
Article https://doi.org/10.1038/s41467-024-49190-4

Reservoir-computing based associative
memory and itinerancy for complex
dynamical attractors

Ling-Wei Kong 1,2, Gene A. Brewer3 & Ying-Cheng Lai 2,4

Traditional neural networkmodels of associativememories were used to store
and retrieve static patterns. We develop reservoir-computing basedmemories
for complex dynamical attractors, under two common recalling scenarios in
neuropsychology: location-addressable with an index channel and content-
addressable without such a channel. We demonstrate that, for location-
addressable retrieval, a single reservoir computing machine can memorize a
large number of periodic and chaotic attractors, each retrievable with a spe-
cific index value. We articulate control strategies to achieve successful
switching among the attractors, unveil themechanismbehind failed switching,
and uncover various scaling behaviors between the number of stored attrac-
tors and the reservoir network size. For content-addressable retrieval, we
exploit multistability with cue signals, where the stored attractors coexist in
the high-dimensional phase space of the reservoir network. As the length of
the cue signal increases through a critical value, a high success rate can be
achieved. The work provides foundational insights into developing long-term
memories and itinerancy for complex dynamical patterns.

While the development of artificial neural memories had been earlier,
the celebrated Hopfield model1,2 was a significant milestone in the
modeling of associative memory in neural networks. In thismodel, the
neurons are characterized by discrete dynamical states (e.g., +1 or −1).
With training to adjust the connectionweights among the neurons, the
network can store a number of patterns represented by a grid of such
discrete values. When a new pattern is presented to the network, it
responds by setting the neural states in such a way that the resulting
pattern most closely resembles the new one - the process of memory
retrieval. The neural network thus constitutes effectively anassociative
memory. The dynamics of the neurons in the original Hopfield model
are simplybinary, butmore sophisticated, oscillatory neural dynamical
models can be used for associative memory3–8. Recently, deep neural
networks have been used to implement associative memory9. It is
noteworthy that, in most previous works on artificial neural networks
as associative memory, the patterns to be “memorized” were static.

Can artificial neural networks be exploited as memory device for
complex dynamical patterns, such as chaotic attractors? Such an
object is the result of the time evolution of a nonlinear dynamical
system, which manifests itself as a dynamical trajectory in the phase
space. One might be tempted to represent a chaotic attractor using a
grid of cells as a static pattern. There are two fundamental difficulties
rendering this approach inappropriate. First, a chaotic attractor typi-
cally possesses a fractal structure in phase space10, so representing it
using a static gridmay require a prohibitively high resolution. Second,
the probabilities for the trajectory to land in different cells can be
singular, defying using a finite set of discrete values to represent
the “frequencies of visit” to different cells. Here, for realizing associa-
tive memory for complex dynamical attractors, we propose a drasti-
callydifferent approach than theHopfield typeofneural networks.The
idea is to train a neural machine as a dynamical system with the
capability to generate a variety of distinct dynamical trajectories, each

Received: 16 October 2023

Accepted: 24 May 2024

Check for updates

1Department of Computational Biology, Cornell University, Ithaca, New York, USA. 2School of Electrical, Computer and Energy Engineering, Arizona State
University, Tempe,Arizona, USA. 3Department of Psychology, ArizonaStateUniversity, Tempe,Arizona, USA. 4Department of Physics, ArizonaStateUniversity,
Tempe, Arizona, USA. e-mail: Ying-Cheng.Lai@asu.edu

Nature Communications | (2024) 15:4840 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49190-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49190-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49190-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49190-4&domain=pdf
mailto:Ying-Cheng.Lai@asu.edu

corresponding to a complex attractor to be memorized. The purpose
of this paper is to demonstrate that this is indeed feasible and, more-
over, to study what phenomena would emerge in suchmultifunctional
dynamical systems.

For the associative memory to produce the correct dynamical
trajectory corresponding to a desired attractor, an essential require-
ment for successful retrieval of the attractor is that the memory itself
be a closed-loop dynamical system capable of generating continuous
time evolution of the relevant state variables. Reservoir computing11–13,
a class of recurrent neural networks (RNNs) that has been extensively
investigated for model-free prediction of chaotic systems in recent
years14–38, stands out as a suitable choice. Quite recently, an imple-
mentation of neural computation through reservoir computing was
demonstrated39. Reservoir computing is a particularly suitable frame-
work for our purposes. The training process is highly efficient,
requiring only a linear regression to achieve satisfactory results. This
efficiency proves invaluable as the number of target states increases.
More importantly, this straightforward trainingmethod helps to avoid
several significant issues. Notably, it circumvents the problem of cat-
astrophic forgetting, which is particularly challenging when neural
networks need to memorize a large number of distinct states40. Addi-
tionally, it addresses the vanishing/exploding gradient problem that
can hinder the learning process in RNNs. Here, we shall demonstrate
how reservoir computing can be exploited to store and retrieve
complex dynamical attractors. Different attractors are trained to
coexist within a single reservoir neural network and, when needed, can
be recalled later by suitable cues. For simplicity, a reservoir neural
network is sometimes also called a reservoir computer (RC).

In the science ofmemory, there are two types ofmemories: short-
term and long-term41–45. Reservoir computing, because of its recurrent
structure, has naturally incorporated memories in its dynamical evo-
lution in that past inner states and inputs can affect the future state and
outputs. The temporary information of previous inputs stored within
the dynamical state evolution of the hidden layer represents a kind of
short-termmemory of the RNN. The focus of our study is on long-term
memories that are encoded within the weights and connections in the
neural network architecture, manifested as the stabilized dynamical
trajectories that can be maintained in the dynamical network. In neu-
ropsychology, two distinct types of models of long-term memory are
often used: “location-addressable” and “content-addressable”
memories46, where the cue used to address the target memory for the
former corresponds to a specific index for each memorized pattern
and, for the latter, the cue canbemadeof a short time series correlated
with the dynamical trajectory from the memorized attractor. Our
machine-learning memory for complex dynamical attractors incorpo-
rates both types of models, named index-based and index-free mem-
ory, respectively.

A neural network capable of memorizing and retrieving multiple
memory states is also amultifunctional neural network.Whendifferent
states are recalled, the neural network exhibits distinct dynamical
behaviors. The idea of multifunctional RNNs has been discussed pre-
viously with different forms of implementation. In particular, in the
index-based approach, an index parameter is introduced to modulate
the functionality of the neural networks and store different states with
different index values29,31,32,47,48, but recalling thememorized states was
a challenge, for which control may be necessary. To our knowledge,
prior to our work, there were no discussions about the scaling law of
thememory capacity in the context of storing different states in RNNs.
Exploiting multistability in the neural networks represents another
approach - the index-free approach49–52, where multiple attractors
coexist in the high-dimensional hidden phase space of the reservoir
network. In this regard, previous work focused on storing fixed
points49, and there were also methods based on storing chaotic or
periodic states50–52. Outstanding issues included the dynamical
mechanism underlying the retrieval of the coexisting dynamical states

and their basin structure. Here, we shall demonstrate that our
reservoir-computing based classifier can distinguish among different
recalled states and between a successful and failed recall, both with
high accuracy, thereby providing quantitative insights into the open
issues.

Our main results can be summarized, as follows. For the location-
addressable scenario, a single reservoir computer can “memorize” a
number of distinct complex dynamical attractors (also referred to as
the complex memory states). Each memory state is embedded in the
high-dimensional phase space of the hidden reservoir neural network,
is maintained (stored) indefinitely, and can be retrieved whenever
needed. A key issue is how successful a transition between two arbi-
trarilymemorized states canbe, forwhich someproper control actions
areneeded.We calculate the success rate of transition amongdifferent
states in a reservoir computer, obtain a dynamical understanding
behind the failed switching, and articulate several control strategies to
significantly enhance the success rate. We also demonstrate the suc-
cess of memorizing hundreds of different attractors in one single
reservoir computer and uncover scaling laws between the size of the
reservoir network and the number of memory states. For the content-
addressable settingwithout an index channel, we exploitmultistability
for retrieval with the aid of some cue signals, where different memory
states can be coexisting attractors or long transient states.We find that
the stored states can indeed be recalled by short cues and even partial
or noisy cues. We uncover a transition phenomenon that arises in the
retrieval success rate as the length of the cue signal varies, as well as
sophisticated basin structures in the hidden high-dimensional phase
space of the reservoir network. A connection between the transition
phenomenon of success rate and the basin structure is established,
yielding a dynamical understanding of themechanismbehindmemory
retrieval from the coexisting states.We also find that a natural random
itinerancy is possible when there is noise on the neurons in our
reservoir computers. These results provide foundational insights into
developing machine-learning-based long-term memory devices for
complex dynamical states or attractors.

Results
Index-based reservoir-computing memory
In the “location-addressable” or “parameter-addressable” scenario, the
stored memory states within the neural network are activated by a spe-
cific location address or an index parameter. The stimulus that triggers
the systemto switch states canbeentirelyunrelated to thecontentof the
activated state, and the pair linking thememory states and stimuli can be
arbitrarily defined. For instance, the stimulus can be an environmental
condition such as the temperature, while the corresponding neural
network state could represent specific behavioral patterns of an animal.
An itinerancy among different states is thus possible, given a fluctuating
environmental factor. (The “parameter-addressable” scenario is different
from the “content-addressable” scenario that requires some correlated
stimulus to activate a memory state.)

Storage of complex dynamical attractors. The architecture of our
index-based reservoir computing memory consists of a standard
reservoir computer (i.e., echo state network)11–13 but with one feature
specifically designed for location-addressable memory: an index
channel, as shown in Fig. 1(A). During training, the time series from a
number of dynamical attractors to bememorized are presented as the
input signal u(t) to the reservoir machine, each is associated with a
specific value of the index p so that the attractors can be recalled after
training using the same index value. This index value pmodulates the
dynamics of the RC network through an index inputmatrixWindex that
projectsp to the entire hidden layerwithweights defined by thematrix
entries. The training process is an open-loop operation with input u(t)
and the corresponding index value p through the index channel. To
store or memorize a different attractor, its dynamical trajectory

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 2

becomes the input, together with the index value for this attractor.
After training, the reservoir output is connected with its input, gen-
erating closed-loop operation so that the reservoir machine is now
capable of executing self-dynamical evolution starting from a random
initial condition, “controlled” by the specific index value. More speci-
fically, to retrieve a desired attractor, we input its index value through
the index channel, and the reservoirmachinewill generate a dynamical
trajectory faithfully representing the attractor, as schematically illu-
strated in Fig. 1(A) with two examples: one periodic and another

chaotic attractor. Themathematical details of the training and retrieval
processes are given in Supplementary Information (SI).

To demonstrate the workings of our reservoir computing mem-
ory, we generate a number of distinct attractors from three-
dimensional nonlinear dynamical systems. We first conduct an
experiment of memorizing and retrieving six attractors: two periodic
and four chaotic attractors, as represented by the blue trajectories in
the top row of Fig. 1(B) (the ground truth). The index values for these
six attractors are simply chosen to be pi = i for i = 1,…, 6. During

v(t)

in
r(t)

out

Input layer

Hidden layer

Output layer
r

u(t)

Index Channels

Closed loop operation:

a self-evolving

dynamical system

during retrieval

Open loop operation

for memorizing

index

index 1

Coding

= 1

= 2

Retrieval

= 1

= 2
index

Fig. 1 | Memorizing attractors with index-based reservoir computing. A A
schematic illustration of index-based reservoir-computing memory. B Retrieval of
six memorized chaotic and periodic attractors using a scalar index pi (one integer
value for eachmemorized dynamical attractor), where the blue and red trajectories
in the top and bottom rows, respectively, represent the original and retrieved

attractors. Visually, there is little difference between the original and memorized/
retrieved attractors. C Memorizing 16 chaotic attractors with two indices. The
successfully retrieved attractors are presented in SI. All the memorized attractors
are dynamically stable states in the closed-loop reservoir dynamical system.

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 3

training, the time series of each attractor is injected into the input
layer, and the reservoir network receives the specific index value,
labeling this attractor to be memorized so that the reservoir-
computing memory learns the association of the index value with
the attractor to be memorized. To retrieve a specific attractor, we set
the index value p to the one that labeled this attractor during training
and allow the reservoir machine to execute a closed-loop operation to
generate the desired attractor. For the six distinct dynamical attractors
stored, the respective retrieved attractors are shown in the second row
in Fig. 1(B). The recalled attractors closely resemble the original
attractors and for any specific value of the index, the reservoir-
computing memory is capable of generating the dynamical trajectory
for an arbitrarily long period of time. The fidelity of the recalled states,
in the long run, can be assessed through the maximum Lyapunov
exponent and the correlation dimension. In particular, we train an
ensemble of 100 different memory RCs, recall each of the memory
states, and generate outputs continuously for 200,000 steps. The two
measures are calculated during this generation process and compared
with the ground truth. As an example, for the Lorenz attractor with the
true correlation dimension of 2.05 ± 0.01 and largest Lyapunov expo-
nent of about 0.906, 96% and 91% of the retrieved attractors have their
correlation dimension values within 2.05 ±0.02 and exponent values
in 0.906 ±0.015, indicating that the memory RC has learned the long-
term “climate” of the attractors and is able to reproduce them (see SI
for more results).

For a small number of dynamical patterns (attractors), a scalar
index channel suffices for accurate retrieval, as illustrated in Fig. 1(B).
When the number of attractors to be memorized becomes large, it is
useful to increase the dimension of the index channel. To illustrate
this, we generate 16 distinct chaotic attractors from three-dimensional
dynamical systems whose velocity fields consist of different combi-
nations of power-series terms53, as shown in Fig. 1(C). For each
attractor, we use a two-dimensional index vector pi = ðp1

i ,p
2
i Þ to label it,

where p1
i ,p

2
i 2 f1,2,3,4g. The attractors can be successfully memorized

and faithfully retrieved by our index-based reservoir computer, with
detailed results presented in SI.

Given anumber of dynamical patterns to bememorized, there can
be many different ways of assigning the indices. In addition to using
one and two indices to distinguish the patterns, as shown in Fig. 1(B)
and (C), we studied two alternative index-assignment schemes: binary
and one-hot code. For the binary assignment scheme, we store K
dynamical patterns using log2K number of channels. The index value
in each channel can either be one of the two possible values. For the
one-hot assignment scheme, the number of index channels is the same
as thenumberKof attractors to bememorized. The index value in each
channel is still one of the twopossible values, for instance, either 0or 1.
For the one-hot assignment, each attractor is associated with one
channel, where only this channel can take the number one for the
attractor, while the values associated with all other channels are zero.
Similarly, for each channel, the index value canbe one if and only if the
attractor being trained/recalled is the state with which it is associated.
Arranging all the index values as amatrix, one-hot assignment leads to
an identity matrix. For a given reservoir hidden-layer network, differ-
ent ways of assigning indices result in different index-input schemes to
the reservoir machine and can thus affect the memory performance
and capacities. The effects are negligible if the number of dynamical
attractors to be memorized is small, e.g., a dozen or fewer. However,
the effects can be pronounced if the number K of patterns becomes
larger. One way to determine the optimal assignment rule is to
examine, under a given rule, how the memory capacity depends on or
scales with the size of the reservoir neural network in the hidden layer,
which we will discuss later.

