the transformer
multiple times to evaluate the effect of varying this hyperparameter on the averaged MSE across
trained systems. The results show that in most cases, the hyperparameters determined by random
search are indeed optimal or near-optimal for training the transformer.

Smoothness penalty αs is also a crucial hyperparameter in the training procedure. We study
the effect of this penalty on reconstruction quality through two examples in Figs. S7(a) and S7(b),
where training with smoothness yields smoother reconstructions. To evaluate the impact of αs on
the reconstruction accuracy, we test four values: αs = 0 (no smoothness), αs = 0.1 (our setting),
αs = 0.5, and a large penalty αs = 1. In each case, the dynamics reconstruction framework is
trained 50 times and evaluated on the target system. The results in Figs. S7(c) and S7(d) show that
excessive smoothness leads the model to learn overly coarse-grained dynamics, resulting in a high
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FIG. S6. Effects of representative hyperparameters on performance. Columns 1-4 are the results for the food
chain, Lorenz, Lotka-Volterra systems, and the averaged performance of these systems, respectively. Rows
1-5 present the performance with respect to the following hyperparameters: input embedding dimension
N , number Nb of transformer blocks, transformer heads h, feedforward neurons df , and learning rate lr,
respectively. To reduce the statistical fluctuations, 50 transformer models are trained to obtain the averaged
MSE, and error bars represent standard deviation across them.

MSE. Conversely, when the smoothness is small or absent, the MSE remains similarly low. We
conclude that the smoothness penalty should be chosen appropriately to ensure both accurate and
smooth reconstruction.
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Without smoothness With smoothness

(a) (b)

(c) (e)(d)Food chain Lorenz Lotka-Volterra

FIG. S7. Effects of the smoothness penalty αs on dynamics reconstruction performance. (a) An example of
training without smoothness and (b) an example of training with smoothness. (c-e) Performance for the food
chain, Lorenz, and Lotka-Volterra systems, respectively, with respect to the smoothness penalty parameter
αs. To reduce the statistical fluctuations, 50 transformer models are trained to obtain the averaged MSE,
and error bars represent standard deviations. The smoothness penalty should not be set too large in order to
ensure both smooth and accurate reconstruction.

Reservoir computing hyperparameter optimization

A key issue of reservoir computing is that its performance often depends sensitively on the
hyperparameters. We apply Bayesian optimization from Python (bayesian-optimization) to find
the optimal values of the following hyperparameters: leakage parameter αr, regularization coef-
ficient βr, input matrix scaling factor γr, spectral radius ρr, link probability dr determining the
network matrix A, and the amplitude σr of the noise added to the input signal. The optimized
hyperparameters are listed in Tab. S4. We evaluate the performance of the reservoir-computing
based long-term “climate” or attractor reconstruction with respect to varying the training length Tl

and network size Ns. Figures S8(a) and S8(b) show the performance versus the two hyperparam-
eters for the Lorenz and Lotka-Volterra systems, respectively. It can be seen that a combination
of larger network and longer training length will lead to better reconstruction performance, while
increasing the network size for small Tl will degrade the performance.
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(a) (b)

FIG. S8. Effects of reservoir-computing training length and network size on performance. (a,b) Ensemble-
averaged MSE obtained from 50 realizations versus changes in the training length Tl and network size
Ns for the chaotic Lorenz and Lotka-Volterra systems, respectively. Appropriate parameter ranges lead to
satisfactory performance.

SUPPLEMENTARY NOTE 6: FURTHER DEMONSTRATION OF DYNAMICS RECONSTRUC-
TION

Additional examples of dynamics reconstruction

In the main text, we presented examples of the dynamics reconstruction of the food chain
system. To demonstrate that the transformer-based framework performs for varying sparsity Sr

and sequence length Ls, we present additional examples for the food chain system, as well as
the Lorenz and Lotka-Volterra systems, as shown in Figs. S9 and S10, with results comparable to
those in the main text: as Ls increases and Sr decreases, the performance of the model on target
systems continuously improves.

