
Article https://doi.org/10.1038/s41467-023-41379-3

Model-free tracking control of complex
dynamical trajectories with machine
learning

Zheng-MengZhai 1,MohammadaminMoradi 1, Ling-Wei Kong 1, BryanGlaz2,
Mulugeta Haile 3 & Ying-Cheng Lai 1,4

Nonlinear tracking control enabling a dynamical system to track a desired
trajectory is fundamental to robotics, serving a wide range of civil and defense
applications. In control engineering, designing tracking control requires
complete knowledge of the systemmodel and equations.Wedevelop amodel-
free, machine-learning framework to control a two-arm robotic manipulator
using only partially observed states, where the controller is realized by reser-
voir computing. Stochastic input is exploited for training,which consists of the
observed partial state vector as the first and its immediate future as the second
component so that the neural machine regards the latter as the future state of
the former. In the testing (deployment) phase, the immediate-future compo-
nent is replaced by the desired observational vector from the reference tra-
jectory. We demonstrate the effectiveness of the control framework using a
variety of periodic and chaotic signals, and establish its robustness against
measurement noise, disturbances, and uncertainties.

The traditional field of controlling chaotic dynamical systems mostly
deals with the problem of utilizing small perturbations to transform a
chaotic trajectory into a desired periodic one1. The basic principle is
that the dynamically invariant set that generates chaotic motions
contains an infinite number of unstable periodicorbits. For anydesired
system performance, it is often possible to find an unstable periodic
orbit whose motion would produce the required behavior. The pro-
blem then becomes one to stabilize the system’s state-space or phase-
space trajectory around the desired unstable periodic orbit, which can
be achieved through linear control in the vicinity of the orbit, thereby
requiring only small control perturbations. The control actions can be
calculated from the locations and the eigenvalues of the target orbit,
which are often experimentally accessible through a measured time
series, without the need to know the actual system equations1–4. Con-
trolling chaos can thus be done in a model-free, entirely data-driven
manner, and the control is most effective when the chaotic behavior is
generated by a low-dimensional invariant set, e.g., one with one

unstable dimension or one positive Lyapunov exponent. However, for
high-dimensional dynamical systems, controlling complex nonlinear
dynamical networks is an active area of research5–7.

Thegoalof tracking control is todesign a control law to enable the
output of a dynamical system (or a process) to track a given reference
signal. For linear feedback systems, tracking control can be mathe-
matically designed with rigorous guarantee of stability8. However,
nonlinear tracking control is more challenging, especially when the
goal is to make a system to track a complex signal. In robotics, for
instance, a problem is to design control actions to make the tip of a
robotic arm, or the end effector, to follow a complicated or chaotic
trajectory. In control engineering, designing tracking control typically
requires complete knowledge of the system model and equations.
Existing methods for this include feedback linearization9, back-
stepping control10, Lyapunov redesign11, and sliding mode control12.
These classic nonlinear control methods may face significant chal-
lenges when dealing with high-dimensional states, strong nonlinearity

Received: 2 May 2023

Accepted: 1 September 2023

Check for updates

1School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA. 2Army Research Directorate, DEVCOM Army
Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1138, USA. 3Army Research Directorate, DEVCOM Army Research Laboratory, 6340
Rodman Road, Aberdeen Proving Ground, MD 21005-5069, USA. 4Department of Physics, Arizona State University, Tempe, AZ 85287, USA.

e-mail: Ying-Cheng.Lai@asu.edu

Nature Communications | (2023) 14:5698 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3702-0454
http://orcid.org/0000-0003-3702-0454
http://orcid.org/0000-0003-3702-0454
http://orcid.org/0000-0003-3702-0454
http://orcid.org/0000-0003-3702-0454
http://orcid.org/0000-0003-2096-6876
http://orcid.org/0000-0003-2096-6876
http://orcid.org/0000-0003-2096-6876
http://orcid.org/0000-0003-2096-6876
http://orcid.org/0000-0003-2096-6876
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-8921-1642
http://orcid.org/0000-0002-3038-9155
http://orcid.org/0000-0002-3038-9155
http://orcid.org/0000-0002-3038-9155
http://orcid.org/0000-0002-3038-9155
http://orcid.org/0000-0002-3038-9155
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://orcid.org/0000-0002-0723-733X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41379-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41379-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41379-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41379-3&domain=pdf
mailto:Ying-Cheng.Lai@asu.edu

or time delays13,14, especially when the system model is inaccurate or
unavailable. Developing model-free and purely data-driven nonlinear
control methods is thus at the forefront of research. In principle, data-
driven control has the advantage that the controller is able to adjust in
real-time to new dynamics under uncertain conditions, but existing
controllers are often not sufficiently fast “learners” to accommodate
quick changes in the system dynamics or control objectives15. In this
regard, tracking a complex or chaotic trajectory requires that the
controller be a “fast responder” as the target state can change rapidly.
At the present, developingmodel-free and fully data-driven control for
fast tracking of arbitrary trajectories, whether simple or complex
(orderedor chaotic), remains to be an challenging problem.This paper
aims to address this challenge by leveraging recent advances in
machine learning.

Recent years have witnessed a rapid expansion of machine
learning with transformative impacts across science and engineering.
This progress has been fueled by the availability of vast quantities of
data in many fields as well as by the commercial success in technology
and marketing15. In general, machine learning is designed to generate
models of a system fromdata.Machine-learning control is of particular
relevance to our work, where a machine-learning algorithm is applied
to control a complex system and generate an effective control law that
maps the desired system output to the input. More specifically, for
complex control problems where an accurate model of the system is
not available, machine learning can leverage the experience and data
to generate an effective controller. Earlier works on machine-learning
control concentrated on discrete-time systems, but the past few years
have seen growing efforts in incorporating machine learning into
control theory for continuous-time systems in various applications16–19.

There are four types of problems associated with machine-
learning control: control parameter identification, regression based
control design of the first kind, regression based control design of the
second kind, and reinforcement learning. For control parameter
identification, the structure of the control law is given but the para-
meters are unknown, an example of which is developing genetic
algorithms for optimizing the coefficients of a classical controller [e.g.,
PID (proportional-integral-derivative) control or discrete-time optimal
control20,21]. For regression-based control design of the first kind, the
task is to use machine learning to generate an approximate nonlinear
mapping from sensor signals to actuation commands, an example of
which is neural-networkenabled computationof sensor feedback from
a known full state feedback22. For regression-based control design of
the second kind, machine learning is exploited to identify arbitrary
nonlinear control laws thatminimize the cost functionof the system. In
this case, it is not necessary to know the model, control law structure,
or the optimizing actuation command, and optimization is solely
based on themeasured control performance (cost function), for which
genetic programming represents an effective regression technique23,24.
For reinforcement learning, the control lawcanbe continually updated
over measured performance changes based on rewards25–32. It should
be noted that historically, reinforcement learning control is not always
model free. For instance, an early work33 proposed a model-based
learning method for nonlinear control where the basic idea is to
decompose a complex task into multiple domains in space and time
based on the predictability of the dynamics of the environment. A
framework was developed34,35 to determine both the feedback and
feed-forward components of the control input simultaneously,
enabling reinforcement learning to solve the tracking problemwithout
requiring complete knowledge of the system dynamics and leading to
the on- and off-policy algorithms36.