Transitionmatrices among stored attractors. We study the dynamics
of memory toggling among the stored attractors. As each memorized

state si is trained to be associated with a unique index value pi, the
reservoir network’s dynamical state among different attractors can be
switchedby simply altering the input index value. Several examples are
shown in Fig. 2(A) and (B), where p is switched among various values
multiple times. The dynamical state activated in the reservoir network
switches among the learned attractors accordingly. For instance, at
step 800, for a switch from p = 1 to p = 6, the reservoir state switches
from a periodic Lissajous state to a chaotic Hindmarsh-Rose (HR)
neuron state. However, not all such transitions can be successful - a
failed example is illustrated in the bottom panel of Fig. 2(C). In this
case, after the index switching, the reservoir system falls into an
undesired state that does not belong to any of the trained states. The
probability of failed switchings is small and asymmetric between the
two states before and after the switching. Aweighted directed network
can be defined among all the memorized states where the weights are
the success probabilities, which can be represented by a transition
matrix. Making index switches at many random time steps and
counting the successful switches versus the failed switches, we
numerically obtain the transition matrix, as exemplified in Fig. 2(D),
from two different randomly generated indexed RCs. Figure 2(E)
shows the average transitionmatrix of an ensemble of 25 indexed RCs.
Figure 2(F) shows that the variance of the success rate across different
columns (i.e., different destination states) is much larger than the
variance across different rows (i.e., different starting states), implying
that the success rate is significantly more dependent on the destina-
tion attractor than on the starting attractor.

What is the origin of the asymmetric dependence in the transition
matrices and the dynamical mechanism behind the switch failures?
Two observations are helpful. The first concerns the dynamic con-
sequence of a switch in the index value p. Incorporating this term of p
into the reservoir computer is equivalent to adding an adjustable bias
term to each neuron in the reservoir hidden layer. Different values of p
thus directly result in different bias values on theneurons anddifferent
dynamics. The same indexed RC under different p can be treated as
different dynamical systems. Second, note that, during a switch, one
does not directly interferewith the state input uor the hidden state rof
the RC network, but only changes the value of p. Consequently, a
switch in p as in Fig. 2(A) switches the dynamical equations of the RC
network while keeping the RC states rlast and the output vlast at the last
time step, which is passed from the previous dynamical system to the
new systemafter switching. This pair of rlast and vlast becomes the initial
hidden state and initial input under the new dynamic equation of RC.

The twoobservations suggest examining the basin of attractionof
the trained state in the memory RC hidden space under the corre-
sponding index value, which typically does not fully occupy the entire
phase space. Figure 2(I) shows the basin structure of two arbitrary
states in an indexed RC trained with 16 attractors. The blue regions,
leading to the trained states, leave some space for the orange regions
that lead to untrained states and failed to switch. If the RC states at the
last time step before switching lay outside the blue region, the RC
network will evolve to an unwanted state, and a switch failure will
occur.We further plot thepoints from the attractor before switching in
blue (successful) and orange (unsuccessful), as shown in Fig. 2(H).
They are the projections of the basin structure of the new attractors
onto the previous attractor. This picture provides an explanation for
the strong dependence of success rates on the destination states. In
particular, the success rate is determined by two factors: the relative
size of the basin of the new state after switching and the degree of
overlap between the previous attractor and the new basin. While the
degree of overlap depends on both the starting and destination states,
the relative size of the new state basin is solely determined by the
destination state, resulting a strong dependency on the switching
success rate of the destination state. [Further illustrations of (i) the
basin structure of the memorized states in an indexed RC, (ii) projec-
tions of the basin structure of the destination state back to the starting

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 4

state attractor, and (iii) how switch success is strongly affected by the
basin structure of the destination state are provided in SI.]

Control strategies for achieving high memory transition
success rates. For a memory system to be reliable, accessible, and
practically useful, a high success rate of switching from one memor-
ized attractor to another upon recalling is essential. As this switching
failure issue is rooted in the problem of whether an initial condition is
inside the attracting basin of the destination state, such type of failure
can be universal for models for memorizing not exactly the (static)
training data but the dynamical rules of the target states and re-
generating the target states by evolving the memorized dynamical
rules. Even if one uses a series of networks to memorize the target
states separately, the problem of properly initializing each memory
network during a switch or a recall persists. A possible solution to this
initial state problem is to optimize the training scheme or the RNN
architecture to make the memorized state globally attractive in the
entire hidden space - an unsolved problem at present. Here we focus
on noninvasive control strategies to enhance the recall or transition
success rates without altering the training technique or the RC archi-
tecture, assuming a memory RC is already trained and fixed. The

established connections or weights will not be modified, ensuring that
the memory attractors already in place are preserved.

The first strategy, named “tactical detour,” utilizes some suc-
cessful pathways in the transition matrix to build indirect detours to
enhance the overall transition success rates. Instead of switching
from an initial attractor to a destination attractor directly, going
through a few other intermediate states can result in a high success
rate, as exemplified in Fig. 3(A). This method can be relatively simple
to implement in many scenarios, as all needed is switching the p
value a few more times. However, this strategy has two limitations.
First, it is necessary to know some information about the transition
matrix to search for an appropriate detour and estimate the success
rate. Second, the dynamical mechanism behind failed switching
suggests that the success rate mostly depends on the relative size of
the attracting basin of the destination state, implying that a state
that has a small attracting basin is difficult to reach frommost other
states. As a result, the improvement of the success rate from a
detour can fall below 100%. As exemplified in Fig. 3(B), the success
rate with detours, which can significantly increase the overall suc-
cess rate within just a few steps, can saturate at some levels lower
than one.

2

4

6

0 1000 2000 3000 4000 5000
steps

-2

0

2

2

4

6

0 500 1000 1500
steps

-8
-6
-4
-2
0
2
4

2 4 6
destination state

2

4

6

st
ar

tin
g

st
at

e

2 4 6
destination state

0

0.5

1

2 4 6
destination state

2

4

6

st
ar

tin
g

st
at

e

0

0.5

1

Starting
 State

Destination
 State

0

1

2

3

4

va
ria

nc
e

10-3

5 10 15
destination state

5

10

15

st
ar

tin
g

st
at

e

0

0.2

0.4

0.6

0.8

1

1-1

0-2

0

-1 -10

1

-21

2
3

1-1

0-2

0

-1 -10

1

-21

2
3

-10 0 10

-10

-5

0

5

10
-10 0 10

A

B

C
D E

F

G H I

Fig. 2 | Transitions among different memorized attractors in an indexed
memory RC. A, B By changing the index value p as in panel (A), one can toggle
among different states shown in panel (B) that have been memorized as attractors
in the indexedmemory RC (Dimensions vx and vz are not shown).CAn instance of a
failed switch, where thememory RC evolves to an untrained state after changing p.
D Two typical transitionmatrices where six different states [as the ones in Fig. 1(B)]
were memorized. E The average of transition matrices from 25 memory RCs with
different random seeds and the same settings as in panel (D). F Variances in the
success rate with respect to the starting and destination attractors, revealing a
stronger dependence on the latter. The result is from the ensemble of 25 RC net-
works, each trained with ten different chaotic attractors. G A deliberately chosen
memory RC with 16 memory states has relatively low success rates among many
states for visualizing the basin structures shown below.H Attracting regions of two

different destination states on the manifold of a starting state. The memory RC
originally operates on this shell-shaped starting attractor, and the indexp is toggled
at different time steps when the memory RC is at different positions on this
attractor. Such a position candeterminewhether the switching is successful, where
the successful positions are marked blue and failed positions are marked lighter
orange. I Local two-dimensional slices of the basin structures of the twodestination
states from panel (H) in the high-dimensional RC hidden space. Again, the blue and
lighter orange regions mark the basins of the memorized state and of some
untrained states leading to failed switches, respectively. The quantities ϵ1 and ϵ2
define the scales of perturbations to the RC hidden space in two randomly chosen
perpendicular directions. The ϵ1 = ϵ2 = 0 origin points are the RC hidden states
taken from random time stepswhile thememoryRCoperates at the corresponding
destination states.

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 5

Our second strategy is of the feedback control type with a
classifier reservoir computer and random signals to perturb the
memory reservoir computer until the latter reaches the desired
memory state, as illustrated and explained in Fig. 3(C, D). This trial-
and-error approach is conceptually similar to the random memory
search model in psychology54. A working example is shown in
Fig. 3(C), where the input index p first activates certain outputs from
the memory RC, which are fed to a classifier reservoir computer
trained to distinguish among the target states and between the
target states and non-target states. As detailed in SI, a simple train-
ing of this classifier RC can result in a remarkably high accuracy. The
output of the classifier RC is compared with the index value. If they
agree, the output signal represents the correct attractor; otherwise,
a random signal is injected into the memory RC to activate a dif-
ferent outcome. The feedback loop continues to function until the
correct attractor is reached. This control strategy can lead to a
nearly perfect switch success rate, at the cost of a possibly long
switching time. Let Tn be the time duration that the random per-
turbation lasts, Tc be the time for making a decision about the out-
put of the classifier, and ηi,j be the switching success rate from a
starting attractor si to a destination attractor sj. The estimated time
for such a feedback control system to reach the desired state is
Treach,i,j = (Tn + Tc)/ηi,j, which defines an asymmetric distance
between each pair of memorized attractors.

To provide a quantitative estimate of the performance of this
strategy, we run 90,000 switching in 25 different memory RCs trained
with the six periodic and chaotic states as illustrated in Fig. 1(B). The
size of the reservoir network is 1000, andother hyperparameter values
are listed in SI. Among the 90,000 switchings, 8110 trials (about 9%)

failed, which we used as a pool to test the control strategies. To make
the results generic, we test 12 different control settings with different
parameters. We test four different lengths of each noisy perturbation
period, including 1 step, 3 steps, 10 steps, and 30 steps, with Gaussian
white noise at three different levels (standard deviations: σ = 0.3, σ = 1,
and σ = 3). We find that with an appropriate choice of the control
parameters, 10 periods of 10 steps of noise perturbations (so 100 steps
of perturbations in total) can eliminate 99% of the failed switchings, as
illustrated in Fig. 3(E). The full results of the 12 different control set-
tings are demonstrated and discussed in SI.

Our third control strategy is also motivated by daily experience:
recalling an object or an event can be facilitated by some relevant,
reminding cue signals. We articulate using a cue signal to “warm up”
the memory reservoir computer after switching the index p to that
associated with the desired attractor to be recalled. The advantage is
that the memory access transition matrix is no longer needed, but the
success depends on whether the cue is relevant and strong enough.
The cue signals are thus state-dependent: different attractors require
different cues, so an additional memory device may be needed to
restore the warming signals containing less information than the
attractors to be recalled. This leads to a hierarchical structure of
memory retrieval: (a) a scalar or vector index p, (b) a short warming
signal, and (c) the whole memorized attractor, similar to the workings
of human memory suggested in ref. 55. We also examine if state-
independent cues (uniform cues for all the memory states) can be
helpful, and find that in many cases, a simple globally uniform cue can
make most memorized attractors almost randomly accessible, but
there is also a probability that this cue can almost entirely block a few
memory states.

Fig. 3 | Control strategies for achieving high memory transition success rates.
AAchievinghigher switching success rates usingdetours, where the switching from
attractor 2 to attractor 6 via a detour through attractor 4 significantly increases the
success rate. The right panel illustrates the improved transitionmatrixwith detours
as compared to the original one on the left. B Average success rate with different
maximum detour lengths. A minimal detour is typically needed - just one single
step of detour can reducemore than two-thirds of the failing probability, obtained
from the same ensemble of memory RCs as in Fig. 2(F). C An instance of feedback
control to correct a failed switch, following the scheme in panel (D). The switch at
the 400th time step leads to an untrained static state. Since the classifier RC cannot
recognize the memory RC output as the desired state, a short random signal is
applied to perturb the memory RC, which adjusts the state of the memory RC to
achieve a successful retrieval.D Illustration of the controlledmemory retrieval by a

classifier RC and random signals, where a classifier RC is used to identify the output
from thememoryRC. The outcomeof this identification decideswhether to apply a
randomperturbationor to use thememoryRCoutput as thefinal result. EThe rates
of successfully corrected failed switches by the controlmechanism illustrated in (C)
and (D). The denominator of this correction success rate is the number of failed
switches, not all switches. Each perturbation is implemented by ten steps of stan-
dard Gaussian noise. Just one “perturb and classify” cycle can correct about 80% of
the failed switches. The results of this approach with different parameter choices
are shown in SI. F Performance of the cue-based method to correct failed switches
with respect to cue length. Within 25 steps of the cue, the correction success rate
reaches 99%. Panels (E) and (F) are generated from the same ensemble of 25
memory RCs, each trained to memorize the six attractors as in Fig. 1.

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 6

With this third control strategywith the cues,we again employ the
8,110 failed switching pool to test the strategy performance. As shown
in Fig. 3(F), with the increase of the cue length, the success rate
increases nearly exponentially. Almost 90%of the failed switchings can

be eliminatedwith just 8 steps of cue, and 24 steps of cue can eliminate
more than 99% of the failed switchings.

Scaling law for memory capacity. Intuitively, a larger RNN in the
hidden layer would enable more dynamical attractors to be memor-
ized. Quantitatively, such a relation can be characterized by a scaling
law between the number K of attractors and the network size N. Our
numerical method to uncover the scaling law is as follows. For a fixed
pair of (K,N) values, we train an ensemble of reservoir networks, each
of sizeN, using theKdynamical attractors. The fractionof thenetworks
with validation errors less than an empirical threshold gives the suc-
cess rate of memorizing the patterns, which in general increases with
N. A critical network size Nc can be defined when the success rate is
about 50%. (Here, we use 50% as a threshold to minimize the potential
error in Nc due to random fluctuations. In SI, we provide results with
80% as the success rate threshold. The conclusions remain the same
under this change.)

We use three different types of validation performancemeasures.
The first is the prediction horizon defined by the prediction length
before the deviation of the prediction time series reaches 10% of the
oscillation amplitude of the real state (half of the distance of the
maximum value minus the minimum value in a sufficiently long time
series of that target state). The oscillation amplitude and the corre-
spondingdeviation rate are calculated for eachdimensionof the target
state, and the shortest prediction horizon is taken among all the
dimensions of the target state. The prediction horizon is rescaled by
the length of the period of the target system to facilitate comparison.
For a chaotic state, we use the average period defined as the average
shortest time between two local maximums in a sufficiently long time
series of that target state. The threshold of this predictionhorizon for a
successful recall is set to be two periods of each memory state. The
second performance measure is the mean square root error (RMSE)
with a validation time of four periods (or average periods). The third
measure is defined by the time before the predicted trajectories go
beyond a rectangular-shaped region surrounding the real memory
state to an undesired region in the phase space, which is set to be 10%
larger than the rectangular region defined by the maximum and
minimum values of the memory state in each dimension. For these
three measures, the thresholds for a successful recall can be different
across datasets but are always fixed within the same task (the same
scaling curve). The thresholds for the prediction-horizon-based mea-
sures and region-based measures are several periods of oscillation (or
average periods for chaotic states) of the target state.