Performance of system dynamics reconstruction

In addition to the food chain system in the main text, we further evaluate the performance of
the other two target systems. Figure S11 illustrates the reconstruction performance for the Lorenz
and Lotka-Volterra as characterized by MSE [see Eq. 16] and reconstruction stability [Eq. 20]. For
reconstruction stability analyses, Ls is fixed at 1,200 (about 25 cycles of oscillation) when varying
Sr, and Sr is set to 0.93 when varying Ls. For the Lotka-Volterra system, we set Sr to 0.89 to
ensure reconstruction stability reaching one given sufficient Ls. These results further demonstrate
the ability of the transformer to reconstruct the dynamics of new systems from sparse observational
data.
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𝑆! = 0.35𝑆! = 0.12 𝑆! = 0.58 𝑆! = 0.81 𝑆! = 0.93 𝑆! = 1.05(a)

(b)

(c)

FIG. S9. Additional examples of dynamics reconstruction by transformer for different levels of data sparsity.
(a-c) Reconstructed time series for the food chain, Lorenz, and Lotka-Volterra systems, respectively, where
the shaded areas represent observable points and the unshaded areas show the corresponding reconstruction
results. The sequence length is fixed at Ls = 1200 (about 25 cycles of oscillation), but only the first 500
data points are displayed for clarity of presentation.

Performance of long-term “climate” reconstruction

Reservoir computing utilizes and trains on the reconstructed time series from the transformer
and is able to generate arbitrarily long time series with the same statistical properties as those of the
original system. Here we present results from long-term reconstruction of the Lorenz and Lotka-
Volterra systems, where the time series reconstructed from the transformer are for Sr = 0.93 and
0.89, respectively. Figures S12(a) and S12(b) show segments of the ground truth for the Lorenz
and Lotka-Volterra systems, respectively. Figures S12(c) and S12(d) show the time series gen-
erated from reservoir computing for the respective systems. The reconstructed (predicted) and
ground truth chaotic attractors of the two systems are depicted in Figs. S12(e) and S12(f), respec-
tively. It can be seen that the reservoir computer can capture the “climate” through the transformer
output, providing indirect confirmation that the transformer has successfully reconstructed the
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𝐿! = 300𝐿! = 100 𝐿! = 500 𝐿! = 1000 𝐿! = 1500 𝐿! = 3000(a)

(b)

(c)

FIG. S10. Additional examples of dynamics reconstruction with respect to varying input sequence length
Ls. (a-c) Reconstructed time series for the food chain, Lorenz, and Lotka-Volterra systems, respectively,
where the shaded areas represent the observable points and the unshaded areas show the corresponding
reconstruction. The sparsity value is fixed at around Sr = 0.93.

dynamics. Figures S12(g) and S12(h) show the DV versus varying Sr. In general, as the observa-
tions become more sparse, the attractor reconstruction performance as measured by DV gradually
degrades. For Sr > 1.0, the performance deteriorates rapidly.

In addition, the reservoir computer plays a crucial role in our hybrid machine learning frame-
work, whose roles are: (1) validating the reliability of reconstructed time series by the transformer,
(2) refining the output dynamics of the transformer, and (3) generating arbitrarily long time series
of the target system. This is particularly necessary when the observational data are highly sparse,
where the transformer alone becomes insufficient to accurately reconstruct the full dynamics. In
such cases, the reservoir computer learns from the transformer’s output, refines and consolidates
the reconstructed dynamics.

Figure S13 presents examples of dynamics reconstruction for three target systems: the chaotic
food chain, Lorenz, and Lotka-Volterra systems, all under high sparsity conditions. The observed
sparse data from these systems are processed by a transformer which is well trained on data from
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(a) (b)

(c) (d)

(e) (f)

Lorenz Lotka-Volterra

FIG. S11. Dynamics reconstruction performance. The two columns are the results from the Lorenz and
Lotka-Volterra systems, respectively. The three rows from top to down present the color-coded averaged
MSE in the parameter plane (Ls, Sr), the reconstruction stability Rs versus Sr and Ls for MSE threshold
0.01, respectively. Reconstruction stability and averaged MSE are calculated from 400,000 data points
(corresponding to around 8,000 cycles of oscillation) in each case.

other systems. While the output of the transformer approaches the ground truth, there is a mis-
match in the fine structural details, as shown in Fig. S13. To overcome this difficulty, we train an
independent reservoir computer for each target system, using the transformer-reconstructed time
series as the training data.

SUPPLEMENTARY NOTE 7: ROBUSTNESS TEST

We present the results of robustness test against multiplicative and additive noise, for the three
target systems, as shown in Figs. S14 and S15. It can be seen that the transformer based dynamics
reconstruction framework is robust against multiplicative and additive noise of amplitude below
10−1 and 10−1.5, respectively. The sequence length is Ls = 1200 (around 25 cycles of oscillation)
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Lorenz Lotka-Volterra
(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

FIG. S12. Attractor reconstruction by reservoir computing. The first and second columns are for the Lorenz
and Lotka-Volterra systems, respectively. (a,b) Segments of ground-truth time series, (c,d) short-term pre-
dictions by reservoir computing, (e,f) reconstructed long-term attractors as compared with the true attrac-
tors, and (g,h) ensemble-averaged DV versus sparsity Sr, obtained from 50 independent realizations.

for varying Sr and noise level σ, while Sr = 0.93 for varying Ls.