Since our aim is to achieve tracking control of complex and
chaotic trajectories, a natural choice of the machine-learning frame-
work is reservoir computing37–39 that has been demonstrated to be
powerful for model-free prediction of nonlinear and chaotic
systems40–53. The core of reservoir computing is recurrent neural

network (RNN) with low training cost where regularized linear
regression is sufficient for training. Reservoir computing, shortly after
its invention, was exploited to control dynamical systems54 where an
inverse model was trained to map the present state and the desired
state of the system to the control signal (action). Subsequently, the
trained reservoir computer was exploited as a model-free nonlinear
feedback controller55 as well as for detecting unstable periodic orbits
and stabilizing the systemabout adesiredorbit56. Reservoir computing
and its variant echo state Gaussian process57 were also used in model
predictive control of unknownnonlinear dynamical systems58,59, which
served as replacements of the traditional recurrent neural-network
models with low computational cost. More recently, deep reservoir
networks were proposed for controlling chaotic systems60.

In this paper, we tackle the challenge of model-free and data-
driven nonlinear tracking of various reference trajectories, including
complex chaotic trajectories, with an emphasis on their potential
applications in robotics. In particular, we examine the case of a two-
arm robotic manipulator with the control objective of tracking any
trajectories while using only partially observed states, denoted as
vector y(t). Our control framework has the following three features: (1)
requirement of only partial state observation for both training and
testing, (2) a machine-learning training scheme that involves the
observed vectors at two consecutive time steps: y(t) and y(t + dt), and
(3) use of a stochastic signal as the input control signal for training.
With respect to feature (1), it may be speculated that the classical
Takens delay-coordinate embedding methodology could be used to
construct the full phase space from partial observation. However, in
this case, the reconstructed state is equivalent to the original system
but only in a topological sense: there is no exact state correspondence
between the reconstructed and the original dynamical systems. For
reservoir-computing based prediction and control tasks, such an exact
correspondence is required. To our knowledge, achieving tracking
control based on partial state observation is novel. In terms of features
(2) and (3), we note a previouswork55 onmachine-learning stabilization
of linear and low-dimensional nonlinear dynamical systems, where the
phase-space region to realize control is localized. This was effectively
an online learning approach. In general, online learning algorithms
have difficulties such as instability, modeling complexity as required
for nonlinear control, and computational efficiency. For example, it is
difficult for online learning to capture the intricate complex nonlinear
dynamics, causing instability during control. Trajectory divergence is
another common problem associated with online learning control,
where sudden and extreme changes in the state can occur. In fact, as
the dimension and complexity of the system to be controlled increase,
online learning algorithms tend to fail. In contrast, offline learning is
computationally extremely efficient and allows for more comprehen-
sive and complex model training with minimum risk of trajectory
divergence through repeated training. Our tracking framework entails
following a dynamic and time-varying (even chaotic) trajectory in the
whole phase space, where the offline controller can not only respond
to disturbances and system variations but also adjust the control
inputs to make the system output follow a continuously changing
reference signal. As we will demonstrate, our control scheme brings
these features together to enable continuous tracking of arbitrary
complex trajectories.

Results
A more detailed explanation of the three features and their combina-
tion to solve the complex trajectory tracking problem is as follows.
First, existing works on reservoir-computing based controllers relied
on full state measurements54–56,58–60, but our controller requires mea-
suring only a partial set of the state variables. Second, as shown in
Fig. 1a, during the training phase, the input to the machine learning
controller consists of two components: the observation vector at two
consecutive time steps: y(t) and y(t + dt). That is, at any time step t, the

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 2

second vector is the state of the observation vector in the immediate
future. This input configuration offers several advantages, which are
evident in the testing phase, as shown in Fig. 1b. After the machine-
learning controller has been trained, the testing input consists of the
observation vector y(t) and the desired observation vector yd(t), cal-
culated from the reference trajectory to be tracked. The idea is that,
during the testing or deployment, the immediate future state of the
observation is manipulated to match the desired vector from the tra-
jectory. This way, the output control signal from themachine-learning
controller will make the end effector of the robotic manipulator to
precisely trace out the desired reference trajectory. The third feature is
the choice of the control signal for training. Taking advantage of the
fundamental randomness underlying any chaotic trajectory, we con-
duct the training via a completely stochastic control input, as shown in
Fig. 1c, where the reference trajectory generated by such a control
signal through the underlying dynamical process is a random walk.
Compared with a deterministic chaotic trajectory with short-term
predictability, the random-walk trajectory is more complex as its
movements are completely unpredictable. As a result, the machine-
learning controller trained with a stochastic signal will possess a level
of complexity sufficient for controlling or overpowering any deter-
ministic chaotic trajectory. In general, ourmachine-learning controller
so trained is able to learn a mapping between the state error and a
suitable control signal for any reference trajectory. In the testing
phase, given the current and desired states, the machine-learning
controller generates the control signal that enables the robotic
manipulator to track any desired complex reference trajectory, as
illustrated in Fig. 1d. We demonstrate the working and power of our
machine-learning tracking control using a variety of periodic and

chaotic trajectories, and establish the robustness against measure-
ment noise, disturbances, and uncertainties. While our primary
machine-learning scheme is reservoir computing, we also test the
architecture of feed-forward neural networks and demonstrate its
working as an effective tracking controller, albeit with higher
computational time complexity. Overall, our work provides a powerful
model-free data-driven control framework that only relies on partial
state observation and can successfully track complex or chaotic
trajectories.

Principle of machine-learning based control
An overview of the working principle of our machine-learning based
tracking control is as follows. Consider a dynamical process to be
controlled, e.g., a two-arm robotic system, as indicated in the green
box on the left in Fig. 2. The objective of control is to make the end
effector, which is located at the tip of the outer arm, track a complex
trajectory. Let x 2 RD represent the full, D-dimensional state space of
the process. An observer has access to part of the full state space and
produces a D0-dimensional measurement vector y, where D0<D. A
properly selected and trained machine-learning scheme takes y as its
input and generates a low-dimensional control signal uðtÞ 2 RD00

(e.g.,
two respective torques applied to the two arms), where D00 ≤D0, to
achieve the control objective. The workings of our control scheme can
be understood in terms of the following three essential components:
(1) a mathematical description of the dynamical process and the
observables (Methods), (2) a physical description of how to obtain the
control signals from the observables (known as inverse dynamics—
Methods) and (3) the machine-learning scheme (Supplemen-
tary Note 1).