Figure 4(A) shows the resulting scaling law for the various tasks,
with different datasets of states, different training approaches, and
different coding schemes for the indexed RCs. The first dataset
(dataset #1) consists of many thousands of different periodic trajec-
tories. With index-based RCs, we use one-hot coding, binary coding,
and two-dimensional coding with this dataset, as shown in Fig. 4(A).
They all lead to similar algebraic scaling laws Nc∝Kγ that are close to a
linear law: γ = 1.08 ±0.01 for both the one-hot coding and binary
coding, and γ = 1.17 ± 0.02 for the 2D coding. In all the three cases,Nc all
grow slightly faster than a linear law. A zoom-in picture comparing the
three coding schemes is shown in Fig. 4(B). It can be seen that the one-
hot coding is more efficient than the other two. Figure 4(B) also
demonstrates how the data points in the scaling laws in Fig. 4(A) are
gathered. Similar success rates versus N curves are plotted for each K
value for each task and the data point from that curve which is closest
to a 50% success rate is taken to be Nc.

Why is the one-hot coding more efficient than the other coding
scheme we test? In our index-based approach to memorizing dyna-
mical attractors, an index value pi is assigned for each attractor si and
acts as a constant input through the index channel to the reservoir
neural network, which effectivelymodulates the biases to the network.
Since the index input pi is multiplied by a random matrix before

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4

4.5

5
one-hot coding
binary coding
2D coding
ALOI videos
index-free
separate Wout
bifurcation

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4

4.5

5
prediction horizon
RMSE
region

5000 6000 7000 8000 9000 10000 11000 12000
0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

one-hot coding
binary coding
2D coding

A

B

C

Fig. 4 | Scaling behaviors of the memory capacity. A Algebraic scaling relation
between the number K of dynamical patterns to be memorized and the required
size Nc of the RC network for various tasks and different memory coding schemes.
Details of each curve/task are discussed in the main text. The “separate Wout” and
“bifurcation” tasks are shownwith prediction-horizon-basedmeasures, while all the
other curves are plotted with the region-based measure. B Examples of how the
success rate increases with respect to N and comparisons among different coding
schemes, where the success rate of accurate memory recalling (using the region-
basedperformancemeasure) of three coding schemeson the dataset #1withK = 64
is shown. All three curves have a sigmoid-like shape between zero and one, where
the data points closest to the 50% success rate threshold correspond to Nc. All data
points in the scaling plots are generated from this type of curve (success rate versus
N) to extract Nc. The one-hot coding is the most efficient coding of the three we
tested for this task. C Comparisons among different recalling performance mea-
sures. The three different measures on the dataset #1 with a one-hot coding have
indistinguishable scaling behavior with only small differences in a constant factor.

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 7

entering the network, each neuron receives a different random level of
bias modulation, affecting its dynamical behavior through the non-
linear activation function. In particular, the hyperbolic tangent acti-
vation function has a number of distinct regions, including an
approximately linear region when the input is small, and there are two
nearly constant saturated regions for large inputs. With one specific pi
value injected into the index channel, different neurons in the hidden
layer can be distributed to/across different functional regions
(detailed demonstration in SI). When the index value is switched to
another one, the functional regions for each neuron are redistributed,
leading to a different dynamical behavior of the reservoir computer.
Among the three coding schemes, the one-hot coding scheme utilizes
one columnof the random index inputmatrix, so the biasdistributions
for different attractors arenot related to eachother, yielding aminimal
correlation among the distributions of the functional regions of the
neurons for different values of pi. For the other two coding schemes,
there is a certain degree of overlap among the input matrix entries for
different attractors, leading to additional correlations in the bias dis-
tributions, thereby reducing the memory capacity.

To make the stored states more realistic, we apply a dataset pro-
cessed from the ALOI videos56. This dataset contains short videos of
rotating small everyday objects, such as a toy duck or a pineapple. In
eachvideo, a singleobject rotates horizontally througha full 360-degree
turn, returning to its initial angle. Repeating the video generates a per-
iodic dynamical system. To reduce the computational loads due to the
high spatial dimensionality of the video frames, we perform dimension
reduction to the original videos through the principal component ana-
lysis, noting that most pixels are black backgrounds andmany pixels of
the object are highly correlated. We take the first two principal com-
ponents of each video as the target states. The results are shown in
Fig. 4(A) as the “ALOI videos” task. Similar to theprevious three tasks,we
obtain an algebraic scaling law Nc∝Kγ that is slightly faster than a linear
law with γ = 1.39 ±0.01.

The “bifurcation” task is an example to show the potential of our
index-based approach,whereNc growsmuch slower than a linear scale
with respect to K and can even decrease in certain cases. It consists of
100 dynamical states gathered from the same chaotic food chain sys-
tem but with different parameter values. We sweep an interval in the
bifurcation diagram of the system with both periodic states of differ-
ent periods and chaotic states with different average periods. For
index coding, we use a one-dimensional index and assign the states by
sorting the systemparameter values used to generate these states. The
index values are in the interval [− 2.5, 2.5], and are evenly separated on
this interval. As shown in Fig. 4(A), the scaling behavior of this “bifur-
cation” task is much slower than a linear law, suggesting that when the
target states are correlated, and the index values are assigned in a
“meaningful” way, the reservoir computer can utilize the similarities
among target states formore efficient learning and storing. Moreover,
we notice that Nc can even decrease in a certain interval of K, as the
amount of total trainingdata increaseswith largerK,making it possible
for the reservoir computer to reach a similar performance with a
smaller value ofNc. In other tasks with other training sets, training data
from different target states are independent of each other. In sum-
mary, training with the index-based approach on this dataset is more
resource-efficient than having a series of separate reservoir computers
trainedwith each target state and adding another selectionmechanism
to switch the reservoir computerwhile operating switching or itinerary
behaviors.

One of themost important features of reservoir computing is that
the input layer and the recurrent hidden layer are generated randomly
and, thus, are essentially independent of the target state. One way to
utilize this convenient feature is to use the same input andhidden layer
for all the target states butwith a separate output layer trained for each
target state. In such anapproach, an additionalmechanismof selecting
the correct output layer (i.e.,Wout) during retrieval is necessary, unlike

the other approaches studied with the same integrated reservoir
computer for all the different target states. However, training with
separate Wout can lower the computational complexity in some sce-
narios, as shown by the “separate Wout” task in Fig. 4(A), where Nc

increases as a power law with K that is much slower than a linear law.
However, training with separate Wout still makes the overall model
complexity grow slower than linear, as the same number of indepen-
dent Wout is needed as the number of K. For a scenario such as in the
“bifurcation” task, the vanilla index-based approach is more efficient.
As the input layer andhidden layer are sharedby all the different target
states, the issue of failed switching still exists, so control is required.

We further demonstrate the efficiency of our index-based
approach compared to the index-free approach. In the “index-free”
task shown in Fig. 4(A), dataset #1 was used. While the index-based
approach has an almost linear scaling, the scaling of the index-free
approachgrowsmuch faster than apower law. For instance, the critical
network size Nc with K = 20 is about Nc = 2.4 × 104, which is almost as
large as the Nc for K = 256 with the index-based memory RC on the
same dataset. Moreover, the critical network size Nc for K = 32 is larger
than 105. The comparison of the two approaches on the same task
reveals that, while the index-free memory RC has the advantage of
having content-addressable memory, it is computationally costly
compared with the index-based approach, due to the severe over-
lapping among different target states for large K values, thereby
requiring a large memory RC to distinguish different states.

To test the genericity of the scaling law, we compare the results
from the same task (the “one-hot coding” task) with the three different
measures, as shown in Fig. 4(C). All three curves have approximately the
same scaling behavior, except a minor difference in a constant factor.

Index-free reservoir-computing based memory - advantage of
multistability
The RC neural network is a high-dimensional system with rich dyna-
mical behaviors49–52,57,58, making it possible to exploit multistability for
index-free memory. In general, in the high-dimensional phase space,
various coexisting basins of attraction can be associated with different
attractors or dynamical patterns to be memorized. As we will show,
this coexisting pattern can be achieved with a similar training (storing)
process to that of index-based memory but without an index. The
stored attractors can then be recalled using the content-addressable
approach with an appropriate cue related to the target attractor. To
retrieve a stored attractor, one can drive the networked dynamical
system into the attracting basin of the desired memorized attractor
using the cues, mimicking a spontaneous dynamical response char-
acteristic of generalized synchronization between the driving cue and
the responding RC50,59,60.

While the possibility of index-free memory RC was pointed out
previously50–52, a quantitative analysis of themechanismof the retrieval
was lacking. Such an analysis should include an investigation into how
the cue signals affect the success rate, what the basin structure of the
reservoir computer is, and a dynamical understanding connecting
these two. A difficulty is how to efficiently and accurately determine,
from a short segment of RC output time series, whichmemory state is
recalled and if any target memory has been recalled at all. For this
purpose, short-term performance measures such as the RMSE and
prediction horizon are not appropriate, as the ground truth of a spe-
cific trajectory of the corresponding attractor is not available, espe-
cially for the chaotic states. Moreover, a measure based on calculating
themaximumLyapunov exponents or the correlation dimensionsmay
not be suitable either, due to the requirement of long time series. In
realistic scenarios, persisting the memory accurately for dozens of
periods can be sufficient, without the requirement for long-term
accuracy.

Our solution is to train another RC network (classifier RC) to
perform the short-term classification task to determine which

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 8

memorized states have been recalled or, if no successful recall has
been made at all, with high classification accuracy. We have tested its
performance onmore thana thousand trials and foundonly 6 trials out
of 1,200 trials of deviation from a human labeler (details in SI), which
are intrinsically ambiguous to classify. The classifier RC is also used in
the control scheme for index-basedmemory RC, as shown in Fig. 3(D).
The classifier RC provides a tool to understand the retrieval process,
e.g., the type of driving signals that can be used to recall a desired
memorized attractor. The basic idea is that the cues serve as a kind of
reminder of the attractor to be recalled, so a short period of the time
series from the attractor serves the purpose. Other cue signals are also
possible, such as those based on partial information of the desired
attractor to recall the whole or using noisy signals for warming.

We use the six different attractors in Fig. 1(B) as the target
states, all located in a three-dimensional phase space. They do not
live in distinct regions but have significant overlaps. However, the
corresponding hidden states of the reservoir neural network,
because of its much higher-dimensional phase space, can possibly

live in distinct regions. Using short-term time series of the target
attractor as a cue or warming signal to recall it, we can achieve a near
100% success rate of attractor recalling when the length of the
warming signal exceeds some critical value, as shown in Fig. 5(A).
Before injecting a warming signal, the initial state of the neural
network is set to be random, so the success rate should be about 1/6
without the cue. As a cue is applied and its length increases, a rela-
tively abrupt transition to near 100% success rate occurs for all six
stored attractors. The remarkable success rate of retrieval suggests
that all the six attractors can be trained to successfully coexist in this
one high-dimensional dynamical system (i.e., the memory RC) with
each of its own separate basin of attraction in the phase space of the
neural network hidden state r. The finding that various attractors,
despite their very different properties—ranging from being periodic
or chaotic, with varying periods or maximal Lyapunov exponents,
among others - all share nearly identical thresholds for warming
length, also suggests that this threshold is more characteristic of the
reservoir computer itself rather than the target states.

0 1 2
log10 warming length

0

0.5

1

su
cc

es
s

ra
te

0 1 2
log10 warming length

0

0.5

1

su
cc

es
s

ra
te

0 1 2
log10 warming length

0

0.5

1

su
cc

es
s

ra
te

0 1 2
log10 warming length

0

0.5

1
su

cc
es

s
ra

te

0 1 2
log10 warming length

0

0.5

1

su
cc

es
s

ra
te

0 1 2
log10 warming length

0

0.5

1

su
cc

es
s

ra
te

-3 -2 -1 0 1 2
magnitude of the perturbation

0

0.5

1

su
cc

es
s

ra
te

0 50 100 150
steps

-6

-4

-2

0
lo

g1
0

di
st

an
ce

-5 0 5

-5

0

5

0

1

2

3

4

5

6

A1

A4

A2

A5

A3

A6

B C

D

Fig. 5 | Index-free memory recalling. A1–A6 Success rate of memory retrieval of
the six attractors in Fig. 1(B) versus the length of the warming cue. In the 3D phase
space of the original dynamical systems, these attractors are located in approxi-
mately the same region and are overlapping. B A 2D projection of a typical basin
structure of the reservoir dynamical network, where different colors represent the
initial conditions leading to different memorized attractors. The central regions
have relatively large contiguous areas of uniform color, while the basin structure is
fragmented in the surrounding regions. C Success rate for the memory reservoir
network to keep the desired attractor versus the magnitude of random perturba-
tion. The two plateau regions with ~100% and 1/6 success rates correspond to the

two typical basin features shown in panel (B). D Distance (averaged over an
ensemble) between the dynamical state of the reservoir neural network and that of
the target attractor versus the cue duration during warming. The cyan curves are
obtained from 100 random trials, with the red curve as the average. The two hor-
izontal black dashed lines correspond to the perturbationmagnitude of 100.5 and −1
in (C), and their intersection points with the red curve represent the warming
lengths of 10 and 50-time steps, respectively, which are consistent with the tran-
sition regions in (A), suggesting a connection between the basin structure and the
retrieval behavior.

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 9

It is possible to arbitrarily pick up a “menu” of the attractors and
train them to coexist in a memory RC as one single dynamical system.
A question is: what are the typical structures of the basins of attraction
of the memorized attractors? An example of the 2D projection of the
basin structure is shown in Fig. 5(B). In a 2D plane, there are open areas
of different colors, corresponding to the basins of different attractors,
which are critical for the stability of the stored attractors. More spe-
cifically, when the basin of attraction of a memorized attractor con-
tains an open set, it is unlikely for a dynamical trajectory from the
attractor to be “kicked” out of the basin by small perturbations,
ensuring stability. Figure 5(C) shows the probability (success rate) for a
dynamical trajectory of the reservoir network to stay in the basin of a
specific attractor after being “kicked” by a random perturbation. For a
small perturbation, the probability is approximately one, indicating
that the trajectory will always stay near the original (correct) attractor,
leading essentially to zero retrieval error in the dynamical memory.
Only when the perturbation is sufficiently large will the probability
decrease to the value of 1/6, signifying random transition among the
attractors and, consequently, failure of the system as a memory. We
note that there are quite recent works on basin structures in a high-
dimensional Kuramoto model where a large number of attractors
coexist61, which bears similar patterns to the ones observed in our
memory RCs. Further investigation is required to study if these pat-
terns can be truly generic across different dynamical systems.

