
SUPPLEMENTARY INFORMATION

Supplementary Figures

Supplementary Figure 1 | The first 4 iterations in the generation of a 2D Cantor

dust.

Supplementary Figure 2 | The first 4 iterations of the Vicsek fractal.

Supplementary Figure 3 | The first 4 iterations of the Sierpinski triangle.
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Supplementary Figure 4 | The first 4 iterations of the hexaflake.
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Supplementary Figure 5 | Foursquare users check-ins and mobility data in New

York city. (a) Check-in times distribution. The zones are U.S. 2010 census blocks. (b)

Traveling steps between locations.
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Supplementary Figure 6 | Model predicted and empirical statistical patterns of

individual mobility in New York city. (a) The total number S(t) of locations visited

as an increasing function of time t, (b) the return time distribution P (τ), and (c) Zipf-

like frequency distribution of location visits. In all panels, the green color specifies results

predicted from our model, and orange denotes the empirical results obtained directly from

data.
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Supplementary Figure 7 | Model predicted and empirical statistical patterns of

collective mobility in New York city. Model predicted (green circles) and real (orange

squares) distributions of (a) traveling distance d and (b) the number of traveling steps, T ,

between two locations. (c) Model predicted versus real values of T .
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Supplementary Figure 8 | Collective mobility patterns predicted by the memory-

free model.
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Supplementary Figure 9 | Individual mobility patterns predicted by the memory-

free model.
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Supplementary Figure 10 | Frequency of occurrence of motifs in the memory-free

model.
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Supplementary Figure 11 | Collective mobility patterns predicted by the

competition-free model.
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Supplementary Figure 12 | Individual mobility patterns predicted by the

competition-free model.
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Supplementary Figure 13 | Frequency of occurrence of motifs in the competition-

free model.
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Supplementary Table

Supplementary Table 1 | Comparison of models prediction accuracy. SSI is the

Sørensen similarity index between real observations of collective travel flow and model results.

RMSE is the root-mean-square error of predicted S(t). OM, MF, and CF stand for the

original model, the memory-free model, and the competition-free model, respectively.

Country SSI-OM SSI-MF SSI-CF RMSE-OM RMSE-MF RMSE-CF

China 0.7126 0.6759 0.5394 1.3556 24.8674 1.6098

US 0.7013 0.7225 0.5156 1.8376 29.3604 4.7381

Cote d’Ivoire 0.7136 0.6914 0.5333 0.6738 16.7012 0.6926

Belgium 0.6936 0.7739 0.5481 0.7141 9.2657 0.8308
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Supplementary Notes

Supplementary Note 1: Analysis of individual mobility

patterns

1.1 Individual mobility model based on Zipf’s law

We consider a simplified version of our human mobility model, which is obtained by

imposing the approximations that the population is uniformly distributed among all available

locations and the effects of population induced competition are negligible. The simplified

model is effectively a random walk with memory in a finite space, in which the transition

probability pij of an individual traveling form location i to j is

pij ∝ 1 +
λ

rj
, (1)

where λ is the memory strength parameter and rj denotes that j is the rth newly visited

location for the individual. Insofar as λ is much larger than unity, the transition probability

approaches that given by the basic Zipf’s law: pij ∝ λ−1 + r−1
j ≈ r−1

j .

We first consider the function S(t), the number of locations that an individual has visited

in time t. The probability of choosing a new city at the next time step is

Pnew =
N − S

N +
∑S

r=1 λN/r
, (2)

where N is the total number of cities and r signifies that the corresponding location is the

rth newly visited city. Treating S as continuous, for S ≪ N , we have

Pnew ≈ 1

1 + λ
∫ S

1
dr
r

=
1

1 + λ(lnS + C)
, (3)

where C is the Euler’s constant and C ≈ 0.577. We thus get

dS

dt
= Pnew =

1

1 + λ(lnS + C)
, (4)

which gives

t = (1 + λC)S + λS(lnS − 1)− A. (5)
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Since S(t = 0) = 1, we obtain A = 1+ λC − λ. Substituting this relation into Eq. (5) yields

t = AS + λS lnS − A, (6)

which determines the function S(t) implicitly. For λ = 0 (i.e., no memory effect), we have

S = t+1. For λ = 1/(2−C), we have λ = A, so Eq. (6) can be written as t = λ[S+S ln(S)−1].