A pertinent question is, can the proposed framework recover correctly similar dynamics from
nearby values of the bifurcation parameter? To address this question, we consider the chaotic
food chain system with a varying bifurcation parameter as an example. Specifically, the environ-
mental carrying capacity parameter K in Eq. (2) in the main text is a commonly used bifurcation
parameterr [25]. An example of the bifurcation diagram is shown in Fig. S16(a). We use three
K values: 0.96, 0.97, 0.98, collect high sparsity data with Sr = 0.93 from each of the parameter
values, and reconstruct the time series through the transformer. The reconstructed time series for
each parameter value are then fed into a reservoir computer to generate the corresponding attrac-
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Reservoir computing

Sparse 
observations

Transformer

Input

Output

FIG. S13. Attractor reconstruction by the transformer alone and the hybrid transformer/reservoir computing
framework. Sparse observations from target systems are provided to the transformer, which reconstruct the
time series and present the attractors as green dots. The reconstructed time series by the transformer are
then used to train independent reservoir computers, generating attractor predictions shown as the blue dots.
The attractors, from top to bottom, are from the chaotic food chain, Lorenz, and Lotka-Volterra systems, at
the sparsity level 0.93.

tors for comparison with the ground truth. The results are shown using the confusion matrix in
Fig. S16(b), where the diagonal entries exhibit the smallest values in each row, indicating that each
predicted attractor closely aligns with the ground-truth attractor at the same parameter, while the
remaining entries characterize the distinction from the attractors at the other parameter values. The
results demonstrate that our framework is capable of successfully recovering the dynamics from
the target system at different values of the bifurcation parameter. Nonetheless, as expected, if the
parameter difference is too small, the framework would fail in recovering the similar dynamics,
because the underlying dynamics are statistically indistinguishable. For instance, the dynamics
from K = 0.98 to K = 0.981 are nearly identical. In such cases, even if the full dynamics were
observable, it would be practically difficult for any machine-learning model to distinguish between
them, especially with sparse data.

The observational noise considered in this Section does not alter the dynamics of the system. In
contrast, variations in the bifurcation parameter can result in changes in the underlying dynamics.
Is our framework robust enough to reconstruct the correct dynamics in these scenarios? To address
this question, we consider three chaotic food chain systems: the first with K = 0.98 (an example
in main text), the second also with K = 0.98 but under noise of a moderate level σ, and the third
with K = 0.97. For each system, we apply our transformer reservoir-computing framework to
reconstruct the attractor and to compare it with the ground truth. The performance is conveniently
characterized by the 3 by 3 confusion matrix, where we compare each predicted attractor with

18



(a) (b)

(d)(c)

Lorenz Lotka-Volterra

FIG. S14. Robustness against multiplicative noise. Two columns represent results from the Lorenz and
Lotka-Volterra systems, respectively. The two rows show ensemble-averaged, color-coded MSE from 50
independent realizations, over the parameter planes (σ, Sr) and (σ, Ls), respectively. The results indicate
that the transformer-based dynamics-reconstruction framework is robust against multiplicative noise.

the ground-truth attractor. Figures S17(a) and S17(b) present examples of the reconstructed time
series and the corresponding confusion matrix, respectively. The results show that the predicted
attractors for K = 0.97 and K = 0.98 align most closely with their corresponding ground-truth at-
tractors, consistent with our previous findings. However, when noise is added to the observations
at K = 0.98, the predicted attractor closely matches the ground-truth attractor of the noiseless
K = 0.98 system, rather than the attractor at K = 0.97 or the noisy attractor at K = 0.98. The re-
sults demonstrate a key distinction between parameter perturbation and observational noise: while
noise perturbs the observed data, the framework is robust enough to reconstruct the underlying
true dynamics. In contrast, a change in the bifurcation parameter alters the system’s governing
equations and thereby the dynamics themselves, which our framework correctly identifies as dis-
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(c)

(f)

FIG. S15. Robustness against additive noise. The three columns represent results for the food chain, Lorenz,
and Lotka-Volterra systems, respectively. The two rows show ensemble-averaged, color-coded MSE from
50 independent realizations, over the parameter planes (σ, Sr) and (σ, Ls), respectively. The transformer-
based dynamics reconstruction framework is robust against additive noise.

tinct.