The echo state property of a reservoir computer stipulates that a
trajectory fromanattractor in its original phase space corresponds to a
unique trajectory in the high-dimensional phase space of the RNN in
the hidden layer11,62–64. That is, the target attractor is be embedded in
the RC hidden space. Figure 5(D) shows how the RC state approaches
this embedded target state during the warming by the cue. This panel
shows the distances (cyan curves) between each of the 100 trajectories
of the reservoir neural network and the embedded memorized target
attractor versus the cue duration during warming. (The details of how
this distance is calculated are given in SI.) The ensemble-averaged
distance (the red curve) decreases approximately exponentially with
the cue length, indicating that the RC rapidly approaches the memory
state’s embedding.

The results in Fig. 5 suggest the following picture. The basin
structure in Fig. 5(B) indicates that, when a trajectory approaches the

target attractor, it usually begins in a riddled-like region that contains
points belonging to the basins of different memorized attractors
before landing in the open area containing the target attractor. The
result in Fig. 5(C) can be interpreted, as follows. The recall success rate
when the RC is away from the open areas and still in the riddled-like
region is almost purely random (1/K). In an intermediate range of dis-
tance where two types of regions are mixed (as the open areas do not
appear to have a uniform radius), the recall success rate increases
rapidly before entering the pure open region and reaches 100% suc-
cess rate. This is further verified by Fig. 5(D), where the two horizontal
black dashed lines indicate the two distances that equal the magni-
tudes of perturbation in Fig. 5(C) under which the rapid decline of
success rate begins and ends. That is, the interval between these two
black dashed lines in Fig. 5(D) is the interval where the RC dynamical
state traverses themixed region. The cue lengths at the twoends of the
curve in Fig. 5(D) in this interval are 10 and 50 time steps, which agree
well with the transition interval in Fig. 5(A). Taken together, during
the warming by the cue, the memory RC begins from the riddled-like
region travels through a mixed region and finally reaches the open
areas. This journey is reflected in the changes in recall success rate
in Fig. 5(A).

It is worth studying if partial information can also successfully
recall memorized states in an index-free memory RC. In particular, for
the results in Fig. 5(A1–A6), the cue signals used to retrieve any stored
chaotic attractor have the full dimensions as that of the original
dynamical system that generates the attractor. What if the cues are
partial with some missing dimension? For example, if the attractor is
from a 3D system, then a full cue signal has three components. If one is
missing, the actual input cue signal is 2D. However, since the reservoir
network still has three input channels, the missing component can be
compensatedby the corresponding output component of thememory
RC as a feedback loop. (This rewiring scheme was suggested
previously50.) Figure 6 shows, for the six attractors in Fig. 5(A1–A6), the
success rate of retrieval versus the cue length or warming signal, for
three distinct cases: full 3D cue signals, partial 2D cue signals with one
missing dimension, and partial 1D cue signals with two missing
dimensions. It can be seen that 100% success rates can still be achieved
in most scenarios, albeit longer signals are required. The thresholds of
cue length, where the success rate begins to increase significantly

Fig. 6 | Attractor retrieval with partial cues in index-free reservoir-computing
memory. A–F Shown is the success rate of memory retrieval of the six different
chaotic attractors arising from 3D dynamical systems, respectively, with (i) full 3D
cues, (ii) 2D cueswith one dimensionmissing, and (iii) 1D cueswith twodimensions

missing. For 2Dcues, a longerwarming time isneeded to achieve 100% success rate.
For 1D cues, inmost cases 100%success rate canbe achievedwith a longerwarming
time, but it can also occur that the perfect success rate cannot be achieved, e.g.,
(A), (F).

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 10

larger than a random recall (around 1/6), are postponed to a similar
degree for all the 2D cases among different attractors. These thresh-
olds are also postponed to another similar degree for all the 1D cases.
This result further suggests that the threshold of cue length is a feature
of the RC structure and properties rather than a feature of the specific
target attractor, with the sameway of rewiring feedback loops yielding
the same thresholds. (A discussion taking into account all the possible
combinations of missed dimensions is provided in SI.)

A further question is: what if the warming signals for the index-
free reservoir-computingmemory contain randomerrors or are noisy?
Figure 7 shows the retrieval success rate versus the cue length for three
different levels of Gaussian white noise in the 3D cue signal. For all six
chaotic attractors, a 100% success rate can still be achieved for rela-
tively small noise, but the achievable success rate will decrease as the
noise level increases. Different from the scenarios with partial
dimensionality, the thresholdof required cue lengthwhere the success
rate jumps significantly from random memory retrieval (1/6) remains
the same with different noise levels. We conclude that noisy cues can
lower the saturated success rate, while partial information (with
rewired feedback loops) can slow down the transition process from
random retrieval to saturation in success rate and sometimes lower the
saturated success rate.

Discussion
Traditional neural network models of artificial associative memories,
such as the celebratedHopfield neural networks, are designed to store
and retrieve static patterns. To memorize and recall complex dyna-
mical patterns such as chaotic attractors, machine learning based on
the reservoir-computing type of RNNs is appropriate because of their
ability to produce closed-loop, self-dynamical evolution. In a typical
reservoir machine, the intrinsic dynamics are produced by a complex

network of a large number of nonlinear nodes and are high-
dimensional. Suppose the attractors to be stored and retrieved, even
if they are chaotic, come from relatively low-dimensional dynamical
systems. It is then possible for the high-dimensional reservoir system
to “accommodate” the attractors in different regions of the phase
space. Through appropriate training, each target attractor to be
memorized can be made to live in a subregion with its own basin of
attraction in the sense that there exists a dynamical invariant set in the
subregion which, when recalled, will generate the target low-
dimensional attractor, making reservoir-computing based memory
possible. The reservoir memory system so designed is dynamic: the
intrinsic high-dimensional state vector or the trajectories on the dis-
tinct dynamical invariant sets evolve in time continuously. This is the
general principle underlying our present work.

Theworkings of our reservoir-computing-basedmemory consist of
two phases: training for storing the attractors and testing to retrieve any
desired attractor. During the training phase, time-series signals from all
the attractors to bememorized are used as input to the reservoir neural
network to determine certain connection weights in the neural archi-
tecture. Successful training serves to place different attractors in dif-
ferent regions of the high-dimensional phase space of the reservoir
dynamical network, where each attractor corresponds to a dynamical
invariant set, together with its basin of attraction, in some regions of the
phase space. After training, the output vector of the reservoir system
becomes its input, leaving the system in its own closed-loop dynamical
evolution. To recall or retrieve an attractor, either an index-based
scheme labeling different attractors or certain cue signals from the
attractor to be recalled can be used to drive the dynamical evolution of
the reservoir network to output a dynamical trajectory from the invar-
iant set corresponding to the target attractor. The index-based scheme
essentially defines a location-addressable memory, while cue-signal-
based recalling effectively turns the reservoir-computing system into a
content-addressable memory. We demonstrated that, for the location-
addressable scenario, the system can memorize a large number of
dynamical attractors, including chaotic attractors. Various scaling rela-
tions were uncovered between the number of attractors that can be
memorizedand the sizeof the reservoir neural network. For the content-
addressable scenario, the stored attractors can be recalled using rela-
tively short cue signals evenwhena certaindimensionof the cue signal is
missing, and there is noise.

The learning scenario in our work is batch learning with reservoir
computing. We have demonstrated that it is computationally efficient
and can successfully memorize and recall hundreds of dynamical
attractors. The learning scheme is different from classic sequential
learning in neuropsychology and in some machine-learning applica-
tions, where training is done by one memory state after another65. A
difficulty with sequential learning is the possible occurrence of cata-
strophic forgetting66, where the capability of performing some pre-
viously learned tasks can diminish due to changes in the network
weights. There weremethods formitigating catastrophic learning66–69,
but developing RNN-based memory for complex dynamical attractors
through sequential learning remains to be an open problem.

Itinerancy between attractor states in neural systems is a phe-
nomenon that has attracted much attention70,71. As there is multi-
functionality in our memory RCs, it is possible that such phenomena
can emerge in our systems. There are three different ways of observing
itinerancy, which are induced by a fluctuating input signal, transient
behaviors, or noises. In Fig. 2(A), we have demonstrated itinerancy
amongdifferent states under afluctuating input signal. In an index-free
memory RC, we can also observe itinerancy among transient states,
with an example shown in SI in Fig. S5. However, how to properly train
the memory RC to have the desired itinerancy behavior among tran-
sients needs to be investigated. For a real-world neural network, either
a biological one or one realized by a physical system (e.g., by analog
electronics72, by a photonic system73, or by morphological computing

Fig. 7 | Attractor retrieval with noisy cues from index-free reservoir memories.
A–F The success retrieval rate of the six distinct chaotic attractors in Fig. 1(B) (from
left to right), respectively, versus the cue length.

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 11

on soft materials74), noises on the neurons are usually inevitable. In SI,
we show how noises on the neurons in memory reservoir computers
can result in spontaneous itinerancy among the attractor states. We
hopeour results, as dynamicalmodels of itinerancy, canprovide useful
insights.

The focus of this work is on applying reservoir computing to store
and recall a set of countable patterns. In the real brain, a continuum of
memory states can exist41,75. For attractors arising from a single dyna-
mical system, previous works on adaptable reservoir computing pro-
posed using a continuous bifurcation-parameter channel to anticipate
the future dynamical states of the target system29–33,48, with training
based on time series from a small number of parameter values. In
Fig. 4(A), the “bifurcation” task sheds light on the application of
developing reservoir computers to store and retrieve a continuum of
attractors from different dynamical systems.

Methods
Several different types of dynamical states are used as the target states
for the memory RCs to memorize. They include periodic or chaotic
attractors generated from numerical integration of corresponding
nonlinear ordinary differential equations, periodic trajectories defined
in explicit forms as functions of time, and trajectories processed from
short videos. In the latter two cases, the original trajectories do not
come from dynamical systems, but they can still be trained as attrac-
tors in our reservoir computers.

The six attractors
The six attractors in Fig. 1(B), Fig. 2(A–E), Fig. 3(A), Fig. 5, Fig. 6 and
Fig. 7 are: (1) a Lissajous trajectory, (2) a periodic attractor from a
Sprott system53, (3) the classic, chaotic Lorenz attractor, (4) the classic
chaotic Rössler attractor (5) a chaotic attractor from a food-chain
system76, and (6) a chaotic attractor from the Hindmarsh-Rose neuron
system77. The detailed equations and definitions of these memory
attractors used in this work are given in SI.

The 16 Sprott attractors
All 16 chaotic attractors are illustrated in Figs. 1(C) and 2(G, H, I) are
generated from the Sprott systems53. The time step for numerical
integration is dt = 0.01, and the time step (temporal resolution) used in
the final time series for training and testing is Δt =0.1. All three
dimensions are memorized by the memory RCs. These data are nor-
malized such that the time series for each dimension has zero mean
and unit standard deviation. The time scales of these attractors have a
similar order of magnitude, where each oscillation cycle requires
30–60 time steps. If the natural time scales of the attractors to be
memorized are drastically different, introducing heterogeneous
leakages78 or time delay72 into the dynamics of the artificial neuron in
the reservoir network can be effective for achieving the training goal.

Dataset #1
To obtain the scaling law between the number K of attractors that can
be memorized and the size N of the reservoir network, hundreds of
distinct attractors are needed to ensure at least two orders of magni-
tude of variation in K. The actual number of the attractors in this pool
should be larger than the largest number K used to calculate the
scaling law to reduce statistical fluctuations caused by some special
features of certain attractors. We set out to generate 10,000 distinct
attractors. To find such a large pool of distinct attractors is extremely
challenging. Our procedure is as follows. We sample 2–5 random
points in a 2D plane with 200 time steps and a constant height cor-
responding to the interval of [− 1, 1]. We then fit a fourth-order Fourier
series to these random points to obtain a continuous curve with a
period of 200-time steps. Eachdimension of any attractor is generated
independently, and all the 10,000 attractors are also generated
independently.

ALOI videos
This dataset56 contains 1,000 short videos of rotating objects on a
black background. Each video has 72 frames and forms a loop as the
object rotates an entire circle back to the initial state. Each frame is a
384 times 288-pixel gray-scale image. We only use the odd number
frames asour training and testing data tomakeour task easier and save
computational time.We then performadimension reduction based on
principal component analysis, as most pixels in the video are just the
black background, and most of the remaining pixels are highly corre-
lated. We take the first two principal components as the training and
testing data. Therefore, each dynamical state is a two-dimensional
periodic state with a period of 36 time steps.

The “bifurcation” task dataset
All the states are generated by the following dynamical equations:

dR
dt

=R 1� R
Kf

 !
� xcycCR

R +R0
, ð1Þ

dC
dt

= xcC
ycR

R+R0
� 1

� �
� xpypPC

C +C0
, ð2Þ

dP
dt

= xpP
ypC

C +C0
� 1

� �
, ð3Þ

with xc =0.4, yc = 2.009, xp =0.08, yp = 2.876, R0 = 0.16129 and C0 = 0.5.
The differences among the states are created by varying the value of Kf

in the interval of [0.92, 1], where multiple bifurcations happen, and
there are periodic regions and chaotic regionsmixed in this interval. A
bifurcation diagramof this system in this interval can be found in Fig. 2
of ref. 29. The time step (temporal resolution) of the final time series
used as training and testing data is Δt = 1. All three dimensions are
memorized by the memory RC.

Data availability
The data generated in this study, including both the training time
series (as the dynamical states to be memorized) and weights of the
reservoir computers, can be found in this OSF repository: https://osf.
io/yxm2v/79.

Code availability
The codes used in this paper can be found in the repository: https://
github.com/lw-kong/Long-Term-Memory-in-RC80.

References
1. Hopfield, J. J. Neural networks and physical systemswith emergent

collective computational abilities. Proc. Nat. Acad. Sci. (USA) 79,
2554–2558 (1982).

2. Hopfield, J. J. & Tank, D.W.Computingwithneural circuits: amodel.
Science 233, 625–633 (1986).

3. Aoyagi, T. Network of neural oscillators for retrieving phase infor-
mation. Phys. Rev. Lett. 74, 4075–4078 (1995).

4. Aonishi, T. Phase transitions of an oscillator neural network with a
standard hebb learning rule. Phys. Rev. E 58, 4865–4871 (1998).

5. Aonishi, T., Kurata, K. & Okada, M. Statistical mechanics of an
oscillator associative memory with scattered natural frequencies.
Phys. Rev. Lett. 82, 2800–2803 (1999).

6. Yoshioka, M. & Shiino, M. Associative memory storing an extensive
number of patterns based on a network of oscillators with dis-
tributednatural frequencies in thepresence of externalwhite noise.
Phys. Rev. E 61, 4732–4744 (2000).

7. Nishikawa, T., Lai, Y.-C. &Hoppensteadt, F. C.Capacityof oscillatory
associative-memory networks with error-free retrieval. Phys. Rev.
Lett. 92, 108101 (2004).

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 12

https://osf.io/yxm2v/
https://osf.io/yxm2v/
https://github.com/lw-kong/Long-Term-Memory-in-RC
https://github.com/lw-kong/Long-Term-Memory-in-RC

8. Nishikawa, T., Hoppensteadt, F. C. & Lai, Y.-C. Oscillatory associa-
tive memory network with perfect retrieval, etrieval. Phys. D. 197,
134–148 (2004).