Using the approximation ln(S) ≈ S − 1, we get

S ∼
√

(2− C)t+ 1, (7)

indicating that S increases sublinearly with t.

We next derive the frequency distribution fr of visited locations. Since S(t) distinct

locations have been visited by time t, the probability for an individual to choose an already

visited location is

Pold = 1− Pnew =
S +

∑S
r=1 λN/r

N +
∑S

r=1 λN/r
. (8)

Among all the S(t) old locations, the probability of visiting the rth location, i.e., the rate of

increase of gr, the number of times that the location has been visited, is

dgr
dt

= Pold
1 + λN/r

S +
∑S

r=1 λN/r
=

1 + λN/r

N +
∑S

r=1 λN/r
≈ λ

r[1 + λ(lnS + C)]
. (9)

From Eq. (6), we have dt = [A+ λ(lnS + 1)]dS, which when being substituted into Eq. (9)

yields
dgr
dS

=
λ

r
. (10)

We thus obtain

gr = λS/r +B. (11)

For S = 1, we have r = 1 and gr = 1, so the constant B in Eq. (11) is given by B = 1 − λ.

Since fr is proportional to gr, we have

fr ∝ λS/r +B. (12)

We finally analyze the return time distribution, P (τ), the probability that a traveler returns

to a previously visited location after τ steps. In our model, for the rth first visited location,

Pr(τ) is the joint probability of the following three probabilities: (1) qr, the probability of

visiting the location at the present, (2) (1− qr)
τ−1, the probability that the rth location will
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not be visited in the remaining τ − 1 time steps, and (3) qr, the probability that the location

is visited exactly at time τ . We have

Pr(τ) = q2r(1− qr)
τ−1. (13)

From Eq. (9), the probability that the rth location is visited at each time step is given by

qr =
H

r
, (14)

where H = λ/[1 + λ(lnS + C)]. Substituting Eq. (14) into Eq. (13), we get

Pr(τ) =
H2

r2

(
1− H

r

)τ−1

. (15)

For all the already visited locations, the return time distribution is given by

P (τ) =

∫ S

1

Pr(τ)dr =

∫ S

1

H2

r2

(
1− H

r

)τ−1

dr =
H

τ

[(
1− H

S

)τ

− (1−H)τ
]
, (16)

which is approximately a mixture of two algebraic terms of the identical exponent −1.

1.2 Individual mobility model based on the generalized Zipf’s law

The above simplified model assumes that individuals visit locations with the probability

given by the basic Zipf’s law. However, there are situations where individuals choose their

visiting locations by following the generalized Zipf’s law [1]: f ∝ 1/rζ (ζ > 1). We are thus led

to incorporate the generalized Zipf’s law into our model to gain a better understanding of the

real mobility behavior at the individual level. A straightforward way to generalize our basic

model is to modify the transition probability from pij ∝ 1 + λ/rj to pij ∝ 1 + λ/rζj , where ζ

is an adjustable parameter. To be able to derive analytical results on the individual mobility

patterns, we further simplify the transition probability to be pij ∝ 1/rζ . In addition, to

obtain theoretical results associated with the generalized Zipf’s law, it is necessary to exploit

the exploration and preferential return (EPR) model proposed by Song et al. [2]. In the

EPR model, an individual has two choices when he/she chooses a location: (1) exploration

- the individual moves to a new location with the probability Pnew = ρS−γ, where S is the

total number of visited locations with ρ and γ being parameters; (2) preferential return -

the individual returns to a previously visited location with the probability 1−Pnew, and the
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probability to visit an old location is proportional to the number of travels to this location.

The EPR model can lead analytically to the generalized Zipf’s law from the relation Pnew =

ρS−γ. As an inverse process of the EPR model, the basic assumption of our model is the

generalized Zipf’s law, and we aim at analytically deriving the relationship between Pnew and

S. Our generalized model can be constructed, as follows.

There are two options for an individual at each step: (1) travel to a new location with the

probability Pnew that decreases with the increase of S and approaches 0 for large values of S;

(2) returns to an old location with the probability 1− Pnew, and the probability of selecting

the i-th old location is proportional to the number gi of travels to location i. We assume

that the visiting frequency fr to the rth visited location follows the generalized Zipf’s law

fr ∝ r−ζ , (17)

where ζ > 1 is an adjustable parameter. The frequency fi of visiting the location i can be

calculated by the number of visits to all the locations:

fi =
gi
t
, (18)

where t is the total number of travel steps (time steps), which is equal to the total number

of visits to all locations t =
∑S

i=1 gi. When a location i was first visited, we have

gi(ti) = 1, (19)

where ti is the time at which location i was discovered. For a large value of S, the probability