Fig. 1 | Illustration of our proposed machine-learning tracking controller.
aDuring the trainingphase, the input to themachine-learning controller consists of
two vectors of equal dimension: the partial observation vector y(t) and its
immediate-future counterpart y(t + dt) as the complementary. The output is a
control signal which, when applied to the dynamical system or process, will enable
it to track any desired reference trajectory. This input configuration stipulates that
the complementary component of the input is the immediate future state of the
observation vector. b In the testing phase, the complementary component of the
input vector is replaced by yd(t), the observation vector calculated from the
reference trajectory. Since the machine-learning controller has been trained to
recognize the complementary input component as the immediate future state, in

the testing phase the controller will “force” the observation vector to follow the
desired vector, thereby realizing accurate tracking. Note that yd(t) is provided to
the machine-learning controller according to the desired trajectory, so no process
model is required. c A fully stochastic control signal is used for training, which
generates a random-walk type of reference trajectory. The required input vectors
y(t) and y(t + dt) to machine learning are obtained by observing the dynamical
process to be controlled, so a mathematical model of the process is not required.
d A well-trained machine learning controller generates the appropriate control
signal to track any desired trajectory, where the blue and dotted red traces cor-
respond to the reference and tracked trajectories, respectively.

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 3

The state variable of the two-joint robot-arm system is eight-
dimensional: x � ½Cx ,Cy,q1,q2, _q1, _q2,€q1,€q2�T , where Cx and Cy are the
Cartesian coordinates of the end effector, qi, _qi and €qi are the angular
position, angular velocity and angular acceleration of aim i (i = 1, 2).
The measurement vector is four-dimensional: y � ½Cx ,Cy, _q1, _q2�T . A
remarkable feature of our framework is that a purely stochastic signal
can be conveniently used for training. As illustrated in Fig. 1c, the
torques τ1(t) and τ2(t) applied to the two arms, respectively, are taken
to be stochastic signals from a uniform distribution, which produce a
random-walk type of trajectory of the end effector. The control input
for training is uðtÞ= ½τ1ðtÞ,τ2ðtÞ�T , as shown in Fig. 3a. To ensure con-
tinuous control input, we use a Gaussian filter to smooth the noise
input data. With the control signal, the forward model Eq. (13) (in
Methods) produces the state vector x(t) and the observer generates
the vector y(t). The observed vector y(t) and its delayed version y(t +
dt) constitute the input to the reservoir computing machine that
generates a control signalO(t) as the output, leading to the error signal
e(t) =O(t) −u(t) as the loss function for training the neural network.

A well trained reservoir can then be tested or deployed to gen-
erate any desired control signal, as illustrated in Fig. 3(b). In particular,
during the testing phase, the input to the reservoir computer consists
of the observed vector y(t) and the desired vector yd(t) characterized
by the twoCartesian coordinates of the reference trajectory of the end
effector and the resulting angular velocities of the two arms.Note that,
given an arbitrary reference trajectory {Cx(t),Cy(t)}, the two angular
velocities can be calculated (extrapolated) from Eqs. (8) and (9) (in
Methods). The output of the reservoir computing machine is the two
required torques τ1(t) and τ2(t) that drive the two-arm system so that
the end effector traces out the desired reference trajectory.

Training. The detailed structure of the data and the dynamical vari-
ables associated with the training process is described, as follows. The
training phase is divided into a number of uncorrelated episodes, each
of length Tep, which defines the resetting time. At the start of each
episode, the state variables including ½ _q1, _q2,€q1,€q2� along with the con-
troller state are reset. The initial angular positions q1 and q2 are ran-
domly chosen in their defined range, respectively. For each episode,
the process’s control input is stochastic for a time duration of Tep,

generating a torquematrix of dimension 2 × Tep, as illustrated in Fig. 4.
For the same time duration, the state x of the dynamical process and
the observed state y can be expressed as a 8 × Tep and a 4 × Tep matrix,
respectively. At each time step t, the input to the reservoir computing
machine, the concatenation of y(t) and y(t + dt), is an 8 × 1 vector. The
neural network learns to generate a control input that takes the pro-
cess’s output from y(t) to y(t + dt) so as to satisfy the tracking goal. The
resulting trajectory of the end effector of the process, due to the
stochastic input torques, is essentially a random walk. To ensure that
the random walk covers as much of the state space as possible, the
training length and machine-learning parameters must be appro-
priately chosen.

Testing. In the testing phase, the trained neural network inverts the
dynamics of the process. In particular, given the current and desired
output, the neural network generates the control signal to drive the
system’s output from y(t) to y(t + dt) while minimizing the error
between y(t + dt) and yd(t + dt). We shall demonstrate that our
machine-learning controller is capable of tracking any complicated
trajectories, especially a variety of chaotic trajectories.

With a reservoir controller and the inverse model, our tracking-
control framework is able to learn the mapping between the current
and desired position of the end effector and deliver a proper control
signal, for a given reference trajectory. For demonstration, we use 16
different types of reference trajectories including those from low- and
high-dimensional chaotic systems. (The details of the generation of
these reference trajectories are presented in Supplementary Note 2)
Note that the starting position of the end effector is not on the given
reference trajectory, requiring a “bridge” to drive the end effector
from the starting position to the trajectory (See Supplementary
Note 3). Here we also address the issue of probability of control suc-
cess and the robustness of our method against measurement noise,
disturbance, and parameter uncertainties.

Examples of tracking control
The basic parameter setting of the reservoir controller is as follows.
The size of the hidden-layer network is Nr = 200. The dimensionless

Fig. 3 | Basic architecture ofproposedmachine-learningbased tracking control
framework for the two-arm robotic system. a During the training phase, the
random torques τ1(t) and τ2(t) are used as the control signal to the dynamical
process (the two-arm system) to generate the state vector x(t). An observer pro-
duces a lower-dimensional observed vector y(t). This vector and its immediate
future y(t + dt) are used as the input to the reservoir computing machine, whose
output is a two-dimensional torque vector. The difference between the reservoir
output and the original random torque signal constitutes the error for training.b In
the testing or deployment phase, the input to the reservoir computer is the
observed vector y(t) and the desired vector yd(t) calculated from the reference
trajectory. The output of the reservoir is a control signal that drives the two-arm
system so that its end effector precisely traces out the desired reference trajectory.

Fig. 2 | Working principle of our machine-learning based tracking control. The
state space vector x of the dynamical process to be controlled isD-dimensional. An
observer produces a D0-dimensional measurement vector y, where D0<D. The
machine-learning controller uses this vector and the corresponding desired vector
yd calculated from the reference trajectory to be tracked as the input and generates
a proper, typically lower-dimensional control signal u(t). Disturbance is applied to
the control signal vector u and measurement noise is present during the obser-
vation of the state vector x. Unlike controllers that rely on the error between y and
yd, our controller uses both signals as inputs, which provides it with two degrees of
freedom.