9. Radhakrishnan, A., Belkin, M. & Uhler, C. Overparameterized neural
networks implement associative memory. Proc. Nat. Acad. Sci.
(USA) 117, 27162–27170 (2020).

10. Ott, E.Chaos in Dynamical Systems. second edn (Cambridge Uni-
versity Press, Cambridge, UK, 2002).

11. Jaeger, H. The “echo state" approach to analysing and training
recurrent neural networks-with an erratum note. Bonn., Ger.: Ger.
Natl Res. Cent. Inf. Technol. GMD Tech. Rep. 148, 13 (2001).

12. Mass, W., Nachtschlaeger, T. & Markram, H. Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neur. Comp. 14, 2531–2560 (2002).

13. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science
304, 78–80 (2004).

14. Haynes, N. D., Soriano, M. C., Rosin, D. P., Fischer, I. & Gauthier, D. J.
Reservoir computing with a single time-delay autonomous Boolean
node. Phys. Rev. E 91, 020801 (2015).

15. Larger, L. et al. High-speed photonic reservoir computing using a
time-delay-based architecture: million words per second classifi-
cation. Phys. Rev. X 7, 011015 (2017).

16. Pathak, J., Lu, Z., Hunt, B., Girvan, M. & Ott, E. Using machine
learning to replicate chaotic attractors and calculate Lyapunov
exponents from data. Chaos 27, 121102 (2017).

17. Lu, Z. et al. Reservoir observers: Model-free inference of unmea-
sured variables in chaotic systems. Chaos 27, 041102 (2017).

18. Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction
of large spatiotemporally chaotic systems from data: a reservoir
computing approach. Phys. Rev. Lett. 120, 024102 (2018).

19. Carroll, T. L. Using reservoir computers to distinguish chaotic sig-
nals. Phys. Rev. E 98, 052209 (2018).

20. Nakai, K. & Saiki, Y. Machine-learning inference of fluid variables
fromdata using reservoir computing. Phys. Rev. E98, 023111 (2018).

21. Roland, Z. S. & Parlitz, U. Observing spatio-temporal dynamics of
excitablemedia using reservoir computing.Chaos 28, 043118 (2018).

22. Griffith, A., Pomerance, A. & Gauthier, D. J. Forecasting chaotic
systems with very low connectivity reservoir computers.Chaos 29,
123108 (2019).

23. Jiang, J. & Lai, Y.-C. Model-free prediction of spatiotemporal dyna-
mical systems with recurrent neural networks: Role of network
spectral radius. Phys. Rev. Res. 1, 033056 (2019).

24. Tanaka,G. et al. Recent advances in physical reservoir computing: a
review. Neu. Net. 115, 100–123 (2019).

25. Fan, H., Jiang, J., Zhang, C., Wang, X. & Lai, Y.-C. Long-term pre-
diction of chaotic systemswithmachine learning. Phys. Rev. Res. 2,
012080 (2020).

26. Zhang, C., Jiang, J., Qu, S.-X. & Lai, Y.-C. Predicting phase and
sensing phase coherence in chaotic systems with machine learn-
ing. Chaos 30, 083114 (2020).

27. Klos,C., Kossio, Y. F.K.,Goedeke,S.,Gilra,A.&Memmesheimer, R.-M.
Dynamical learning of dynamics. Phys. Rev. Lett. 125, 088103 (2020).

28. Chen, P., Liu, R., Aihara, K. & Chen, L. Autoreservoir computing for
multistep ahead prediction based on the spatiotemporal informa-
tion transformation. Nat. Commun. 11, 4568 (2020).

29. Kong, L.-W., Fan, H.-W., Grebogi, C. & Lai, Y.-C. Machine learning
prediction of critical transition and system collapse. Phys. Rev. Res.
3, 013090 (2021).

30. Patel, D., Canaday, D., Girvan, M., Pomerance, A. & Ott, E. Using
machine learning to predict statistical properties of non-stationary
dynamical processes: System climate, regime transitions, and the
effect of stochasticity. Chaos 31, 033149 (2021).

31. Kim, J. Z., Lu, Z., Nozari, E., Pappas, G. J. & Bassett, D. S. Teaching
recurrent neural networks to infer global temporal structure from
local examples. Nat. Mach. Intell. 3, 316–323 (2021).

32. Fan, H., Kong, L.-W., Lai, Y.-C. & Wang, X. Anticipating synchroni-
zation with machine learning. Phys. Rev. Resesearch 3, 023237
(2021).

33. Kong, L.-W., Fan, H., Grebogi, C. & Lai, Y.-C. Emergence of transient
chaos and intermittency in machine learning. J. Phys. Complex. 2,
035014 (2021).

34. Bollt, E. On explaining the surprising success of reservoir comput-
ing forecaster of chaos? the universal machine learning dynamical
system with contrast to var and dmd. Chaos 31, 013108 (2021).

35. Gauthier, D. J., Bollt, E., Griffith, A. & Barbosa, W. A. Next generation
reservoir computing. Nat. Commun. 12, 1–8 (2021).

36. Carroll, T. L. Optimizing memory in reservoir computers. Chaos 32,
https://doi.org/10.48550/arXiv.2201.01605 (2022).

37. Zhai, Z.-M. et al. Model-free tracking control of complex dynamical
trajectories with machine learning. Nat. Commun. 14, 5698 (2023).

38. Yan, M. et al. Emerging opportunities and challenges for the future
of reservoir computing. Nat. Commun. 15, 2056 (2024).

39. Kim, J. Z. & Bassett, D. S. A neural machine code and programming
framework for the reservoir computer.Nat.Mach. Intell. 5, 622–630
(2023).

40. French, R. M. Catastrophic forgetting in connectionist networks.
Trends Cogn. Sci. 3, 128–135 (1999).

41. Chaudhuri, R. & Fiete, I. Computational principles of memory. Nat.
Neurosci. 19, 394–403 (2016).

42. James, W. The Principles of Psychology, vol. 1 (Cosimo, Inc., 2007).
43. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral

hippocampal lesions. J. Neurol. Neurosurg. Psychi. 20, 11–21 (1957).
44. Tetzlaff, C., Kolodziejski, C., Markelic, I. &Wörgötter, F. Time scales of

memory, learning, and plasticity. Biol. Cybern. 106, 715–726 (2012).
45. Bailey, C. H., Kandel, E. R. & Harris, K. M. Structural components of

synaptic plasticity and memory consolidation. Cold Spring Harb.
Pers. Biol. 7, a021758 (2015).

46. Shiffrin, R. M. & Atkinson, R. C. Storage and retrieval processes in
long-term memory. Psychol. Rev. 76, 179 (1969).

47. Inoue, K., Nakajima, K. & Kuniyoshi, Y. Designing spontaneous beha-
vioral switching via chaotic itinerancy. Sci. Adv. 6, eabb3989 (2020).

48. Kong, L.-W., Weng, Y., Glaz, B., Haile, M. & Lai, Y.-C. Reservoir
computing as digital twins for nonlinear dynamical systems.Chaos:
an Interdisciplinary Journal of Nonlinear Science 33, 033111 (2023).

49. Ceni, A., Ashwin, P. & Livi, L. Interpreting recurrent neural networks
behaviour via excitable network attractors. Cogn. Comp. 12,
330–356 (2020).

50. Lu, Z. & Bassett, D. S. Invertible generalized synchronization: a
putative mechanism for implicit learning in neural systems. Chaos
30, 063133 (2020).

51. Flynn, A., Tsachouridis, V. A. & Amann, A. Multifunctionality in a
reservoir computer. Chaos 31, 013125 (2021).

52. Flynn, A. et al. Exploring the limits of multifunctionality across dif-
ferent reservoir computers. In 2022 International Joint Conference
on Neural Networks (IJCNN), 1–8 (IEEE, 2022).

53. Sprott, J. C. Somesimple chaoticflows.Phys. Rev. E50, R647–R650
(1994).

54. Raaijmakers, J. G. & Shiffrin, R. M. Search of associative memory.
Psychological Rev. 88, 93 (1981).

55. Unsworth, N. Exploring the retrieval dynamics of delayed and final
free recall: further evidence for temporal-contextual search. J.
Mem. Lang. 59, 223–236 (2008).

56. Geusebroek, J.-M., Burghouts, G. J. & Smeulders, A. W. The
amsterdam library of object images. Int. J. Computer Vis. 61,
103–112 (2005).

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 13

https://doi.org/10.48550/arXiv.2201.01605

57. Röhm,A.,Gauthier, D. J. & Fischer, I.Model-free inferenceof unseen
attractors: reconstructing phase space features from a single noisy
trajectory using reservoir computing. Chaos 31, 103127 (2021).

58. Roy, M. et al. Model-free prediction of multistability using echo
state network. Chaos 32, 101104 (2022).

59. Rulkov, N. F., Sushchik, M. M., Tsimring, L. S. & Abarbanel, H. D. I.
Generalized synchronization of chaos in directionally coupled
chaotic systems. Phys. Rev. E 51, 980–994 (1995).

60. Lymburn, T., Walker, D. M., Small, M. & Jüngling, T. The reservoir’s
perspectiveongeneralizedsynchronization.Chaos29, 093133 (2019).

61. Zhang,Y. &Strogatz, S. H. Basinswith tentacles. Phys. Rev. Lett. 127,
194101 (2021).

62. Jaeger, H. Echo state network. Scholarpedia 2, 2330 (2007).
63. Yildiz, I. B., Jaeger, H. & Kiebel, S. J. Re-visiting the echo state

property. Neu. Net. 35, 1–9 (2012).
64. Hart, A., Hook, J. & Dawes, J. Embedding and approximation theo-

rems for echo state networks. Neu. Net. 128, 234–247 (2020).
65. Botvinick, M. M. & Plaut, D. C. Short-termmemory for serial order: a

recurrent neural networkmodel. Psychol. Rev. 113, 201–233 (2006).
66. Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An

empirical investigation of catastrophic forgetting in gradient-based
neural networks. arXiv Preprint arXiv:1312.6211 (2013).

67. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural
networks. Proc. Nat. Acad. Sci. (USA) 114, 3521–3526 (2017).

68. Coop, R. & Arel, I. Mitigation of catastrophic forgetting in recurrent
neural networks using a fixed expansion layer. In The 2013 Interna-
tional Joint Conference on Neural Networks (IJCNN), 1–7 (IEEE, 2013).

69. Kobayashi, T. & Sugino, T. Continual learning exploiting structure of
fractal reservoir computing. In Artificial Neural Networks and
Machine Learning–ICANN 2019: Workshop and Special Sessions:
28th International Conference on Artificial Neural Networks, Munich,
Germany, Proceedings 28, 35–47 (Springer, 2019).

70. Tsuda, I. Chaotic itinerancy and its roles in cognitive neurody-
namics. Curr. Opin. Neurobiol. 31, 67–71 (2015).

71. Miller, P. Itinerancy between attractor states in neural systems.
Curr. Opin. Neurobiol. 40, 14–22 (2016).

72. Appeltant, L. et al. Information processing using a single dynamical
node as complex system. Nat. Commun. 2, 1–6 (2011).

73. Woods, D. & Naughton, T. J. Photonic neural networks.Nat. Phys. 8,
257–259 (2012).

74. Nakajima, K., Hauser, H., Li, T. & Pfeifer, R. Information processing
via physical soft body. Sci. Rep. 5, 10487 (2015).

75. Kim, S. S., Rouault, H., Druckmann, S.& Jayaraman, V. Ring attractor
dynamics in the drosophila central brain. Science 356, 849–853
(2017).

76. Blasius, B., Huppert, A. & Stone, L. Complex dynamics and phase
synchronization in spatially extended ecological systems. Nature
399, 354–359 (1999).

77. Hindmarsh, J. L. & Rose, R. M. A model of neuronal bursting using
three coupled first order differential equations. Proc. R. Soc. Lon.
Ser. B Biol. Sci. 221, 87–102 (1984).

78. Tanaka, G., Matsumori, T., Yoshida, H. & Aihara, K. Reservoir com-
puting with diverse timescales for prediction of multiscale
dynamics. Phys. Rev. Res. 4, L032014 (2022).

79. Kong, L.-W. Reservoir-computing based associative memory and
itinerancy for complex dynamical attractors https://doi.org/10.
17605/OSF.IO/YXM2V (2024).

80. Kong, L.-W. Codes. GitHub: https://github.com/lw-kong/Long-
Term-Memory-in-RC (2024).

Acknowledgements
We thank Dr. J.-J. Jiang for stimulating discussions during the initial
phase of the study. We also thank Dr. Andrew Flynn for insightful dis-
cussions and comments. This work was supported by the Air Force
Office of Scientific Research under Grant No. FA9550-21-1-0438 (to Y.-
C.L.). This work was also supported by the Eric andWendy Schmidt AI in
Science Postdoctoral Fellowship, a Schmidt Futures program (to L.-
W.K.), and by the U.S. Army Research Institute under Award No.
W911NF2310300 (to G.A.B.).

Author contributions
L.-W. K., G.A.B., and Y.-C. L. designed the research project, the models,
andmethods. L.-W. K. performed the computations. L.-W. K., G.A.B., and
Y.-C. L. analyzed the data. L.-W. K. and Y.-C. L. wrote and edited the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-49190-4.

Correspondence and requests for materials should be addressed to
Ying-Cheng Lai.

Peer review informationNature Communications thanks Jason Kim, and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-49190-4

Nature Communications | (2024) 15:4840 14

https://doi.org/10.17605/OSF.IO/YXM2V
https://doi.org/10.17605/OSF.IO/YXM2V
https://github.com/lw-kong/Long-Term-Memory-in-RC
https://github.com/lw-kong/Long-Term-Memory-in-RC
https://doi.org/10.1038/s41467-024-49190-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Supplementary Information for

Reservoir-computing based associative memory and itinerancy for complex
dynamical attractors

Ling-Wei Kong, Gene A. Brewer, and Ying-Cheng Lai

Corresponding author: Ying-Cheng Lai (Ying-Cheng.Lai@asu.edu)

CONTENTS

Supplementary Note 1. Reservoir Computing 2

Supplementary Note 2. Details of the dynamical attractors to be memorized 5

Supplementary Note 3. Fidelity of recalled attractors in the long term 6

Supplementary Note 4. Performance of index-based reservoir memory for memorizing 16
chaotic attractors 7

Supplementary Note 5. Reservoir-computing based attractor classifier 7

Supplementary Note 6. Effects of index values on the functional regions of artificial neurons
in the reservoir network 8

Supplementary Note 7. Basin structures in index-based reservoir memory and switching
success rates 8

Supplementary Note 8. Performance of our feedback control strategy for higher switch
success rates under different parameters 9

Supplementary Note 9. Dynamical process of retrieval in index-free reservoir-computing
memory 10

Supplementary Note 10. Dependency of memory retrieval in index-free reservoir computers
with partial information on the specific missing dimensions 10

Supplementary Note 11. Effects of noise and random itinerancy 11

Supplementary figures 11

Supplementary References 28

References 28

1

Supplementary Note 1. RESERVOIR COMPUTING

We employ two types of RC networks for associative memory of complex dynamical attrac-
tors: index-based and index-free. Their architectures are not identical, but their training and test-
ing methods (for storing and retrieving attractors) bear only minor differences. Therefore, in the
following, we will describe the training and testing methods of both index-based and index-free
schemes together. The codes for training and predicting with both architectures can be found at
Ref. [1].