Pnew approaches 0, so the rate of increase in the number of visits to the i-th location is

approximately given by
dgi
dt

=
gi
t
, (20)

for which the solution is

gi = Cit, (21)

where Ci is an arbitrary constant. Combining Eqs. (19) and (21), we have

gi(ti) = Citi = 1, (22)

and

Ci =
1

ti
. (23)
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Inserting Eq. (23) into Eq. (21), we obtain

gi =
t

ti
. (24)

Combining Eqs. (17), (18) and (24), we get

tr ∝ rζ , (25)

where tr denotes the travel time during which location r was first visited.

For a trajectory with t jumps and S distinct locations, we can rank all visited locations

r = 1, 2, ..., S in the order of the discovery time tr. We then have

S(tr) = r. (26)

Combining Eqs. (25) and (26), we obtain

S(tr) ∝ t
1
ζ
r , (27)

or

S(t) ∝ t
1
ζ , (28)

which gives the scaling relation between time t and the visited location number S(t). Note

that S(t) ∝ t
1
ζ is the solution of

dS

dt
∝ S1−ζ . (29)

Since the increase rate of S equals the probability of visiting the new location, i.e.,

Pnew =
dS

dt
, (30)

we obtain

Pnew = ρS−(ζ−1), (31)

where ρ is a parameter and can be determined from empirical data [2]. These results demon-

strate that, according to the assumption that the visiting frequency follows the generalized

Zipf’s law, our generalized model can give rise to a power-law relationship between Pnew and

S. If we denote ζ = 1 + γ, Eq. (31) becomes

Pnew = ρS−γ, (32)

which is exactly the same as the basic assumption - the relationship between Pnew and S in

the EPR model [2]. This analytical result indicates that the generalized Zipf’s law and the
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power-law relation between Pnew and S have a mutually causal relationship, so the model for

individual mobility based on the former is equivalent to that based on the latter.

We also derive the return time distribution P (τ). For a sufficiently large value of S, the

probability that the rth location is visited at each time step is

qr ∝ fr ∝
1

rζ
(33)

or

qr =
L

rζ
, (34)

where L is a constant and
∑S

1 L/r
ζ = 1. Combining Eqs. (13), (15) and (34), we can

formulate the probability that an individual returns to the rth visited location after τ steps

as

Pr(τ) =
L2

r2ζ

(
1− L

rζ

)τ−1

. (35)

For ζ ≈ 1, we have Pr(τ) ≈ L2

r2
(1− L

r
)τ−1, so

P (τ) =

∫ S

1

Pr(τ)dr ≈
L

τ

[(
1− L

S

)τ

− (1− L)τ
]
. (36)

For ζ ≫ 1, P (τ) cannot be solved analytically but numerical solutions can be readily ob-

tained.

Supplementary Note 2: Analysis of collective mobility

patterns

2.1 Uniform population distribution

To derive the mobility patterns at the population level, we simplify the model further by

assuming that each individual move only one step. In this case, the individual memory effect

can be neglected, so the transition probability pij of population traveling form location i to

j is

pij ∝
mj

Wji

. (37)
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If there are m individuals at each location and all locations are uniformly distributed in a

2-D domain, we have Wji = ρπd2ij, where ρ is the population density. In addition, using

Tij = mipij, we can rewrite Eq. (37) as

Tij ∝
mimj

d2ij
, (38)

which is the gravity model with a square distance function. In the real world, the spatial

distribution of cities in a region often exhibits fractal properties [3]: Wji ∝ dDij , where D is

the fractal dimension. We thus have

Tij ∝
mimj

dDij
, (39)

which is the gravity model with an algebraic distance function.

Since the populations at different locations are assumed to be equal, Eq. (39) can be

simplified as

T (d) ∝ d−D, (40)

which is the number T of traveling steps between two locations of distance d apart. We then

obtain the travel distance distribution as

P (d) ∝ d−D, (41)

which is an algebraic distribution with exponent −D. In the real world the fractal dimension

D ranges from 1 to 2 [3]. Indeed a previous work [4] demonstrated that the empirical scaling

exponents from some real travel distance distributions are consistent with the value of the

fractal dimension.