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 4

time step of the evolution of dynamical network is dt =0.01. A long
training length is chosen: 200, 000/dt so as to ensure that the learning
experience of the neural network extends through most of the phase
space in which the reference trajectory resides. The testing length is
2, 500/dt, which is sufficient for the controller to track a good number
of complete cycles of the reference trajectory. The values of the
reservoir hyperparameters obtained through Bayesian optimization
are: spectral radius ρ =0.76, input weights factor γ =0.76, leakage
parameter α =0.84, regularization coefficient β = 7.5 × 10−4, link prob-
ability p =0.53, and the bias wb = 2.00.

The training phase is divided into a series of uncorrelated epi-
sodes, ensuring that the velocity or acceleration of the robot arms will
not become unreasonably large during the random-walkmotion of the
reference trajectory. The episodes are initialized at time Tep = 80/dt.
The angular positions q1 and q2 of the twoarms is set to a randomvalue
uniformly distributed in the ranges [0, 2π] and [−π,π], respectively.
The angular velocities and accelerations ½ _q1, _q2,€q1,€q2� of the two armsas
well as the reservoir state r are set to zero initially. From the values ofq1
and q2, the coordinates Cx and Cy of the end effector can be obtained
from Eq. (7). At the beginning of each episode, since q1 and q2 are
random, the end-effector will be a random point inside a circle of
radius l1 + l2 = 1 centered at the origin. Figure 5a shows the random-
walk reference trajectory used in training and examples of the evolu-
tion of the dynamical states of the two arms (in two different colors):
q1,2ðtÞ, _q1,2ðtÞ,€q1,2ðtÞ, and τ1,2(t). To maintain the continuity of the con-
trol signal during the training phase, we invoke a Gaussian filter to
smooth the noisy signals.Given the control signalu(t) = [τ1(t), τ2(t)] and

the state variables ½q1,2ðtÞ, _q1,2ðtÞ� at each time step, the angular accel-
erations €q1,2ðtÞ can be obtained from Eq. (4). At the next time step, the
angular positions and velocities are calculated using

q1,2ðt +dtÞ=q1,2ðtÞ+ _q1,2ðtÞ � dt,
_q1,2ðt +dtÞ= _q1,2ðtÞ+ €q1,2ðtÞ � dt:

ð1Þ

The purpose of the training is for the reservoir controller to learn the
intrinsic mapping from y(t) to y(t + dt) and to produce an output
control signal u(t) = [τ1(t), τ2(t)].

In the testing phase, given the current measurement y(t) and the
desired measurement yd(t + dt), the reservoir controller generates a
control signal and feed it to the process. The tracking error is the
difference between yd(t + dt) and y(t + dt). Figure 5(b) presents four
examples: two chaotic (Lorenz and Mackey-Glass) and two periodic (a
circle and an eight figure) reference trajectories, where in each case,
the angular positions, velocities, and accelerations of both arms
together with the control signal (the two torques) delivered by the
reservoir controller are shown. As the reservoir controller has been
trained to track a random walk signal, which is fairly complex and
chaotic, it possesses the ability to accurately track these types of
deterministic signals.

Our machine-learning controller, by design, is generalizable to
arbitrarily complex trajectories. This can be seen, as follows. In the
training phase, no specific trajectory is used. Rather, training is
accomplished by using a stochastic control signal to generate a
random-walk type of trajectory that “travels” through the entire state-

Fig. 4 | Dynamical variables and data structure associated with the training
phase of the machine-learning controller. Two stochastic signals act as torques
for the two-arm system, causing its end effector to generate a random walk. For a
training episode of duration Tep, the input to the process is a 2 × Tep data matrix.

The state and the observed vectors are represented as a 8 × Tep and a 4 ×Tepmatrix,
respectively. At any time step t, the input to the reservoir computingmachine is an
eight-dimensional vector constituting y(t) and y(t + dt).

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 5

space domain of interest. The machine-learning controller does not
learn any specific trajectory example but a generic map from the
observed state at the current time step to the next under a stochastic
control signal. The training process determines the parameter values
for the controller, which are fixed when it is deployed in the testing
phase. The required input for testing is the current observed state y(t)
and the desired state yd(t) from the reference trajectory. The so-
designed machine-learning controller is capable of making the system
to follow a variety of complex periodic or chaotic trajectories to which
the controller is not exposed during training. (Supplementary Notes 2
and 4 present many additional examples).

Robustness against disturbance and noise
We consider normally distributed stochastic processes of zero mean
and standard deviations σd and σm to simulate disturbance and noise,
which are applied to the control signal vector u and the process state
vector x, respectively, as shown in Fig. 2. Fig. 6(a) and (b) show the
ensemble-averaged testing RMSE (root mean square error, defined in
Supplementary Note 1) versus σd and σm, respectively, for tracking of
the chaotic Lorenz reference trajectory, where 50 independent reali-
zations are used to calculate the average errors. In the case of dis-
turbance, near zero RMSEs are achieved for σd≲ 100.5, while the noise
tolerance is about 10−1. Color-coded testing RMSEs in the parameter
plane (σd, σm) are shown in Fig. 6(c). Those results indicate that, for

reasonably weak disturbances and small noise, the tracking perfor-
mance is robust. (Additional examples are presented in Supplemen-
tary Note 4).

Robustness against parameter uncertainties
The reservoir controller is trained for ideal parameters of the dyna-
mical process model. However, in applications, the parameters may
differ from their ideal values. For example, the lengths of the two
robot arms may deviate from what the algorithm has been trained
for. More specifically, we narrow our attention to the uncertainty
associated with the arm lengths, as variations in themass parameters
do not noticeably impact the control performance. Figure 7 shows
the results from the uncertainty test in tracking a chaotic Lorenz
reference trajectory. It can be seen that changes in the length l1 of the
primary arm have little effect on the performance. Only when the
length l2 of the secondary arm becomes much larger than l1 will the
performance begin to deteriorate. The results suggest that our con-
trol framework is able to maintain good performance if the process
model parameters are within reasonable limits. In fact, when the
lengths of the two robot arms are not equal, there are reference
trajectories that the end-effector cannot physically track. For exam-
ple, consider a circular trajectory of radius l1 + l2. For l2 < l1, it is not
possible for the end effector to reach the points in the circle of radius
l1 − l2. More results from the parameter-uncertainty test can be found

Fig. 5 | Examples of tracking control. a A random-walk reference trajectory used
in training. The time series plots below are the angular positions (q), velocities (_q),
andaccelerations (€q) aswell as the two torques (the control signals, τ) applied to the
two arms. b Successful tracking of four reference trajectories: two chaotic (Lorenz

and Mackey-Glass) and two periodic (a circle and an eight figure). Solid blue and
dotted traces represent the reference and controlled trajectories, respectively. The
reservoir controller generates the proper control signals based on the current
measurement vector y(t) and the corresponding desired vector yd(t).

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 6

in Supplementary Note 4. The issues of safe region of initial condi-
tions for control success, tracking speed tolerance, and robustness
against variations in training parameters are addressed in Supple-
mentary Note 5.