SUPPLEMENTARY NOTE 8: A COUNTER EXAMPLE

For testing, three target systems are presented as examples of reconstructing the system dynam-
ics, assuming that the transformer has never been exposed to these dynamics. This indicates that
the transformer trained using data from a large number of synthetic dynamical systems already
possesses the ability to find the dynamics behind the sparse data from the target system. To verify
that this is indeed the case, we study two scenarios for comparison: (1) the transformer has such
a “dynamics-adaptable” ability and (2) it does not have the ability. For the first scenario, we use
stochastic signals for testing. Specifically, we generate uniformly distributed noise independently
for the three dimensions. A Gaussian filter with the standard deviation σg = 9 of the Gaussian
kernel is applied to smooth out the generated noisy data. The resulting stochastic signals are nor-
malized and collected as the testing dataset, as shown in Fig. S18(a). We then take a well-trained
transformer adapted for other chaotic systems and test it with the stochastic signal, as shown in
Fig. S18(b). For comparison, performance with the food-chain system is shown in Fig. S18(c). For
the same sparsity Sr and sequence length Ls, the transformer successfully reconstruct the dynam-
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(a) (b)

FIG. S16. Robustness against parameter variations. (a) Bifurcation diagram of the chaotic food chain
system, with K as the bifurcation parameter. Red and blue dots represent the local maxima and minima,
respectively. (b) Confusion matrix of the predicted and ground truth attractors, with DV averaged over 50
independent realizations. The predicted attractor for each K closely matches the corresponding ground truth
attractor, while remaining distinct from attractors generated with other parameters.

(a) (b)

K=0.97

K=0.98
(𝜎 = 0.05)

K=0.98

FIG. S17. Distinguishing the dynamics with parameter variations and observational noise. (a) Examples of
the dynamics reconstruction of the chaotic food chain system, from top to bottom: K = 0.97, K = 0.98

with multiplicative noise of noise level σ = 0.05, K = 0.98. (b) Confusion matrix of the predicted and
ground-truth attractors, with DV averaged over 50 independent realizations. The predicted noisy attractor
for K = 0.98 is closest to the noiseless ground-truth attractor for K = 0.98.

ics of the food chain system but completely fails to reconstruct the stochastic signal. The general
conclusion is that, the sparse data presented to the transformer need to be associated with some
deterministic, nonlinear dynamical process to achieve successful reconstruction.

We further study the performance of the transformer using the stochastic signals and the dy-
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Generator Filter

(a)

(b)

Stochastic time series observations as input (without system dynamics)

(c)

Food chain time series observations as input (with system dynamics)

Stochastic signal testing datasetUniformly distributed

FIG. S18. Illustration of stochastic signal reconstruction. (a) Generation of the stochastic signal dataset.
(b,c) Examples of reconstructing time series without and with underlying system dynamics by using a well-
trained transformer for Ls = 1200 (about 25 cycles of oscillation) and Sr = 0.93.

namical systems, as shown Fig. S19. It can be seen that, regardless of the values of Sr and Ls, the
performance on the target dynamical systems consistently surpasses that on stochastic signals. A
performance comparison for Sr = 0.58 is shown in Fig. S19(f). Even with this low sparsity, the
transformer is unable to reconstruct the stochastic signal.

SUPPLEMENTARY NOTE 9: NONAUTONOMOUS SYSTEMS

In our framework, both the training systems and the target unseen systems are autonomous,
where the transformer is trained using data from a diverse set of dynamical systems and is then
evaluated by recovering the underlying dynamics from sparse observations on the target system.
When the target system is nonautonomous, training solely on autonomous systems may not be
sufficient for reconstructing the target dynamics. To evaluate the capability of our framework in
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FIG. S19. Performance of transformer on stochastic signals and target systems. (a,b) Ensemble-averaged
color-coded MSE in the parameter plane (Ls, Sr) for the stochastic and target dynamical systems, respec-
tively, (c) MSE versus Sr for Ls = 1200 (around 25 cycles), (d) MSE versus Ls for Sr = 0.93, (e)
reconstruction stability Rs(·) versus Sr for Ls = 1200, (f) reconstruction stability Rs(·) versus Ls for
Sr = 0.58. The reconstruction stability and the averaged MSE are calculated from 400,000 data points
(corresponding to around 8,000 cycles) in each case.

dealing with nonautonomous systems, we collect four such systems: the forced Rössler, forced
Lorenz, mega extreme [26], and memristive laser [27] systems. Concretely, we use the first three
systems as part of the training set and treat the laser system as an unseen target. The equations for
the four nonautonomous systems are listed in Table S5.