As shown in Fig. 1 in the main text, a reservoir computer consists of three layers: an input
layer, a hidden recurrent layer, and an output layer. The major advantage of reservoir computing
compared with most RNN architectures is that not all the weights in the layers need to be trained,
and the training usually does not require backpropagation. Rather, a regularized linear regression
suffices to train only the weights Wout of the output layer. This training scheme not only signifi-
cantly lowers the training computational cost, but also helps mitigate issues such as catastrophic
forgetting and vanishing/exploding gradient. These features make reservoir computing particu-
larly suitable for our multifunctional tasks, which require training with a large set of training data
sequences with distinct behaviors without forgetting.

The training of a reservoir neural network for memorizing dynamical attractors, whether index-
based or index-free, can be divided into three steps. In the first step, we generate the input and
recurrent hidden layers. They are generated with random values for the entries and fixed once
generated. Specifically, in an index-based RC, there are two input matrices: the state input matrix
Wu that projects the low-dimensional state vector u characterizing the target attractor to be memo-
rized to the hidden layer, and the index input matrix Windex that injects the index value p associated
with each attractor to be memorized into the reservoir neural network. The entries of both Wu and
Windex are randomly generated by a uniformed distribution in the interval [−cin, cin]. Here cin is a
hyperparameter to be optimized. When we input the index value p(t), since the specific values of
p can be chosen rather arbitrarily, we introduce a linear transformation of it kp(p(t) + bp) before
injecting to the RC network to make sure it is not way too large or way too small. Here kp and bp
are two hyperparameters. For index-free RCs, we only have Wu in the input layer, and there is no
p(t), Windex, kp, or bp. The RNN in the hidden layer has N neurons connected with each other by a
network called “the reservoir”. This reservoir network can be represented by the matrix Wr, with
N as the network size. A basic parameter characterizing the network connectivity is the probabil-
ity that a random pair of nodes is connected. We write this connectivity coefficient as sr, which
is another hyperparameter. The reservoir network is usually a sparse network with a small sr,
as in all the RCs used in this study. This sparsity significantly reduces the computational costs in
both training and testing. The reservoir network is directed and weighted, where all the connecting
weights are initially independently generated by a uniform distribution in the interval of [0, 1]. The
entire matrix Wr is then rescaled so that the network spectral radius ρ (another hyperparameter)
equals the desired value we obtain through the hyperparameter optimization.

In the second step, which is often called the “echoing step”, the time series of each attractor is
the input vector signal u(t) into the input layer and generates a response vector signal r(t) of equal
length in the hidden layer. We call this process as the echoing process as we are simply observing
the echoing of the input training signals in hidden layer (the reservoir). For the index-based mem-
ory, the corresponding index value p(t) (a scalar piecewise constant function) is simultaneously

2

injected into the hidden-layer network. The equation of iteration in this echoing step is as follows:

r(t) = (1− α)r(t−∆t) + α tanh{Wr · r(t−∆t)

+Wu · [u(t) + σtrainξ(t)] +Windexkp[p(t) + bp]}, (S1)

where α is the leakage parameter, and ∆t is the time step of network dynamical evolution. For
index-free memory retrieval, the term Windexkp[p(t) + bp] is absent. Training noise is applied to
better stabilize the memory states [2], and we have ξ(t) term in the iteration equation as a standard
Gaussian white noise added to the input data. The hyperparameter σtrain controls the magnitude of
this noise. Since we are training with multiple target states, we do the echoing process for each of
them sequentially. At the beginning of the echoing process for each target state, r(t) is initiated
with all zeros. We then have a 10-step washing-out period immediately after the initialization
to exclude the transient behaviors. After this washing-out period, all the hidden state r(t) are
recorded to be used later in the second step. At the end of this first step (echoing step), we should
have gathered a huge collection of hidden state r(t) with a number of the number of target states
multiplied by the subtraction of the training length by washing out length.

In the third step, a regularized linear regression is carried out between the target state and the
reservoir hidden state r(t) we have collected from the first step. In our cases, as we want the
RC network to learn the dynamic rules of the target states, the training target is the same as the
training inputs but with one time step forward. The RC network is thus essentially trained to make
a one-step-ahead prediction of the target state.

Compared with a more standard approach where only one attractor/state is trained, the trick
with our approach (for both indexed and index-free schemes) is that we then concatenate the
records of the hidden states r(t) from different target states together in the temporal dimension
to form one (potentially very long) time series R(t). The training target is processed in the same
way, where v(t) from different states are concatenated in the temporal dimension to form one (also
potentially very long) time series V (t). This “concatenating in time” scheme has been used in sev-
eral previous work in the context of reservoir computing [3–5] when more than one state/attractor
is trained. It is pretty interesting that this simple method works at all, especially given that the
different states it concatenates can have very different dynamical features, from simple periodic
oscillations to various chaotic trajectories with different forms of nonlinearity. The high dimen-
sionality of the RC system and the simplicity of linear regression allow this way of merging dif-
ferent dynamics into one RNN. This is particularly helpful for our tasks with multiple states to
memorize as no forgetting issue would arise.

One final treatment before the actual linear regression is that we follow the trick from Ref. [6, 7]
to take a square of the even rows/neurons of R(t) to form R′(t) to exclude undesired potential
symmetries in the RC system. Then, finally, a ridge regression is performed between V (t) and
R(t), by the following equation:

Wout = V ·R′T (R′ ·R′T + βI)−1, (S2)

where β is the l-2 regularization coefficient, another hyperparameter of the reservoir computer,
and I is an identity matrix. Now we have our readout matrix from the reservoir Wout, and the
training is finished.

A network so trained can serve as a closed-loop dynamical system capable of generating arbi-
trarily long trajectories of a memorized attractor after a successful recall according to the following

3

iterative dynamical equations:

r(t) = (1− α)r(t−∆t) + α tanh[Wr · r(t−∆t)

+Wu · u(t) +Windexkp(p(t) + bp)], (S3)
v(t) = Wout · r′(t), (S4)
v(t) → u(t+∆t), (S5)

where v(t) is the output of the reservoir computer and should be the target state we want if the
retrieval is successful. In the loop of generating a trajectory, the output v(t) becomes the state
input u(t + ∆t) of the next time step so that the iteration can continue for an arbitrary length.
(This does not necessarily mean this arbitrarily long prediction is always accurate.) Again, the
term Windexkp(p(t) + bp) will disappear if we are operating an index-free reservoir computer.

For reservoir computing, hyperparameter optimization is often necessary. The hyperparameters
that need optimization are the leakage α, the regularization coefficient β of the linear regression
in training, the scale of the input matrix cin, the spectral radius ρ of Wr, and the reservoir network
connectivity sr, and the strength of training noise σtrain. We use a Bayesian optimization algorithm
(surrogateopt in Matlab). In such an optimization process, we go through a loop of iterations.
In each iteration, we test a set of hyperparameters’ values and receive a validation result. The
algorithm uses the results we collect from previous iterations to fit a performance landscape in
the space of the hyperparameters and use such a fitting to guide our future search for optimal
hyperparameters. After a maximum iteration number is reached, we stop the iteration and select
the set of hyperparameters with the best validation performance that we have tested. Compared
with this Bayesian approach, a random search is very inefficient as each iteration is independent
and history information is not utilized. A grid search is also not applicable as we have many
different hyperparameters, so the parameter space’s dimensionality is too high.

Table S1 lists all the specific values of all the hyperparameters that we get from the optimization
and use in this paper. With different tasks and different training approaches, we have multiple
groups of reservoir computers. The reservoir computers in the same group use the same set of
hyperparameters. To make things clear, we assign each group a name, which is shown in the first
column of Tab. S1. The group Indexed #1 refers to the indexed memory RCs that are trained with
the six different memory states shown in Fig. 1(B) in the main text and Fig. S1. Results that use
this set are shown in Fig. 1(B), Figs. 2(A, B, C, D, E, F), and Fig. 3 in the main text. Results shown
in Figs. S2, S7, S9, and S15 also use this set. The group Indexed #2 refers to the indexed memory
RCs that are trained to have 16 Sprott chaotic states, as shown in Fig. 1(C) in the main text. Results
that use this set are shown in Figs. 2(G, H, I) in the main text, Figs. S3, S4, and S8. For the results
in Figs. 2(G, H, I) in the main text and Fig. S8, the training length is Ttrain = 4, 000 steps for each
attractor. and the network size N is N = 2, 000. For the results in Figs. S3 and S4, the training
length is Ttrain = 5, 000 steps for each attractor, and the network size is N = 3, 000. The group
Indexed #3 refers to the indexed memory RCs that are used in generating some of the scaling laws.
More specifically, it is used in the “one-hot coding” task, the “binary coding” task, the “separate
Wout” task, and the “bifurcation task” in Fig. 4(A) in the main text. It is also used in all the curves
in Figs. 4(B,C) in the main text, Figs. S10 and S11. The training length Ttrain is 1,000 steps for all
these results except the “bifurcation” task where the training length Ttrain is 2,000 steps. The group
Indexed #4 refers to the indexed memory RCs that are used in the “ALOI” task in Fig. 1(A) in the
main text. The group Index-Free #1 refers to the index-free memory RCs that are trained with the

4

RC Group N Ttrain ρ cin α log10 β sr log10 σtrain kp bp

Indexed #1 1,000 6,000 0.78 0.85 0.37 -7.5 0.21 -3.1 1.12 -1.08
Indexed #2 2,000 or 3,000 4,000 or 5,000 0.39 0.91 0.64 -6.5 0.4 -3 3.3 -10
Indexed #3 - 1,000 or 2,000 0.39 0.91 0.64 -6.5 0.005 -3 - -
Indexed #4 - 1,440 0.3 0.9 0.6 -6.5 0.005 -2 1 0

Index-Free #1 4,000 6,000 1.47 1.13 1 -6.4 0.19 -2.9 - -
Index-Free #2 - 1,000 1.92 2.82 0.42 -7.1 0.0027 -4.5 - -

TABLE S1. Hyperparameters of the reservoir computers used in this paper. The parts of results in the paper
that used each RC group are discussed in the Methods section, with more details on the specific choices of
training length Ttrain and reservoir size N . The training length Ttrain refers to the number of steps used in
the training for each target state.

six different memory states shown in Fig. 1B) in the main text and Fig. S1. Results that use this set
are shown in Figs. 5, 6, and 7 in the main text, as well as Figs. S12, S13, S14, and S16. The group
Index-Free #1 refers to the index-free memory RCs used in the “index-free” task in Fig. 1(A) in
the main text.

Supplementary Note 2. DETAILS OF THE DYNAMICAL ATTRACTORS TO BE MEMORIZED

We describe how the training and testing data for the target attractors to be memorized are gen-
erated. All the data used in work can be found under the ‘data’ folder in our GitHub repository [8].

The training data u(t) = [ux(t), uy(t), uz(t)]
T for the six attractors in Fig. 1(B) in the main text

(illustrated in Fig. S1), are generated as follows.

• A periodic Lissajous system with the frequency ratio as 1:3:5, where u(t) is generated by
the following formulas with time step ∆t = 1.

ux(t) = sin(πt/100),

uy(t) = sin(3πt/100 + π/2), (S6)
uz(t) = sin(πt/20).

• A periodic attractor from the Sprott system [9] is generated by the following equations:

dux/dt = 0.3ux + uz,

duy/dt = uxuz − uy, (S7)
duz/dt = −ux + uy.

The time step (temporal resolution) in the training data is ∆t = 0.015.

• The classic chaotic Lorenz attractor is generated from the equations

dux/dt = 10(uy − ux),

duy/dt = ux(28− uz)− uy, (S8)
duz/dt = uxuy − 8/3uz.

The time step (temporal resolution) in the training data is ∆t = 0.02.

5

• The classic chaotic Rössler system is generated from

dux/dt = −uy − uz,

duy/dt = ux + 0.2uy, (S9)
duz/dt = uz(ux − 5.7) + 0.2.

The time step (temporal resolution) in the training data is ∆t = 0.1.

• A chaotic attractor from the food chain system [10] is generated by the following equations:

dux/dt = ux −
0.2uxuy

1 + 0.05ux

,

duy/dt = −uy +
0.2uxuy

1 + 0.05ux

− uyuz, (S10)

duz/dt = −10(uz − 0.006) + uyuz.

The time step (temporal resolution) in the training data is ∆t = 0.15.

• A chaotic attractor from the Hindmarsh-Rose (HR) neuron system [11] is generated from
the following equations:

dux/dt = uy − u3
x + 3u2

x − uz + 3.25,

duy/dt = 1− 5u2
x − uy, (S11)

duz/dt = 0.006(4(ux + 8/5)− uz).

The time step (temporal resolution) in the training data is ∆t = 0.6.

Supplementary Note 3. FIDELITY OF RECALLED ATTRACTORS IN THE LONG TERM

In the main text, we discuss how we evaluate the maximum Lyapunov exponents and the cor-
relation dimensions of the reconstructed chaotic attractors in the retrieval phase to validate the
fidelity of the reconstructed attractor accuracy. Here we provide more results on this point, by cal-
culating the maximum Lyapunov exponents of the reconstructed attractors under different levels of
training noise σtrain. The result is shown in Fig. S2. We show that there is an optimal training noise
region where the maximum Lyapunov exponents of most of the reconstructed chaotic attractors
agree well with the ground truth values.

Note that this “fidelity of recalled attractors in the long term” is a separate issue from achieving
“long-term memory”, although both expressions have something to do with a long time scale. It
is also indeed true, though, that our framework satisfies both “long-term” criteria. The former
criterion requires that once a memory state is recalled, it can persist for a long term without losing
or deviating from the crucial dynamical features of the target memory state (such as the maximum
Lyapunov exponent). The latter criterion requires that the dynamical information is stored in the
weights and connections of the Rc network, not the hidden state, so that the memory states can be
recalled with proper cues or other recalling methods, even with a random initial hidden state. Thus,
a recalled state that only persists in the memory device for several periods may still be considered
as “long-term memory”. In other words, the “term” in the name “long-term memory” actually
refers to the time between memorizing and recalling, not to the time length of recalling.

6

Supplementary Note 4. PERFORMANCE OF INDEX-BASED RESERVOIR MEMORY FOR
MEMORIZING 16 CHAOTIC ATTRACTORS

In Fig. 1(C) in the main text, the 16 chaotic attractors to be memorized and the 2D index values
are displayed. Here we provide the results of testing (retrieval), as shown in Fig. S3, where the
blue and red trajectories are the ground truth and the outputs of reservoir memory, respectively.
The length of the recalled trajectories can be arbitrarily long.