Discussion
The two main issues in control are: (1) regularization, which involves
designing a controller so that the corresponding closed-loop system
converges to a steady state, and (2) tracking - tomake the output of the
closed-loop system track a given reference trajectory continuously. In
both cases, the goal is to achieve optimal performance despite dis-
turbances and initial states61. The conventional method for control
systems design is linear quadratic tracker (LQT), whose objective is,
e.g., to design an optimal tracking controller by minimizing a pre-
defined performance index. Solutions to LQT in general consist of two
components: a feedback term obtained by solving an algebraic Riccati
equation and a feed-forward term which is obtained by solving a non-
causal difference equation. These solutions require complete knowl-
edge of the system dynamics and cannot be obtained in real time62.
Another disadvantage of LQT is that it can be used only for the class of
reference trajectories generated by an asymptotically stable command
generator that requires the trajectory to approach zero asymptotically.
Furthermore, the LQT solutions are typically non-causal due to the
necessity of backward recursion, and the infinite horizon LQT problem
is challenging in control theory63. The rapidly growing field of robotics
requires the development of real-time, non-LQT solutions for tracking
control.

We have developed a real-time nonlinear tracking controlmethod
based on machine learning and partial state measurements. The
benchmark system employed to illustrate the methodology is a two-
arm robotic manipulator. The goal is to apply appropriate control
signals to make the end effector of the manipulator to track any
complex trajectory in a 2D plane. We have exploited reservoir com-
puting as the machine-learning controller. With proper training, the
reservoir controller acquires inherent knowledge about the dynamical
system generating the reference trajectory. Our inverse controller
design method requires the observed state vector and its immediate
future as input to the neural network in the training phase. The testing
or deployment phase requires a combination of the current and
desired output measurements: no future measurements are needed.
More specifically, in the training phase, the input to the reservoir
neural network consists of two vectors of equal dimension: (a) the
observed vector from the robotic manipulator and (b) its immediate
future version. This design enables the controller to naturally associate
the second vector with the immediate future state of the first vector in
the testing phase and to generate control signals based on this asso-
ciation. After training, the parameters of the machine-learning con-
troller are fixed for testing, which distinguishes our control scheme
fromonline learning. The controller in the testing phase is deployed to
track a desired reference trajectory since the immediate future vectors
y(t + dt) are replaced by the states generated from the desired refer-
ence trajectory, which are recognized by the machine as the desired
immediate future states of the robotic manipulator to be controlled.
The control signal generated in this manner compels the manipulator
to imitate the dynamical system that generates the reference trajec-
tory, resulting in precise tracking.We also take advantage of stochastic
control signals for training the neural network to enable it to gain as
much dynamical complexity as possible.

We have tested this reservoir computing based tracking control
using a variety of periodic and chaotic reference trajectories. In all the
cases, accurate tracking for an arbitrarily long period of time can be
achieved. We have also demonstrated the robustness of our control
framework against input disturbance, measurement noise, process
parameter uncertainties, and variations in the machine-learning para-
meters. A finding is that selecting the starting end-effector position
“wisely” can improve the tracking success rate. In particular, we have
introduced the concept of “safe region” fromwhich the initial position
of the end effector should be chosen (Supplementary Note 5). In
addition, the effects of the amplitude of the stochastic control signal
used in training and of the “speed limit” of the reference trajectory on

Fig. 7 | Robustness against parameter uncertainties in the process model.
Shown is a color map of the testing RMSE in the parameter plane of the lengths
(l1, l2) of the two arms, where the chaotic Lorenz trajectory in Fig. 5b is used as the
reference. The ideal model parameters used in the training are l1 = 0.5 and l2 = 0.5.
Each RMSE value is the result of averaging over 50 independent realizations. The
RMSE values are small for most of the parameter region, and the performance of
the reservoir controller is especially robust against the uncertainty in the length of
the primary arm.

Fig. 6 | Robustness against disturbance and noise for tracking the chaotic
Lorenz reference trajectory. a, b Ensemble-averaged testing RMSE versus the
amplitude σd of the disturbance and the noise amplitude σm, respectively. Error
bars represent standard deviation calculated from 50 independent realizations. In
each case, the horizontal dashed line represents some empirical threshold below
which the tracking-control performance may be regarded as satisfactory. The tol-
erance of tracking control to disturbance is about σd≲ 100.5 and that to noise is
about σm≲ 10−1. c Color-coded RMSE in the parameter plane (σd, σm).

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 7

the tracking success rate have been investigated (Supplementary
Note 5).Wehave also demonstrated that feed-forward neural networks
can be used to replace reservoir computing (Supplementary Note 6).
The results suggest the practical utilities of our machine-learning
based tracking controller: it is anticipated to be deployable in real-
world applications such as unmanned aerial vehicle, soft robotics, laser
cutting, soft robotics, and real-time tracking of high-speed air laun-
ched effects.

Finally, we remark that there are traditional methods for track-
ing control, such as PID, MPC (model predictive control), and H∞
trackers (see refs. 20,21, references therein). In terms of computa-
tional complexity, these classical controllers are extremely efficient,
while the training of our machine-learning controller with stochastic
signals can be quite demanding. However, there is a fundamental
limitation with the classic controllers: such a controller can be
effective only when its parameters were meticulously tuned for a
specific reference trajectory. For a different trajectory, a completely
different set of parameters is needed. That is, when theparameters of
a classic controller are set, in general it cannot be used to track any
alternative trajectory. In contrast, our machine-learning controller
overcomes this limitation: it possesses the remarkable capability and
flexibility to track any given trajectory after a single training session!
This distinctive attribute sets our approach apart from conventional
methods, so a direct comparison with these methods may not be
meaningful.

Methods
Dynamics of joint robot arms
The dynamics of the system of n-joint robot arms can be conveniently
described by the standard Euler-Lagrangian method64. Let T and U be
the kinetic and potential energies of the system, respectively. The
equations of motion can be determined from the system Lagrangian
L = T −U as

d
dt

∂L
∂ _q

� ∂L
∂q

= τ, ð2Þ

whereq = ½q1,q2, . . .qn�T and _q= ½ _q1, _q2, . . . , _qn�T are the angular position
and angular velocity vectors of the n arms [with ()T denoting the
transpose], and τ = ½τ1,τ2, . . . ,τn�T is the external force vector with each

component applied to a distinct joint denoted by the subscript n. The
nonlinear dynamical equations for the robot-arm system can be
expressed as65,66

MðqÞ€q +Cðq, _qÞ _q +GðqÞ+Fð _qÞ= τ, ð3Þ

where €q = ½€q1,€q2, . . . ,€qn�T is the acceleration vector of the n joints,M(q)
denotes the inertial matrix, Cðq, _qÞ _q represents the Coriolis and cen-
trifugal force, G(q) is the gravitational force vector, and Fð _qÞ is the
vector of the frictional forces at the n joints which depends on the
angular velocities. We assume that the movements of the robot arms
are confined to the horizontal plane so that the gravitational forces can
be disregarded, and we also neglect the frictional forces, so Eq. (3)
becomes