We compare two training strategies: (1) mixed training that includes the three nonautonomous
systems and k-3 autonomous systems, for a total of k systems, and (2) purely autonomous training
without any nonautonomous systems, using k autonomous systems. Both strategies are trained 50
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…
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Non-autonomous systems

Autonomous systems

Training with non-autonomous systems

Training without non-autonomous systems

Evaluation

Target: non-autonomous system

(a)

(b) (c)

FIG. S20. Comparison of dynamic reconstruction training on autonomous and nonautonomous systems.
(a) Illustration of two training strategies: training without and with nonautonomous systems. (b,c) Number
of training systems is k = 10 and k = 20, respectively. In both cases, three nonautonomous systems are
provided for “with nonautonomous” strategy. To reduce the statistical fluctuations, 50 independent models
are trained to obtain the averaged MSE, and error bars represent standard deviations among them.

times and evaluated on the nonautonomous laser system. The structure of the training with and
without the nonautonomous systems and testing on the nonautonomous system is illustrated in
Fig. S20(a). As the performance of transformer scales with the number of training systems in a
power-law fashion, including a sufficient number of training systems can be crucial: we test this
by setting k = 10 and k = 20 for comparison. Since the total number of systems in our training
pool is larger than k, we randomly select the required number of systems from the pool for each
training event. As shown in Fig. S20(b), when the number of training systems is small (k = 10),
the fraction of nonautonomous systems (3/10) is relatively high, and the model trained with the
mixed strategy outperforms the one trained solely on autonomous systems. However, for k = 20
where the ratio of nonautonomous systems is 3/20, the performance difference between the two
strategies becomes negligible.
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(a) (b)
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FIG. S21. Comparison of dynamics reconstruction performance between transformer and RNNs. (a) Basic
structures of the three machine learning frameworks. (b) Training loss of transformer and LSTM. (c) MSE
versus Sr for transformer and LSTM for Ls = 1200 (around 25 cycles). (d) MSE versus LS for Sr = 0.93.
Averaged MSEs are calculated from 400,000 data points (corresponding to about 8,000 cycles of oscillation)
in each case, for the food chain, Lorenz, and Lotka-Volterra systems.

SUPPLEMENTARY NOTE 10: RECONSTRUCTING DYNAMICS WITH TRADITIONAL
METHODS

Long short-term memory (LSTM) is a type of recurrent neural networks designed to capture the
long-term dependencies in sequential data [28]. LSTM has demonstrated remarkable success in
time series forecasting, natural language processing, and other tasks, due to its unique cell structure
comprising input, forget, and output gates, which regulate the flow of information through the
network. The relevant information is retained over extended time steps in LSTM networks, helping
them capture temporal dependencies. The basic structure of LSTM is shown in Fig. S21(a).

We investigate whether LSTM, as representative of RNNs, can be appropriate substitutes for
the transformer for dynamics reconstruction from sparse data. To ensure a fair comparison, we
keep the hyperparameters as consistent as possible. For example, the hidden network size is set
to 512, and the number of layers is set to 4. We train both the LSTMs and transformer using
the same setup for each training instance, with randomly chosen sequence lengths Ls and spar-
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FIG. S22. Comparison of dynamics reconstruction performance by transformer and compressed sensing.
(a) Basic structures of the two frameworks. (b) MSE versus Sr for transformer and LSTM for Ls = 2000

(around 40 cycles). Averaged MSEs are calculated from 400,000 data points (corresponding to about 8,000
cycles of oscillation) in each case, for the food chain, Lorenz, and Lotka-Volterra systems.

sity Sr, using a batch size of 16 and 50 epochs. The training loss versus the epoch is depicted
in Fig. S21(b), indicating that, after the training, the three machine-learning frameworks exhibit
similar performance on these training systems. However, for testing, the transformer yields much
lower MSE values, as shown in Figs. S21(c) and S21(d). These results suggest that, for dynam-
ics reconstruction from sparse data of unseen dynamical systems, transformer is more effective
than traditional recurrent neural networks. We demonstrate that RNNs, such as LSTM, capture
dynamics differently from the transformer. The former store information in their hidden states and
rely on memory of past inputs to make predictions. As a result, they tend to overfit to the specific
systems seen during training, particularly the most recent ones, exhibiting poor generalizability. In
contrast, the transformer does not rely on the memory but instead learn to reconstruct dynamics by
identifying the correlations among observed points through its attention mechanism. This allows
them to capture more fundamental and system-independent properties.