In Fig. S4, we test if a randomized assignment of the index values will harm the performance.
We show that, in most cases, the reservoir computer can successfully recall the target memory
states and accurately persist the state for at least four average periods. This result suggests that our
approach can work on this dataset regardless of how the index values are assigned.

Supplementary Note 5. RESERVOIR-COMPUTING BASED ATTRACTOR CLASSIFIER

We use a classifier reservoir computer to classify the outputs of the reservoir memory system
in an automated way and to check if the output trajectory agrees with that of the desired attractor.
In the main text, the classifier RC is used in two tasks. The first is in the application of random
perturbation and feedback control strategy to enhance the switching success rate with the index-
based reservoir memory. The classifier reservoir computer, as described in Figs. 3(D), is deployed
inside the feedback loop to determine if the desired attractor has been reached and if further per-
turbation is required. The second task is with index-free reservoir computers, where a classifier is
used to distinguish the retrieved trajectories and to produce the retrieval success rate. A classifier
is necessary here as no explicit ground truth trajectory can be found for the chaotic target states,
so we cannot use measurements such as RMSE or prediction horizon.

A reservoir-computing-based classifier has three layers: an input layer, a recurrent hidden layer,
and an output layer, but without any index channel. The input signal is the three-dimensional time
series from the training data or the output of the reservoir memory, where the latter is an m-
dimensional one-hot vector vc(t) at each time step. Each dimension of the output of the classifier
is associated with one memorized attractor. For a well-trained classifier, the ith entry of vc(t)
being approximately one implies that the time series is classified as in the ith memorized attractor
at this time t. On the contrary, if the ith entry of vc(t) is approximately zero, then the time series
will be classified as not belonging to the ith memorized attractor at this time. More specifically,
the hyperparameters of the classifier RC are shown in Tab. 1. The training is performed on each
of the six target states ten individual times, each time with a training length of 500 steps. The
training procedure is the same as training an index-free memory RC, except that the output target
is changed to one-hot coding vectors.

After training, we apply the trained classifier RC to the output time series of the memory RCs
that we collect from the two tasks discussed above. These output time series of the memory RCs
become the inputs of the classifier RC. Some exemplary inputs and outputs of the classifier RC
are shown in Fig. S5. If the time series is an accurate reconstruction of the target state, we should
observe a dark stripe in the output of classifier RC at the correct row. A failed retrieval is shown as
the second example in the fourth row where, after recalling, the correct Rössler chaotic attractor
appeared for a short period of transient time before the reservoir memory switched to a different
state. It can be seen that the stripe in the output at index p = 4 breaks, and a new but wrong stripe
at index p = 6 is formed. Our criterion in distinguishing an accurate and stable reconstruction of

7

any of the target states versus a failed one (Either an untrained state is activated, or the retrieval
is too unstable and does not stay in one state for the majority of the classifying window.) is as
follows. We take the row of the classifier RC output that has the maximum mean value, and test if
this mean value is within the interval [0.75, 1.25] around the ideal value 1. We then also look at the
mean values of other rows, to see if none of these mean values are larger than 0.25. If the answers
to both of the tests are true, then the classifier has classified this recall as an accurate and stable
one of the target states that corresponds to the row with the maximum mean value. The testing
window is always set to 300 steps, with a 50-step washing-out period.

A confusion matrix is demonstrated in Fig. S6, with 1,200 trials collected from the outputs
from 8 different index-free memory reservoir computers. The accuracy is very high, where only
in 6 trials there is a disagreement between the classifier RC and the human labeler. All these 6
trials are caused by the boundary between successful recalls (of any target state) and failed recalls
(none of the target states is accurately and stably reconstructed during the classifying window).
This boundary is indeed hard to define. No confusion among the target states is found in all the
1,200 trials.

Supplementary Note 6. EFFECTS OF INDEX VALUES ON THE FUNCTIONAL REGIONS OF
ARTIFICIAL NEURONS IN THE RESERVOIR NETWORK

It is shown in the main text that the index values modify the bias terms in the artificial neurons
in the reservoir network, thus affecting the functional regions in the activation function. Here, we
explicitly demonstrate this effect.

The attractors to be memorized are dynamical trajectories with periodic or chaotic oscillations.
When an oscillatory signal is fed into the recurrent neural network in the hidden layer, most neu-
rons will be excited to oscillate as well. For the index-based reservoir memory, the oscillatory
patterns of the neurons can be tuned by the index values, as shown in Fig. S7. Corresponding
to the case of memorizing six attractors with a one-dimensional index, we calculate the maxi-
mum/median/minimum values of the oscillatory pattern of each neuron for two different attractors,
displayed in the left and right columns of Fig. S7, respectively. It can be seen that, for neurons with
different pi values, the maximum/median/minimum values of their oscillations are different, indi-
cating that the oscillatory patterns of the neurons can indeed be tuned by the index value (through
Windex). Remarkably, Figs. S7(B) and S7(E) show that tanh(Windexpi) fits the median values of the
oscillating neurons quite well. Overall, changing the index value can alter the oscillatory patterns
in the reservoir network, making storage of independent attractors possible without the need for
multistablity in the high-dimensional phase space of the dynamical network in the hidden layer.

Note that for the index-free reservoir memory system, because of the absence of index val-
ues, multistablity is necessary to realize any memory capacity. The occurrence of multistablity
typically requires larger networks for the same task than index-based reservoir memory.

Supplementary Note 7. BASIN STRUCTURES IN INDEX-BASED RESERVOIR MEMORY AND
SWITCHING SUCCESS RATES

Figure 2(F) in the main text shows that the variance among the average rates of each col-
umn Var(

∑
i ηi,j/K) is much larger than those among the rows Var(

∑
j ηi,j/K), where ηi,k is

8

the success rate of switching from attractor si to attractor sj . This indicates that the success rate
of switching among memorized attractors depends more on the destination attractor than on the
starting attractor.

To understand this dependence, we use the example Fig. 2(G) in the main text with 16 stored
chaotic attractors. Choosing attractor #11 as an example, we locate the regions in the 3D attractor
generated by the reservoir memory where switching starts and distinguish those with successful
(darker blue) and failed (orange) switchings, as shown in Fig. S8(A), where the ten panels cor-
respond to ten different destination attractors (attractors Nos. 1, 2, 3, 4, 5, 6, 10, 13, 15, and 16,
respectively). The success rate of switching can be estimated as the ratio between the numbers of
blue and orange points. It can be seen that, on the starting attractor (#11), the regions leading to
successful switching to different destination attractors are different with distinct relative sizes and
structures. For instance, the third panel in the first row gives a riddled structure, while the sec-
ond panel in the second row has a smooth boundary between the blue and orange regions. These
patterns are related to the basin structures of the destination attractors.

It is useful to further investigate the basin structures of the memorized attractors in the high-
dimensional phase space of the reservoir network. The results are summarized in Fig. S8(B),
where the thirty panels are organized as ten vertical columns, each corresponding to a panel (a
distinct destination attractor) in Fig. S8(A), in the same order. In each column, the three panels
show three 2D slices of the basin structure in the N -dimensional phase space, respectively, where
the dark blue region belongs to the basin of the destination attractor. The basin structures are
computed, as follows. In each panel, the center point, with position c⃗0 in the phase space, is
chosen to be within the basin of attraction and is thus blue. Different perturbations are then applied:
h⃗ = ϵ1h⃗1+ϵ2h⃗2, where ϵ1, ϵ2 ∈ [−10, 10] to the center points. Whether the reservoir memory stays
in the destination attractor after the perturbation determines if the point at (ϵ1, ϵ2) (corresponding
to the point c⃗0 + h⃗ in the high-dimensional phase space) is within the basin or not. It can be seen
that, in terms of the relative sizes of the blue and orange regions as well as their structures, there
is strong correlation between each panel in Fig. S8(A) and the corresponding three-panel column
in Fig. S8(B). The structural correspondence is particularly remarkable. For example, the riddled
structure in the third panel in the first row of Fig. S8(A) also appears in the third column of three
panels in Fig. S8(B), and the “clean” boundary in the first panel in the second row of Fig. S8(A)
can also be observed in the corresponding panels in Fig. S8(B).

The structural correlations suggest that the successful switching regions in Fig. S8(A) are the
projections of the basin of attraction of the destination attractors. Furthermore, as the memorized
attractors are confined in similar three-dimensional phase-space regions of their original dynamical
systems, the corresponding regions that they reside in the high-dimensional phase space of the
reservoir network should also be similar. However, the results in Fig. S8(B) indicate that the basins
of attractions of different attractors can be quite different in terms of their sizes and structures. It
is these differences that determine the success rate of memory switching.

Supplementary Note 8. PERFORMANCE OF OUR FEEDBACK CONTROL STRATEGY FOR
HIGHER SWITCH SUCCESS RATES UNDER DIFFERENT PARAMETERS

In the main text, we present the performance of our feedback control strategy in Fig. 3 (E)
with a moderate set of control parameters. The entire recall procedure under this control strategy
is essentially a loop of trial and error. Within each iteration, there is a perturbation phase and a

9

classification phase. We apply random noises with a certain amplitude and temporal length to the
memory RC in the perturbation phase, and then use the classifier RC to provide feedback informa-
tion on whether the target state is reached. Figure S9 shows the performance of this strategy for
indexed memory RC under different parameters. We vary the temporal length of random perturba-
tion and the noise levels in each iteration of the trial and error loop. All the random perturbations
are implemented by Gaussian white noise with standard deviation σp. The tests are run on the
same ensemble of 25 memory RCs as in the main text, each trained with 6 attractors. Figure S9
(C2) is also the panel shown in the main text. It can be considered as the optimal one in all the 12
different combinations of strategy parameters. A moderate time length (around 10 steps) enables
it to utilize almost the full potential of this method without taking too much time or computational
resources. A moderate noise level (around σp = 1) also leads to a high overall correction success
rate.

Supplementary Note 9. DYNAMICAL PROCESS OF RETRIEVAL IN INDEX-FREE RESERVOIR-
COMPUTING MEMORY

We provide a further demonstration of the dynamic process of retrieval in index-free reservoir
memory systems. As discussed in the main text, the goal of the process is to reach a target trajec-
tory g[u(t)] from a random initial state of the memory dynamical system, as illustrated in Fig. S12.
In particular, in Fig. S12 (A), the four panels show four cases of random initial state (dashed red
curves) approaching the target trajectory g[u(t)] (solid purple curves) during the warming phase.
The dashed red curves can approach the purple curves after one or two dozen steps, in agreement
with the threshold values in Fig. 5(A) in the main text. Figure S12(B) shows how the warming data
for the dashed red and solid purple curves in Fig. S12(A) are prepared. The echo state property of
reservoir computing stipulates that the dynamical output trajectory can approach the target attrac-
tor after sufficient warming. The purple curves in Fig. S12(A) are simulated by the trajectories of
the reservoir memory system after 400 steps of warming.

Supplementary Note 10. DEPENDENCY OF MEMORY RETRIEVAL IN INDEX-FREE RESER-
VOIR COMPUTERS WITH PARTIAL INFORMATION ON THE SPECIFIC MISSING DIMEN-
SIONS

In the main text, we demonstrate how our index-free memory RC can still function and recall
target states with partial cues missing some dimensions. However, we only show one missing-
dimension scenario for each dimensionality in the main text, while there are more possible combi-
nations of missing dimensions in the three-dimensional target states we test. It could be interesting
to see how the retrieval performance depends on the specific combinations of dimensions that are
missing. Here, we demonstrate comprehensive results on all the possibilities of missing dimen-
sions with all the six attractors we test. The results are shown in Fig. S13 and Fig. S14. Comparing
the six attractors, we observe that the thresholds of the cue length where the success rate begins
to rise significantly larger than a random recalling are postponed similarly to the results shown in
Fig. 6 in the main text. This again verifies that the threshold of cue length is a feature of the RC
structure and properties rather than a feature of the specific target attractor, with the same way of
rewiring feedback loops yielding the same thresholds. A decrease in the saturated success rate is

10

also observed in multiple cases, and is more frequent for the 1D cues than the 2D cues, as more in-
formation is lost. Among the four chaotic attractors, the Lorenz attractor (in panel (C)) can always
reach a 100% success rate. Both the chaotic Rossler system and the chaotic food chain system
suffer no decrease in the saturated success rate except in the sole case where only the third dimen-
sion is lost. The most intriguing case is with the periodic Sprott system, where missing the second
dimension alone would result in a worse saturated success rate than missing two dimensions. This
suggests that having more dimensions hidden during the retrieval does not always make the suc-
cess rate worse; the relationship between missing dimensions and the change in success rate is
much more complicated and system-dependent. Further research is necessary to unveil a possible
generic understanding of these interesting phenomena.

Supplementary Note 11. EFFECTS OF NOISE AND RANDOM ITINERANCY

We apply independent Gaussian white noise of standard deviation of σn to each neuron in the
reservoir network, for both index-based and index-free memory systems. For small noise, the out-
put of the reservoir memory contains small random fluctuations. For large noise, the dynamics
of the reservoir network are stochastic without any distinguishable dynamical patterns. For inter-
mediate noise, an intermittent behavior between the memorized attractor and some random states
arises for the index-based reservoir memory. For the index-free memory, because all the mem-
orized attractors coexist in the phase space of the reservoir network, there is a random itinerary
among the attractors. These results are exemplified in Figs. S15 and S16 for the index-based and
index-free reservoir memory systems, respectively.

SUPPLEMENTARY FIGURES

11

1
2
3
4
5
6

-2

0

2

-2

0

2

0 200 400

steps

-2

0

2

1
2
3
4
5
6

-2

0

2

-2

0

2

0 200 400

steps

-2

0

2

1
2
3
4
5
6

-2

0

2

-2

0

2

0 200 400

steps

-2

0

2

1
2
3
4
5
6

-2

0

2

-2

0

2

0 200 400

steps

0

2

4

6

1
2
3
4
5
6

-2

0

2

-2

0

2

0 200 400

steps

0

1

2

1
2
3
4
5
6

0

2

4

-2

0

2

0 200 400

steps

-2

0

2

A B C

D E F

FIG. S1. Training data for the six attractors in Fig. 1(B) in the main text. The attractors are (A) a periodic
Lissajous attractor, (B) a periodic attractor of the Sprott system, (C) the classic chaotic Lorenz attractor,
(D) the classic chaotic Rössler attractor, (E) a chaotic attractor from food chain system, and (F) a chaotic
attractor from the HR neuron system. The phase space for all six attractors is three-dimensional. During
training of each attractor, a constant index value p is injected into the recurrent neural network through the
index channel for index-based reservoir-computing memory, where no index channel is needed for index-
free memory.