MðqÞ€q+Cðq, _qÞ _q= τ: ð4Þ

We focus on the system of two joint robot arms (n = 2), as shown
in Fig. 8, wherem1 andm2 are the centers of themassof the two arms, l1
and l2 are their lengths, respectively. The tip of the second arm is the
end effector to trace out a desired trajectory in the plane. The two
matrices in Eq. (4) are

MðqÞ= M11 M12

M21 M22

� �
ð5Þ

Cðq, _qÞ= �hðqÞ _q2 �hðqÞð _q1 + _q2Þ
hðqÞ _q1 0

� �
, ð6Þ

where the matrix elements are given by

M11 =m1l
2
c1
+ I1 +m2ðl21 + l2c2 + 2l1lc2 cosq2Þ+ I2,

M12 =M21 =m2l1lc2 cosq2 +m2l
2
c2
+ I2,

M22 =m2l
2
c2
+ I2,

the function h(q) is

hðqÞ=m2l1lc2 sinq2,

Fig. 8 | A two-joint robot arm system and illustration of continuity of motion.
One end of the primary arm (arm 1) is fixed at the origin while the other end joins
the secondary arm (arm 2) whose tip is the end effector. a Parameter setting and
dynamical variables: the moments of inertia of the two arms are I1 and I2, respec-
tively, m1 and m2 are the point masses at the center of the two arms, the angular
position of the first arm is q1 defined with respect to the x-axis, and that of the
second arm (q2) is definedwith respect to the direction of the first arm. The torques
applied to the two joints are τ1 and τ2, respectively. The tip of the second arm is the
end effector to be trained by machine learning to trace out any desired trajectory

(the blue curve).b Illustration of continuity ofmotionof the twoarms: twopossible
configurations of the arms (green and orange, respectively) and a trajectory (blue).
For the orange configuration, initially the angle q2 is positive because the second
arm is above the line extending the first arm. After going through the motion as
specified by the blue trajectory, the final angular position of the second arm is still
positive. For the green configuration, the initial angle q2 is negative and it remains
to be negative after the motion. It is necessary to calculate the angles from Eqs. (8)
and (9) to satisfy the continuity condition.

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 8

lc1 = l1=2,lc2 = l2=2,I1 and I2 are the moments of inertia of the two arms,
respectively. Typical parameter values are m1 =m2 = 1,
l1 = l2 =0:5,lc1 = lc2 = 0:25, and I1 = I2 = 0.03.

The Cartesian coordinates of the end effector are

Cx = l1 cosq1 + l2 cosðq1 +q2Þ,
Cy = l1 sinq1 + l2 sinðq1 + q2Þ,

ð7Þ

which give the angular positions of the two arms as

q2 = ± arccos
C2
x +C

2
y � l21 � l22
2l1l2

, ð8Þ

q1 = arctan
Cy

Cx
± arctan

l2 sin q2
l1 + l2 cosq2

: ð9Þ

For any end-effector position, there are two admissible solutions for
the angular variables. We select the pair of angles that result in a
continuous trajectory. In addition, the end effector may end up in any
of the four quadrants, so the range of q1 is [0, 2π]. The range of q2 is
[−π,π], since the second joint can be above or below the first joint. In
our simulations, we ensure that the solutions are continuous and thus
are physically meaningful, as demonstrated in Fig. 8b.

Noises and unpredictable disturbances are constantly present in
real-world applications, making it crucial to ensure that the control
strategy is robust and operational in their presence67. In fact, amodel is
always inaccurate compared with the actual physical system because
of factors such as change of parameters, unknown time delays, mea-
surement noise, and input disturbances. The goal of the robustness
test is to maintain an acceptable level of performance under these
circumstances. In our study, we treat disturbances and measurement
noise as external inputs, where the former are added to the control
signal and the latter is present in the sensor measurements. In parti-
cular, the disturbances aremodeled as an additive stochastic process ξ
to the data:

exn = xn + ξd: ð10Þ

For measurement noise, we use multiplicative noise ξ in the form

exn = xn + xn � ξm: ð11Þ

Both stochastic processes ξd and ξm follow a normal distribution of
zero mean and with standard deviation σd and σm, respectively.

Inverse design based controller formulation
To develop a machine-learning based control method, it is necessary
to obtain the control signal through observable states. The state of the
two-arm system, i.e., the dynamical process to be controlled, is eight-
dimensional, which consists of the Cartesian coordinates of the end-
effector, the angular positions, angular velocities and angular accel-
erations of the two manipulators:

x � ½Cx ,Cy,q1,q2, _q1, _q2,€q1,€q2�T : ð12Þ

A general nonlinear control problem can be formulated as60

xðt +dtÞ = f ½xðtÞ,u +u � ξd�, ð13Þ

yðtÞ = g½xðtÞ�+g½xðtÞ� � ξm, ð14Þ

where x 2 Rn (n = 8), u 2 Rm (m < n) is the control signal, y 2 Rk

(k ≤ n) represents the sensor measurement. The function f :

Rn ×Rm ! Rn is unknown for the controller. In our analysis, we
assume that f is Lipschitz continuous68 with respect to x. The mea-
surement function g : Rn ! Rk fully or partially measures the states
x. For the two-arm system, the measurement vector is chosen to be
four-dimensional: y � ½Cx ,Cy, _q1, _q2�T . The corresponding vector from
the desired, reference trajectory is denoted as yd(t). For our tracking
control problem, the aim is to design a two-degree-of-freedom
controller that receives the signals y(t) and yd(t) as the input and
generates an appropriate control signal u(t) in order for y(t) to track
the trajectory generating the observation yd(t). For convenience, we
use the notation fu(⋅) ≡ f(⋅ ,u). For a small time step dt, Eq. (13)
becomes

xðt +dtÞ≈Fu½xðtÞ�, ð15Þ

where Fu is a nonlinear function mapping x(t) to x(t + dt) under the
control signal u(t). For reachable desired state, Fu is invertible. We get

uðtÞ≈F�1
u ½xðtÞ,xðt +dtÞ�, ð16Þ

Similarly, Eq. (14) can be approximated as x(t) ≈ g−1[y(t)], so Eq. (16)
becomes

uðtÞ≈F�1½g�1½yðtÞ�,g�1½yðt +dtÞ��: ð17Þ

Equation (17) is referred to as the inverse model for nonlinear
control60, whichwill be realized in amodel-freemanner usingmachine
learning.

Data availability
The reference trajectories data generated in this study can be found in
the repository: https://doi.org/10.5281/zenodo.804499469.

Code availability
The codes for generating all the results can be found on GitHub:
https://github.com/Zheng-Meng/TrackingControl70.

References
1. Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Phys. Rev. Lett.

64, 1196–1199 (1990).
2. Grebogi, C. & Lai, Y.-C. Controlling chaotic dynamical systems. Sys.