Compressed sensing (CS) is a signal reconstruction framework, which recovers signals from
limited observations, provided that the signal is sparse or compressible in a known basis. It is
important to note that the definition of “sparse” in CS differs from what is used in our work - it is
referred to as the signal having only a few non-zero components when expressed in an appropriate
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basis (e.g., Fourier or wavelet). Let ycs be the observed measurements, i.e., the compressed or
sampled data. The goal of CS is to recover the full signal xcs, assumed to be sparse in a known
basis, by solving the optimization problem:

min ||xcs||1 subject to ycs = Acsxcs, (S7)

where Acs is a sensing matrix determined by the sampling scheme and basis. In our study, we
apply CS in the discrete cosine transform (DCT) domain to reconstruct time series, from randomly
sampled observations. The basic framework of CS is illustrated in Fig. S22(a).

We evaluate the performance of CS in reconstructing dynamical systems from sparse and ran-
domly sampled data, as tested for the transformer. Figure S22(b) demonstrates the MSE of CS
and transformer reconstruction with varying sparsity Sr. It can be seen that CS can outperform
the transformer under low sparsity conditions. However, as the sparsity level increases, the trans-
former yields more accurate reconstructions, demonstrating its stronger generalizability and re-
coverability under extreme observational limitations.

SUPPLEMENTARY NOTE 11: RECONSTRUCTING DYNAMICS OF DIVERSE CHAOTIC
SYSTEMS

In the main text, we have used 28 chaotic systems for training the transformer and three specific
systems for testing. Altogether, 31 chaotic systems have been used. Here we demonstrate that the
transformer can also reconstruct arbitrary systems. In particular, each time we choose several sys-
tems as the targets for testing, which are excluded from the list of training systems. The remaining
chaotic systems are used for training. After training, sparse data from the chosen target system are
presented to the transformer for reconstruction. Repeating this process, each and every system in
the list of 31 systems can be tested as the target. Representative reconstruction results are shown
in Fig. S23, where four systems are chosen as the targets each time. For most systems, the trans-
former can faithfully reconstruct the target dynamics for Sr = 0.93 and Ls = 1200. However, for
certain target systems, there is reduced performance. For instance, the construction of the third
dimension of the chaotic Rössler system is unsatisfactory, in spite of the excellent reconstruction
of the first and second dimensions, as shown in Fig. S23(h). The reason is that the third dynam-
ical variable of the Rössler system exhibits a kind of impulsive behavior. Figure S24 shows the
performance of dynamics reconstruction of the 28 different chaotic systems in terms of MSE (a)
and reconstruction stability Rs(·) (b) for Sr = 0.93. The overall MSE is low the reconstruction
is highly stable across all the 28 systems, demonstrating the power and generalizability of the
transformer based reconstruction framework.

SUPPLEMENTARY NOTE 12: RECONSTRUCTING DYNAMICS OF ADDITIONAL CHAOTIC
SYSTEMS

To further demonstrate that the transformer can reconstruct new unseen systems, we evaluate
the well-trained transformer (described in the main text) on 28 additional chaotic systems. Specif-
ically, the transformer was previously trained on 28 systems and evaluated on three target systems:
the food chain, Lorenz, and Lotka-Volterra systems. Now we introduce 28 new chaotic systems as
targets for an extensive assessment. Representative reconstruction results are shown in Fig. S25.
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For most systems, the transformer can faithfully reconstruct the target dynamics for Sr = 0.93 and
Ls = 2000. Figure S26 presents the performance of dynamics reconstruction of the 28 additional
chaotic systems in terms of MSE (a) and reconstruction stability Rs(·) (b) for Sr = 0.93. The
overall MSE is low and the reconstruction is highly stable across all 28 systems, demonstrating
the power and generalizability of our transformer based reconstruction framework.
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TABLE S1. Chaotic systems