From Eq. (40), we obtain the distance between two locations as a function of T as

d(T ) ∝ T− 1
D . (42)

Moreover, the number of location pairs N(d) with distance ≤ d in a fractal space is

N(d) ∝ Q(y ≤ d) ∝ dD, (43)

where Q(y ≤ d) is the fraction of location pairs with distance ≤ d in the fractal space. The

quantity Q(y ≤ d) is larger than or equal to the fraction of location pairs with traveling

steps T (d), for the reason that the distance d is a decreasing function of T , as indicated by

Eq. (40). We thus have

P (x ≥ T ) = Q[y ≤ d(T )]. (44)
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Combining Eqs. (42), (43) and (44), we obtain the distribution of T as

P (T ) ∝ dd(T )D

dT
∝ d(T−D

D )

dT
∝ T−2, (45)

which is an algebraic distribution with exponent −2 - a universal value independent of the

fractal dimension D of the domain.

2.2 Heterogeneous population distribution

In the real world, population distributions among cities can be highly heterogeneous,

which has a significant effect on the distribution of T . To treat the heterogeneity analytically,

we consider a simple scenario in which the travelers are only allowed to travel from the central

city c to other cities. The central city has the largest population mc, and the population mj

of another city decreases from mc algebraically as a function of the distance dcj to the central

city:

mj ∝ d−ξ
cj , (46)

with ξ > 0. Combining Eqs. (37) and (46), we obtain

Tcj ∝
mcmj

Wjc

∝
mcd

−ξ
cij

m̄dDcj
∝ d−D−ξ

cj , (47)

where m̄ is the average population of the cities. Analogously, Eqs. (43), (44) and (47) lead

to

P (T ) ∝ d(T− D
D+ξ )

dT
∝ T−1− D

D+ξ , (48)

where the scaling exponent ranges from -1 to -2, covering most empirically observed exponent

values in the real-world travel flow distributions [see Fig. 5(e-h) in the main text].

Supplementary Note 3: Simulation setup of mobility be-

haviors in a fractal domain

To validate our analytical results, we simulate our simplified model in four typical fractal

domains: 2D Cantor dust, Vicsek fractal, Sierpinski triangle, and hexaflake. The results are
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shown in Fig. 6(d) in the main text. Here we describe the four fractal sets and the simulation

setup.

3.1 2D Cantor dust

The Cantor dust [5] is a 2D version of the Cantor set. It is obtained by starting with a

basic unit square, scaling its size by 1/3, then placing four scaled copies at the four corners,

respectively. Recursively applying the procedure ad infinitum, we generate a 2D Cantor set,

as shown in Supplementary Fig. 1. Let Nn be the number of black boxes and Ln be the

length of a side of a box after the nth iteration. The fractal dimension of the Cantor set is

D = − lim
n→∞

lnNn

lnLn

= − ln 4n

ln 3−n
=

ln 4

ln 3
≈ 1.262. (49)

3.2 Vicsek fractal

The Vicsek fractal [6], also known as the box fractal, can be constructed using a procedure

similar to that for the 2D Cantor dust. In particular, the basic unit square is decomposed

into nine smaller squares in a 3-by-3 grid. The four squares at the corners and the middle

square are kept, while the other squares are removed. The process is repeated recursively for

each of the five remaining subsquares. The Vicsek fractal is the set obtained at the limit of

this procedure, as shown in Supplementary Fig. 2. Its fractal dimension is

D = − lim
n→∞

lnNn

lnLn

= − ln 5n

ln 3−n
=

ln 5

ln 3
≈ 1.465. (50)

3.3 Sierpinski triangle

The Sierpinski triangle [7], or Sierpinski gasket, is obtained by starting from an equilateral

triangle of unit side length (in fact any triangle can be used), subdividing it into four smaller

congruent equilateral triangles, and removing the central one. This procedure is repeated ad

infinitum, generating the Sierpinski triangle fractal, as shown in Supplementary Fig. 3. Its

fractal dimension is

D = − lim
n→∞

lnNn

lnLn

= − ln 3n

ln 2−n
=

ln 3

ln 2
≈ 1.585. (51)
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3.4 Hexaflake

Hexaflake [8] is a fractal constructed starting from a hexagon, which is replaced by a flake

of smaller hexagons such that a scaled hexagon is placed at each vertex and at the center.