Cont. Lett. 31, 307–312 (1997).
3. Grebogi, C. & Lai, Y.-C. Controlling chaos in high dimensions. IEEE

Trans. Cir. Sys. 44, 971–975 (1997).
4. Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H. & Maza, D. Control

of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000).
5. Zañudo, J. G. T., Yang, G. & Albert, R. Structure-based control of

complex networks with nonlinear dynamics. Proc. Natl Acad. Sci.
USA 114, 7234–7239 (2017).

6. Klickstein, I., Shirin, A. & Sorrentino, F. Locally optimal control of
complex networks. Phys. Rev. Lett. 119, 268301 (2017).

7. Jiang, J.-J. & Lai, Y.-C. Irrelevance of linear controllability to non-
linear dynamical networks. Nat. Commun. 10, 3961 (2019).

8. Aström, K. J. & Murray, R. M. Feedback Systems: An Introduction for
Scientists and Engineers 2nd edn (Princeton University Press,
NJ, 2021).

9. Charlet, B., Lévine, J. & Marino, R. On dynamic feedback lineariza-
tion. Sys. Cont. Lett. 13, 143–151 (1989).

10. Dawson, D., Carroll, J. & Schneider, M. Integrator backstepping
control of a brush dcmotor turning a robotic load. IEEE Trans. Cont.
Sys. Techno. 2, 233–244 (1994).

11. Abramovitch, D. Y. Lyapunov redesign of analog phase-lock loops.
In 1989 American Control Conference, 2684–2689 (IEEE, 1989).

12. Furuta, K. Slidingmode control of a discrete system.Sys. Cont. Lett.
14, 145–152 (1990).

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 9

https://doi.org/10.5281/zenodo.8044994
https://github.com/Zheng-Meng/TrackingControl

13. Östh, J., Noack, B. R., Krajnović, S., Barros, D.&Borée, J.On theneed
for a nonlinear subscale turbulence term in POD models as exem-
plified for a high-Reynolds-number flow over an Ahmed body. J.
Fluid Mech. 747, 518–544 (2014).

14. Barros, D. C., Ruiz, T., Borée, J. & Noack, B. R. Control of a three-
dimensional blunt body wake using low and high frequency pulsed
jets. Int. J. Flow Control 6, 61–74 (2014).

15. Duriez, T., Brunton, S. L. & Noack, B. R. Machine Learning Control-
Taming Nonlinear Dynamics and Turbulence (Springer, Cham,
Switzerland, 2017).

16. Weinan, E. A proposal on machine learning via dynamical systems.
Commun. Math. Stat. 1, 1–11 (2017).

17. Bensoussan, A. et al. Machine learning and control theory. Hand-
book Num. Ana. 23, 531–558 (2022).

18. Ma, C. &Wu, L. et al. Machine learning from a continuous viewpoint
I. Sci. China Math. 63, 2233–2266 (2020).

19. Recht, B. A tour of reinforcement learning: the view from con-
tinuous control. Ann. Rev. 2, 253–279 (2019).

20. Xu, H. et al. Generalizable control for quantum parameter estima-
tion through reinforcement learning. NPJ Quan. Info. 5, 82
(2019).

21. Rajalakshmi, M. et al. Machine learning for modeling and control of
industrial clarifier process. Intel. Automa. Soft Comp. 32,
021696 (2022).

22. Pradeep, D. J., Noel, M. M. & Arun, N. Nonlinear control of a boost
converter using a robust regression based reinforcement learning
algorithm. Eng. Appl. Arti. Intel. 52, 1–9 (2016).

23. Diveev, A. & Shmalko, E. Machine Learning Control by Symbolic
Regression (Springer, New York, 2021).

24. Shmalko, E. & Diveev, A. Control synthesis as machine learning
control by symbolic regression methods. Appl. Sci. 11, 5468 (2021).

25. Razavi, S. E., Moradi, M. A., Shamaghdari, S. & Menhaj, M. B.
Adaptive optimal control of unknown discrete-time linear systems
with guaranteed prescribed degree of stability using reinforcement
learning. Int. J. Dyn. Cont. 10, 870–878 (2022).

26. Waltz, M. & Fu, K. A heuristic approach to reinforcement learning
control systems. IEEE Trans. Auto. Cont. 10, 390–398 (1965).

27. Adam, S., Busoniu, L. & Babuska, R. Experience replay for real-time
reinforcement learning control. IEEE Trans. Sys. Man Cybern. C
(Appl. Rev) 42, 201–212 (2011).

28. Moradi, M., Weng, Y. & Lai, Y.-C. Defending smart electrical power
grids against cyberattacks with deep q-learning. PRXEnergy 1,
033005 (2022).

29. Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K. & Barth, M. Deep rein-
forcement learning enabled self-learning control for energy effi-
cient driving. Transp. Res. Part C Emerg. Technol. 99, 67–81 (2019).

30. Henze, G. P. & Schoenmann, J. Evaluation of reinforcement learning
control for thermal energy storage systems. HVAC&R Res. 9,
259–275 (2003).

31. Liu, S. & Henze, G. P. Experimental analysis of simulated reinfor-
cement learning control for active and passive building thermal
storage inventory: part 2: results and analysis. Ener. Buildings 38,
148–161 (2006).

32. Kretchmar, R. M. et al. Robust reinforcement learning control with
static and dynamic stability. Int. J. Robust Nonl. Cont. 11,
1469–1500 (2001).

33. Doya, K., Samejima, K., Katagiri, K.-i & Kawato, M. Multiple model-
based reinforcement learning. Neu. Comp. 14, 1347–1369
(2002).

34. Modares, H. & Lewis, F. L. Optimal tracking control of nonlinear
partially-unknown constrained-input systems using integral rein-
forcement learning. Automatica 50, 1780–1792 (2014).

35. Modares, H. & Lewis, F. L. Linear quadratic tracking control of
partially-unknown continuous-time systems using reinforcement
learning. IEEE Trans. Auto. Cont. 59, 3051–3056 (2014).

36. Kiumarsi, B., Vamvoudakis, K. G., Modares, H. & Lewis, F. L. Optimal
and autonomous control using reinforcement learning: a survey.
IEEE Trans. Neu. Net. Learn. Sys. 29, 2042–2062 (2018).

37. Jaeger, H. The “Echo State” Approach to Analysing and Training
Recurrent Neural Networks-with an Erratum Note. https://www.ai.
rug.nl/minds/uploads/EchoStatesTechRep.pdf (2001).

38. Maass, W., Natschläger, T. & Markram, H. Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neu. Comp. 14, 2531–2560 (2002).

39. Appeltant, L. et al. Information processing using a single dynamical
node as complex system. Nat. Commun. 2, 1–6 (2011).

40. Lu, Z. et al. Reservoir observers: model-free inference of unmea-
sured variables in chaotic systems. Chaos 27, 041102 (2017).