Systems Equations Parameters

Aizawa ẋ = (z − b)x− dy a = 0.95, b = 0.7, c = 0.6

ẏ = dx+ (z − b)y d = 3.5, e = 0.25, f = 0.1

ż = c+ az − z3/3− (x2 + y2)(1 + ez) + fzx3

Bouali ẋ = x(a− y) + αz α = 0.3, β = 0.05

ẏ = −y(b− x2) a = 4, b = 1, c = 1.5, s = 1

ż = −x(c− sz)− βz

Chua ẋ = α(y − x− ht) α = 15.6, γ = 1, β = 28

ẏ = γ(x− y + z) µ0 = −1.143, µ1 = −0.714

ż = −βy ht = µ1x+ 0.5(µ0 − µ1)(|x+ 1| − |x− 1|)

Dadras ẋ = y − ax+ byz a = 3, b = 2.7

ẏ = cy − xz + z c = 1.7, d = 2, e = 9

ż = dxy − ez

Four wing ẋ = ax+ yz a = 0.2, b = 0.01, c = −0.4

ẏ = bx+ cy − xz

ż = −z − xy

Hastings-Powell V̇ = V (1− V )− a1V H/(b1V + 1) a1 = 5, a2 = 0.1

Ḣ = a1V H/(b1V + 1)− a2HP/(b2H + 1)− d1H b1 = 3, b2 = 2

Ṗ = a2HP/(b2H + 1)− d2P d1 = 0.4, d2 = 0.01

Rikitake ẋ = −µx+ zy

ẏ = −µy + x(z − a) µ = 0.94, a = 1.7

ż = 1− xy

Rossler ẋ = −(y + z)

ẏ = x+ ay a = 0.2, b = 0.2, c = 5.7

ż = b+ z(x− c)

Wang ẋ = x− yz

ẏ = x− y + xz a = 3

ż = −az + xy
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TABLE S2. Chaotic Sprott systems

Case Equations

0 ẋ = y, ẏ = −x+ yz, ż = 1− y2

1 ẋ = yz, ẏ = x− y, ż = 1− xy

2 ẋ = yz, ẏ = x− y, ż = 1− x2

3 ẋ = −y, ẏ = x+ z, ż = xz + 3y2

4 ẋ = yz, ẏ = x2 − y, ż = 1− 4x

5 ẋ = y + z, ẏ = −x+ 0.5y, ż = x2 − z

6 ẋ = 0.4x+ z, ż = xz − y, ẏ = −x+ y

7 ẋ = −y + z2, ẏ = x+ 0.5y, ż = xz

8 ẋ = −0.2y, ẏ = x+ z, ż = x+ y2 − z

9 ẋ = 2z, ẏ = −2y + z, ż = −x+ y + y2

10 ẋ = xy − z, ẏ = x− y, ż = x+ 0.3z

11 ẋ = y + 3.9z, ẏ = 0.9x2 − y, ż = 1− x

12 ẋ = −z, ẏ = −x2 − y, ż = 1.7 + 1.7x+ y

13 ẋ = −2y, ẏ = x+ z2, ż = 1 + y − 2z

14 ẋ = y, ẏ = x− z, ż = x+ xz + 2.7y

15 ẋ = 2.7y + z, ẏ = −x+ y2, ż = x+ y

16 ẋ = −z, ẏ = x− y, ż = 3.1x+ y2 + 0.5z

17 ẋ = 0.9− y, ẏ = 0.4 + z, ż = xy − z

18 ẋ = −x− 4y, ẏ = x+ z2, ż = 1 + x
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TABLE S3. Dominant frequencies and effective bandwidths of chaotic systems

System fd (Hz) fmax (Hz) ∆s

Aizawa 0.59 0.78 0.06
Bouali 0.39 1.17 0.06
Chua 0.68 0.88 0.04

Dadras 0.49 3.13 0.02
Food chain 0.02 0.07 1.00
Four wing 0.10 0.39 0.24

Hastings-Powell 0.008 0.103 1.00
Lorenz 1.30 3.00 0.02

Lotka-Volterra 0.03 0.08 1.00
Rikitake 0.20 0.68 0.10
Rossler 0.20 1.17 0.16
Sprott0 0.10 0.49 0.20
Sprott1 0.11 0.49 0.15
Sprott2 0.20 0.49 0.15
Sprott3 0.20 0.59 0.13
Sprott4 0.20 0.68 0.17
Sprott5 0.10 0.39 0.13
Sprott6 0.20 0.49 0.13
Sprott7 0.19 0.40 0.18
Sprott8 0.09 0.28 0.30
Sprott9 0.21 0.49 0.16
Sprott10 0.10 0.39 0.18
Sprott11 0.29 0.78 0.10
Sprott12 0.19 0.49 0.15
Sprott13 0.21 0.49 0.15
Sprott14 0.20 0.31 0.15
Sprott15 0.19 0.39 0.15
Sprott16 0.28 0.49 0.08
Sprott17 0.29 0.59 0.17
Sprott18 0.31 0.62 0.12