12

10-4.110-3.610-3.110-2.610-2.1
0.8

0.9

1

1.1

10-4.110-3.610-3.110-2.610-2.1
0

0.02

0.04

0.06

0.08

0.1

10-4.110-3.610-3.110-2.610-2.1
0

0.02

0.04

0.06

0.08

10-4.110-3.610-3.110-2.610-2.1
0

0.01

0.02

0.03

0.04

A B

C D

FIG. S2. Maximum Lyapunov exponent λmax of the chaotic attractors reconstructed from the recalls of the
memory RCs under different levels of training noise σtrain. The chaotic target states in each panel are (A)
the Lorenz system, (B) the Rossler system, (C) the chaotic food chain system, and (D) the HR system. The
red horizontal line represents the ground truth value of λmax for each system. The upper and lower edges
of the boxes represent the upper and lower quartiles of the resulting λmax from 30 different memory RCs.
The horizontal lines inside the boxes represent the median values of these resulting λmax. The outliers are
shown by the circles, which are values that are more than 1.5 times of the interquartile range away from
the top or bottom of the box. The upper whisker connects the upper quartile to the nonoutlier maximum
(the maximum data value that is not an outlier), and the lower whisker connects the lower quartile to the
nonoutlier minimum (the minimum data value that is not an outlier). The optimal noise level we have
from the hyperparameter optimization is σtrain = 10−3.1. It appears that when the noise level is around the
optimal level, the majority of the λmax values from the memory RCs agree with the ground truth values well.
The index-based memory RCs tested here use the hyperparameter set Indexed #1 with N = 1, 200. The
training length for each target state is 6,000 steps. The maximum Lyapunov exponents λmax are calculated
from running the recalled state for 200,000 steps of iteration.

13

FIG. S3. Performance of index-based reservoir memory for memorizing 16 chaotic attractors. (A, B) Target
(ground truth) and retrieved attractors, respectively. The 16 attractors are those in Fig. 1(C) in the main text.
All the chaotic attractors can be successfully stored and faithfully recalled. Upon retrieval of any attractor,
the reservoir system can generate an arbitrarily long trajectory on the attractor.

14

2 4 6 8 10 12 14 16
attractors

10

20

30

40

50

60

70

80

90

100

re
se

rv
oi

r
co

m
pu

te
rs

0.5

1

1.5

2

2.5

3

3.5

4

FIG. S4. Performance of index-based reservoir memory for memorizing 16 chaotic attractors, with a two-
dimensional encoding where the order of the coding is randomized. The color represents the prediction
horizon (by the unit of average period, which is the average temporal distance between two local maximums
in the target state). We train and test 100 different reservoir computers. The 16 chaotic attractors are fixed
(as the ones shown in Fig. S3), but which index each attractor is assigned is randomized. The prediction
horizon is defined as the maximum temporal length during a recall testing that, in none of the dimensions
of the target system, the deviation between the RC-generated trajectory and the ground truth target state is
larger than 10% of the maximum value minus the minimum value in the target state. Our result suggests
that our approach can successfully memorize and recall almost all the attractors regardless of how the index
values are assigned.

15

FIG. S5. Working example of the reservoir-computing-based classifier. (A, B) Exemplary input time series
and output classifying results, respectively. The time series are generated by the reservoir memory system
during the retrieval process. A dark stripe in the correct row of the classifier output indicates that the
time series tested is from the correct memorized attractor. An example of failed retrieval is shown in the
fourth row where, after recalling the correct Rössler attractor for a short period of transient time, the system
switches to the sixth attractor, as shown in (A). In the corresponding panel in (B), the dark stripe in the
output at index p = 4 breaks and a new stripe at index p = 6 is formed.

16

1 2 3 4 5 6 7

True Labels

1

2

3

4

5

6

7

C
la

ss
ifi

er
 R

es
er

vo
ir

C
om

pu
te

r
R

es
ul

ts

Confusin Matrix of the Classifier Reservoir Computer

132

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

96

0

0

1

2

1

0

2

135

204

190

194

243

0

50

100

150

200

FIG. S6. Confusion matrix of the reservoir-computing-based classifier. Labels 1 to 6 represent the six target
states, while label 7 represents an untrained state in a failed recall. The RC classifiers show high accuracy
in classifying different target states as well as distinguishing untrained states. Among all the 1200 trials
among 8 different memory RCs, there are only 6 trials where the classifier RC results are different from the
human labeler. All these 6 trials are caused by the rather ambiguous and hard-to-define boundary between
a successfully recalled target state and a failed one.

17

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

A

B

C

D

E

F

FIG. S7. Effects of index values on the functional regions of artificial neurons in the reservoir network.
(A, D) The maximum (B, E) median, and (C, F) minimum values of each neuron for two different target
attractors in an index-based reservoir memory trained to store the six attractors displayed in Fig. 1(B) in
the main text, where the left and right columns are for attractors 1 and 3, respectively. Each blue circle
represents the state of a neuron in the reservoir network, the horizontal coordinate of which is the value
of the entry in Windex connected to that neuron. The red curves represent the function tanh(Windexpi),
which fits well the median values of the oscillating neurons [(B) and (E)]. The results demonstrate how
the oscillatory patterns of the neurons in the index-based reservoir memory are tuned by the index value
through Windex.

18

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2
3

1
-1

0-2

0

-1 -10

1

1 -2

2
3

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

-10

0

10
-10

0

10

-10 0 10

-10

0

10

A

B

FIG. S8. Switching success/failure landscape and basin structures in index-based reservoir computer with
multiple memory states. (A) Regions of successful and failed switching from the same starting attractor
(No. 11 in Fig. 3(C) in the main text) to ten different destination attractors, where each dot is the point at
which the switching begins. The darker blue and orange dots correspond to successful and failed switchings,
respectively. (B) The corresponding basin structures of the ten different destination attractors in the high-
dimensional phase space of the reservoir network from the same starting attractor in (A), where each panel
in (A) corresponds to a column of three different 2D slices (panels) in (b), in the same order. In each
panel, the darker blue regions denote the attracting basin of the corresponding destination attractor, while
the orange regions do not belong to the basin of attraction and lead to failed switching as the reservoir output
can be some irrelevant dynamical states (e.g., a fixed point).

19

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te
0 10 20

number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

0 10 20
number of perturbation

0.4

0.6

0.8

1

co
rr

ec
tio

n
su

cc
es

s
ra

te

A1 A2 A3

B1 B2 B3

C1 C2 C3

D1 D2 D3

FIG. S9. Performance of our second control strategy (with a classifier RC and random perturbations) under
different setting parameters. The length of a single run of random perturbation is (A1, A2, A3) 1 step, (B1,
B2, B3) 3 steps, (C1, C2, C3) 10 steps, and (D1, D2, D3) 30 steps. The noise levels are (A1, B1, C1, D1)
σp = 0.3, (A2, B2, C2, D2) σp = 1, and (A3, B3, C3, D3) σp = 3. We observe that there is little difference
between the (C1, C2, C3) row and the (D1, D2, D3) row, while the (B1, B2, B3) and (A1, A2, A3) rows
have significantly worse performance. This result suggests that one needs the perturbation length to be not
way too short, but does not need it to be very long either as it will not enhance the performance much. The
comparisons among the three columns also suggest the existence of an optimal moderate noise level.

20

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4

4.5

5

80%
50%

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4

4.5

5

80%
50%

A

B

FIG. S10. Comparisons between the scaling laws plotted by the 50% success rate versus the 80% success
rate. Shown are two pairs of examples with indexed memory RC with the on-hot coding on Dataset #1 with
(A) the region-based performance measure and (B) the prediction-horizon-based performance measure. The
scaling laws do not appear to differ with different success rates, except for a constant factor.

21

1500 2000 2500
0.6

0.8

1

1.2

1.4

R
ec

on
st

ru
ct

io
n

E
rr

or

10-3

1500 2000 2500
10

15

20

25

30

6000 8000 10000 12000
6

8

10

12

R
ec

on
st

ru
ct

io
n

E
rr

or

10-4

6000 8000 10000 12000
20

30

40

50

60

3 3.5 4 4.5

104

7

7.5

8

8.5

9

R
ec

on
st

ru
ct

io
n

E
rr

or

10-4

3 3.5 4 4.5

104

60

70

80

90

100

A B

C D

E F

FIG. S11. Reconstruction error (A, C, E) and 2-norm of the Wout (B, D, F) of the index-based memory
RC near the critical network size Nc. All the memory RCs in this figure are trained on Dataset #1 with a
one-hot coding. Panels (A, B) are from memory RCs trained with K = 16 attractors, with Nc = 1, 600

with the region-based measure and Nc = 1, 900 with the prediction-horizon-based measure. The results are
averaged over 200 random RCs, and the error bar represents the standard deviation within this ensemble.
Panels (C, D) are from memory RCs trained with K = 64 attractors, with Nc = 7, 200 with the region-
based measure and Nc = 8, 800 with the prediction-horizon-based measure. The results are averaged over
120 random RCs, and the error bar represents the standard deviation within this ensemble. Panels (E, F)
are from memory RCs trained with K = 256 attractors, with Nc = 33, 000 with the region-based measure
and Nc = 42, 000 with the prediction-horizon-based measure. Here, the reconstruction error is calculated
by the RMSE on the training data of all target states after training. The results are averaged over 25 random
RCs, and the error bar represents the standard deviation within this ensemble. As the number of memory
states K increases for more than an order of magnitude, the reconstruction error around Nc is always around
8× 10−4 to 1× 10−3. The 2-norm of the Wout around Nc is increasing, but not as fast as K.

22

driving the purple

solid curves

A

B

driving both the

purple solid curves

and red dashed curves

FIG. S12. Dynamical process of retrieval in index-free reservoir-computing memory. Presented is a demon-
stration of how the network state of index-free reservoir memory approaches the target trajectories. (A) Four
random examples of the network dynamical state (dashed red curves) approaching the target trajectories
(solid purple curves) after one or two dozen steps. (B) Warming data for the dashed red and solid purple
curves in (A).

23

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

dimension 1 left
dimension 2 left
dimension 3 left

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

A B C

D E F

FIG. S13. Attractor retrieval with partial cues in index-free memory RCs for all possible scenarios with
only one dimension left in the originally three-dimensional cues. (A-F) Success rate of retrieval versus
the cue length for the six attractors in Fig. 1B in the main text (from left to right)). All values of the
hyperparameters, training settings, and target memory states are the same as those in Fig. 6 in the main text.

24

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

dimensions 1, 2 left
dimensions 1, 3 left
dimensions 2, 3 left

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

0 1 2 3 4
0

0.5

1

su
cc

es
s

ra
te

s

A B C

D E F

FIG. S14. Attractor retrieval with partial cues in index-free memory RCs for all possible scenarios with
two dimensions left in the originally three-dimensional cues. (A-F) Success rate of retrieval versus the cue
length for the six attractors in Fig. 1B in the main text (from left to right)). All values of the hyperparameters,
training settings, and target memory states are the same as those in Fig. 6 in the main text.

25

-2

-2 2

0
2

00

4

-22

-2

-2 2

0
2

00

4

-22

-2

-2 2

0
2

00

4

2 -2

-2

2-2

0
2

00

4

-22

-2

2-2

0

0

2
4

0
2 -2

-2
0
2
4

-2

2
00

2

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
steps 104

-30

-20

-10

0

10

20

30

A B C

D E F

G

FIG. S15. Effects of noise in index-based reservoir memory system. (A) Original attractor (ground truth).
(B-F) Recalled attractors under different levels of noise applied to each neuron in the reservoir network: (B)
σn = 10−4, (C) σn = 10−3.5, (D) σn = 10−3, (E) σn = 10−2.5, and (F) σn = 10−2. (G) Intermittency
between the memorized attractor and some random untrained states for σn = 10−2.5. When the output vx
is within the interval (−3, 3), the output trajectory is close to the true memorized attractor.

26

-2

2-2

0
2

00

4

-22

-2

-2 2

0
2

00

4

-22

-2

2-2

0
2

0 0

4

-22

-2

2-2

0
2

0 0

4

-22

-2

-2 2

0
2

00

4

2 -2

-2
0

2

4

-2

2
0

0
2

-2

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

-2

0

2

4

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

-2

0

2

4

A B C

D E F

G

H

FIG. S16. Effects of noise in index-free reservoir memory. (A) Original attractor (ground truth). (B-F)
Recalled attractors under different levels of noise: (B) σn = 10−4.5, (C) σn = 10−4, (D) σn = 10−3.5,
(E) σn = 10−3, and (F) σn = 10−2.5. (G-H) Two examples of random itinerary among the memorized
attractors for σn = 10−3.5. In (G), the itinerary order is: chaotic Lorenz attractor → chaotic food-chain
attractor → chaotic HR neuron attractor → Lissajous attractor → chaotic food-chain attractor. In (H), the
itinerary is: chaotic food-chain attractor → HR neuron attractor → chaotic Lorenz attractor → chaotic
Rössler attractor → chaotic HR neuron attractor → Lissajous attractor → chaotic HR neuron attractor → a
periodic attractor.

27

SUPPLEMENTARY REFERENCES

[1] Kong, L.-W. Codes. GitHub: https://github.com/lw-kong/

Long-Term-Memory-in-RC (2024).
[2] Zhai, Z.-M., Kong, L.-W. & Lai, Y.-C. Emergence of a resonance in machine learning. Phys. Rev.

Res. 5, 033127 (2023).
[3] Kong, L.-W., Fan, H.-W., Grebogi, C. & Lai, Y.-C. Machine learning prediction of critical transition

and system collapse. Phys. Rev. Res. 3, 013090 (2021).
[4] Fan, H., Kong, L.-W., Lai, Y.-C. & Wang, X. Anticipating synchronization with machine learning.

Phys. Rev. Resesearch 3, 023237 (2021).
[5] Kong, L.-W., Fan, H., Grebogi, C. & Lai, Y.-C. Emergence of transient chaos and intermittency in

machine learning. J. Phys. Complexity 2, 035014 (2021).
[6] Lu, Z. et al. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems.

Chaos 27, 041102 (2017).
[7] Flynn, A., Herteux, J., Tsachouridis, V. A., Räth, C. & Amann, A. Symmetry kills the square in a

multifunctional reservoir computer. Chaos: An Interdisciplinary Journal of Nonlinear Science 31,
073122 (2021).

[8] Kong, L.-W. Data and codes. GitHub: https://github.com/lw-kong/

Long-Term-Memory-in-RC (2023).
[9] Sprott, J. C. Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994).

[10] Blasius, B., Huppert, A. & Stone, L. Complex dynamics and phase synchronization in spatially
extended ecological systems. Nature 399, 354–359 (1999).

[11] Hindmarsh, J. L. & Rose, R. M. A model of neuronal bursting using three coupled first order differ-
ential equations. Proc. R. Soc. Lon. Ser. B Biol. Sci. 221, 87–102 (1984).

28

	Reservoir-computing based associative memory and itinerancy for complex dynamical attractors
	Results
	Index-based reservoir-computing�memory
	Storage of complex dynamical attractors
	Transition matrices among stored attractors
	Control strategies for achieving high memory transition success�rates
	Scaling law for memory capacity
	Index-free reservoir-computing based memory - advantage of multistability

	Discussion
	Methods
	The six attractors
	The 16 Sprott attractors
	Dataset�#1
	ALOI�videos
	The “bifurcation” task dataset

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