41. Pathak, J., Lu, Z., Hunt, B., Girvan, M. & Ott, E. Using machine
learning to replicate chaotic attractors and calculate Lyapunov
exponents from data. Chaos 27, 121102 (2017).

42. Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction
of large spatiotemporally chaotic systems from data: a reservoir
computing approach. Phys. Rev. Lett. 120, 024102 (2018).

43. Tanaka,G. et al. Recent advances in physical reservoir computing: a
review. Neu. Net. 115, 100–123 (2019).

44. Jiang, J. & Lai, Y.-C. Model-free prediction of spatiotemporal dyna-
mical systems with recurrent neural networks: Role of network
spectral radius. Phys. Rev. Res. 1, 033056 (2019).

45. Fan, H., Jiang, J., Zhang, C., Wang, X. & Lai, Y.-C. Long-term pre-
diction of chaotic systemswithmachine learning. Phys. Rev. Res. 2,
012080 (2020).

46. Bollt, E. On explaining the surprising success of reservoir comput-
ing forecaster of chaos? The universal machine learning dynamical
system with contrast to VAR and DMD. Chaos 31, 013108
(2021).

47. Gauthier, D. J., Bollt, E., Griffith, A. & Barbosa, W. A. Next generation
reservoir computing. Nat. Commun. 12, 1–8 (2021).

48. Kong, L.-W., Fan, H.-W., Grebogi, C. & Lai, Y.-C. Machine learning
prediction of critical transition and system collapse. Phys. Rev. Res.
3, 013090 (2021).

49. Fan, H., Kong, L.-W., Lai, Y.-C. & Wang, X. Anticipating synchroni-
zation with machine learning. Phys. Rev. Res. 3, 023237 (2021).

50. Kim, J. Z., Lu, Z., Nozari, E., Pappas, G. J. & Bassett, D. S. Teaching
recurrent neural networks to infer global temporal structure from
local examples. Nat. Machine Intell. 3, 316–323 (2021).

51. Kong, L.-W., Fan, H.-W., Grebogi, C. & Lai, Y.-C. Emergence of
transient chaos and intermittency in machine learning. J. Phys.
Complex. 2, 035014 (2021).

52. Xiao, R., Kong, L.-W., Sun, Z.-K. & Lai, Y.-C. Predicting amplitude
death with machine learning. Phys. Rev. E 104, 014205 (2021).

53. Patel, D., Canaday, D., Girvan, M., Pomerance, A. & Ott, E. Using
machine learning to predict statistical properties of non-stationary
dynamical processes: System climate, regime transitions, and the
effect of stochasticity. Chaos 31, 033149 (2021).

54. Jaeger, H. Method for supervised teaching of a recurrent artificial
neural network. US patent 7,321,882 (2008).

55. Waegeman, T., Wyffels, F. & Schrauwen, B. Feedback control by
online learning an inversemodel. IEEE Trans. Neu.Net. LearningSys.
23, 1637–1648 (2012).

56. Zhu, Q., Ma, H. & Lin, W. Detecting unstable periodic orbits based
only on time series:Whenadaptive delayed feedback controlmeets
reservoir computing. Chaos 29, 093125 (2019).

57. Chatzis, S. P. & Demiris, Y. Echo state Gaussian process. IEEE Trans.
Neu. Net. 22, 1435–1445 (2011).

58. Pan, Y. & Wang, J. Model predictive control of unknown nonlinear
dynamical systems based on recurrent neural networks. IEEE Trans.
Indus. Elec. 59, 3089–3101 (2012).

59. Huang, J., Cao, Y., Xiong, C. & Zhang, H.-T. An echo state gaussian
process-based nonlinear model predictive control for pneumatic

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 10

https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf

muscle actuators. IEEE Trans. Autom. Sci. Eng. 16, 1071–1084
(2019).

60. Canaday, D., Pomerance, A. & Gauthier, D. J. Model-free control of
dynamical systems with deep reservoir computing. J. Phys. Com-
plex. 2, 035025 (2021).

61. Trentelman, H., Stoorvogel, A. & Hautus, M. Control Theory for
Linear Systems (Springer, New York, 2001).

62. Lewis, F. L., Vrabie, D. & Syrmos, V. L.Optimal Control (JohnWiley &
Sons, Toronto, Canada, 2012).

63. Kiumarsi, B., Lewis, F. L., Modares, H., Karimpour, A. & Naghibi-
Sistani, M.-B. ReinforcementQ-learning for optimal tracking control
of linear discrete-time systems with unknown dynamics. Auto-
matica 50, 1167–1175 (2014).

64. Li, W. et al. Applied Nonlinear Control Vol. 199 (Prentice Hall Eng-
lewood Cliffs, NJ, 1991).

65. Tang, Y., Tomizuka, M., Guerrero, G. & Montemayor, G. Decen-
tralized robust control of mechanical systems. IEEE Trans. Autom.
Cont. 45, 771–776 (2000).

66. Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W.
Towards a theoretical foundation for morphological computation
with compliant bodies. Biol. Cybern. 105, 355–370
(2011).

67. Dorf, R. C. & Bishop, R. H. Modern Control Systems (Pearson Pre-
ntice Hall, Hoboken, New Jersey, 2008).

68. O’Searcoid, M.Metric Spaces (Springer Science & Business Media,
New York, 2006).

69. Zhai, Z. -M. Chaotic trajectories. Zenodo https://doi.org/10.5281/
zenodo.8044994 (2023).

70. Zhai, Z. -M. Tracking control withmachine learning. Zenodo https://
doi.org/10.5281/zenodo.8284208 (2023).

Acknowledgements
This work was supported by the Army Research Office through Grant
No.W911NF-21-2-0055 (to Y.-C.L.) andby theAir ForceOfficeof Scientific
Research through Grant No. FA9550-21-1-0438 (to Y.-C.L.).

Author contributions
Z.-M.Z., M.M, L.-W.K., B.G., M.H. and Y.-C.L. designed the research pro-
ject, the models, and methods. Z.-M.Z. performed the computations.

Z.-M.Z., M.M., L.-W.K., B.G., M.H. and Y.-C.L. analyzed the data. Z.-M.Z.
and Y.-C.L. wrote the paper. M.H. and Y.-C.L. edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41379-3.

Correspondence and requests for materials should be addressed to
Ying-Cheng Lai.

Peer review information Nature Communications thanks Andre Röhm,
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41379-3

Nature Communications | (2023) 14:5698 11

https://doi.org/10.5281/zenodo.8044994
https://doi.org/10.5281/zenodo.8044994
https://doi.org/10.5281/zenodo.8284208
https://doi.org/10.5281/zenodo.8284208
https://doi.org/10.1038/s41467-023-41379-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Model-free tracking control of complex dynamical trajectories with machine learning
	Results
	Principle of machine-learning based control
	Training
	Testing
	Examples of tracking control
	Robustness against disturbance and noise
	Robustness against parameter uncertainties

	Discussion
	Methods
	Dynamics of joint robot arms
	Inverse design based controller formulation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