Wang 0.39 1.46 0.05

TABLE S4. Optimal hyperparameter values of reservoir computing for target systems

System αr βr γr ρr dr σr

Food chain 0.36 10−1.25 1.16 1.29 0.41 10−4.70

Lorenz 0.30 10−5.15 1.82 1.30 0.68 10−2.04

Lotka-Volterra 0.29 10−6.62 0.19 1.72 0.02 10−2.73
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TABLE S5. Nonautonomous chaotic systems

Systems Equations Parameters

Forced Rossler ẋ = −(y + z) +A cos(ω1t) a = 0.2, b = 0.2, c = 5.7

ẏ = x+ ay A = 0.1, ω1 = 1.0, ω2 =
√
2

ż = b+ z(x− c) +A sin(ω2t)

Forced Lorenz ẋ = a(y − x) a = 10 + 2 sin(ωt)

ẏ = cx− xz b = 8/3 + 0.5 cos(ωt)

ż = xy − bz c = 28 + sin(2ωt), ω = 0.5

Mega Extreme ẋ = y

ẏ = z + y cos(x) A = 0.8, b = 0.1, ω = 0.7

ż = −by +Aω cos(ωt)

Memristive Laser ẋ = −ax+ bxy −A sin(2πft)|z| a = 55, b = 167, c = 6.9

ẏ = −(1 + c+ x2)y + c− 1 A = 19, f = 5.7

ż = A sin(2πft)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

(z) (aa) (ab)

FIG. S23. Dynamics reconstruction of 28 different chaotic systems: (a) Aizawa, (b) Bouali, (c) Chua, (d)
Dadras, (e) Four wing, (f) Hastings-Powell, (g) Rikitake, (h) Rossler, (i-aa) Sprott systems. (i-ab) Wang
system, for Sr = 0.93 and Ls = 1200 (about 25 cycles of oscillation).
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(a) (b)

FIG. S24. Performance of dynamics reconstruction on the 28 chaotic systems. (a) Averages MSEs calcu-
lated from 400,000 data points (corresponding to about 8,000 cycles of oscillation) in each case, and error
bars represent standard deviations. (b) Reconstruction stability Rs(·) for Sr = 0.93 and Ls = 1200 (about
25 cycles of oscillation).
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(a) (b) (d)(c) (e)

(f) (g) (i)(h) (j)

(k) (l) (n)(m) (o)

(p) (q) (s)(r) (t)

(u) (v) (x)(w) (y)

(z) (aa) (ab)

FIG. S25. Dynamics reconstruction of 28 additional unseen chaotic systems: (a) Arneodo, (b) CaTwoPlus,
(c) CaTwoPlusQuasiperiodic, (d) CellularNeuralNetwork, (e) Colpitts, (f) Coullet, (g) DoubleGyre, (h) Fi-
nance, (i) GenesioTesi, (j) Halvorsen, (k) HenonHeiles, (l) HyperBao, (m) IsothermalChemical, (n) Laser,
(o) LuChen, (p) LuChenCheng, (q) MacArthur, (r) MooreSpiegel, (s) MultiChua, (t) PanXuZhou, (u)
QiChen, (v) RabinovichFabrikant, (w) RayleighBenard, (x) Rucklidge, (y) SaltonSea, (z) ShimizuMorioka,
(aa) VallisElNino, (ab) YuWang, for Sr = 0.93 and Ls = 20000 (about 40 cycles of oscillation).
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(a) (b)

FIG. S26. Performance of dynamics reconstruction on the 28 additional unseen chaotic systems. (a) Av-
erages MSEs calculated from 400,000 data points (corresponding to about 8,000 cycles of oscillation) in
each case, and error bars represent standard deviations. (b) Reconstruction stability Rs(·) for Sr = 0.93

and Ls = 2000 (about 40 cycles of oscillation).

36



[1] Yu, R. & Wang, R. Learning dynamical systems from data: An introduction to physics-guided deep
learning. Proc. Natl. Acad. Sci. U.S.A. 121, e2311808121 (2024).

[2] Batista, G. E., Monard, M. C. et al. A study of K-nearest neighbour as an imputation method. His 87,
48 (2002).

[3] Pelckmans, K., De Brabanter, J., Suykens, J. A. & De Moor, B. Handling missing values in support
vector machine classifiers. Neural Netw. 18, 684–692 (2005).
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