This procedure is repeated recursively to generate the hexaflake, as shown in Supplementary

Fig. 4, with its fractal dimension given by

D = − lim
n→∞

lnNn

lnLn

= − ln 7n

ln 3−n
=

ln 7

ln 3
≈ 1.771. (52)

3.5 Simulation setup

We iterate the construction procedure for each of the four fractal geometries and set the

central position of the shapes in each fractal set (black blocks in Supplementary Fig. 1-4) to be

the location coordinates. To avoid an idealized fractal domain and better mimic empirically

observed fractal features in the real world, we add a small random offset to the coordinates of

each location. The iterations are 5, 4, 6, 3 for the 2D Cantor dust, Vicsek fractal, Sierpinski

triangle and hexaflake, respectively, and the numbers of existent shapes (locations) are 1024,

625, 729 and 343, respectively.

We set population m at each location and use Eq. (37) to calculate the number of trav-

eling steps Tij between any location pairs. We use min(T ) to rescale all T , i.e., we let the

minimum number of traveling steps be one, and finally obtain the travel flow distribution

P (T ). Similarly, we can obtain the rescaled travel distance distribution P (d), as shown in

Fig. 6(d) in the main text.

Supplementary Note 4: Model validation with empirical

mobility data at the city scale

In the main text we have demonstrated that our model is universally applicable to coun-

tries with diverse spatial scales. Here we show that the model can also characterize individual

and population mobility patterns at the city scale accurately.

20



We use the foursquare check-ins data set [9] in New York city as the proxy data of human

mobility for model validation. The data set contains 42035 individuals, in which 23520 have

travels among different locations (here the locations are defined as the 2010 census blocks [10],

see Supplementary Fig. 5), and the total number of traveling steps is 113279.

For this data set, we first estimate the memory strength parameter and obtain λ ≈ 8.0.

We then simulate our model using this parameter value and compare the results with those

from the real mobility data, as shown in Supplementary Figs. 6 and 7. We see that both

the individual and collective mobility patterns in New York city can be predicted, suggesting

that our model is capable of characterizing human mobility patterns at small (intra-city)

spatial scales.

Supplementary Note 5: Comparison with alternative

models

Our mobility model contains two essential ingredients: individual memory and population

induced competition effects. They jointly determine the attractiveness of a location, as well

as the transition probability for an individual to move from one location to another. Here

we consider two alternative models, a memory-free model and a competition-free model, to

show that the two ingredients are indispensable for modeling human mobility patterns.

5.1 Memory-free model

To construct a memory-free model, we modify Eq. (3) in the main text by writing the

transition probability pij of traveling from location i to j as

pij ∝
mj

Wji

. (53)

The model prediction results are shown in Supplementary Figs. 8, 9 and 10. We see that,

while the memory-free model can reproduce the collective mobility patterns to certain extent,

it fails to capture the individual movement patterns.
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To offer a better comparison of the results obtained from different models, we use two

indices to measure the model prediction accuracy. The first is the Sørensen similarity index

(SSI) [11], which is a statistical tool to identify the similarity between two samples. Here we

use SSI to quantify the degree of similarity between real observations of collective travel flow

between locations and model prediction results. The SSI is defined as

SSI ≡ 1

N2

N∑
i

N∑
j

2min(T
′
ij, Tij)

T
′
ij + Tij

, (54)

where T
′
ij is the model predicted traveling steps from location i to j and Tij is the observed

number. Apparently, if each T
′
ij is equal to Tij the index should be unity, whereas if all T

′
ijs

are far from the real values, the index should be close to 0.

The second index is the root-mean-square error (RMSE) [12], which is a frequently used

quantity to measure the differences between the model predicted and actually observed val-

ues. We use RMSE to measure the prediction errors of the models in the total number

of locations S(t) visited within time t, which is an important characteristic of individual

movement patterns. The RMSE of S(t) is defined as

RMSE =

√∑Lmax

t=1 [Sreal(t)− S(t)]2

Lmax

, (55)

where Sreal(t) is obtained from the actual data set, S(t) is calculated from the model, and

Lmax is the maximum time step.

We calculate the SSI between observed and predicted travel flow and RMSE of the predict-

ed S(t) for the original model and memory-free model, and list the results in Supplementary

Table 1. These results suggest that the memory effect mainly affects the individual movement

patterns but has a little effect on the collective mobility patterns.

5.2 Competition-free model

The competition-free model is a memory-based mobility model without any population

induced competition effect. In this model, the transition probability pij of traveling from

location i to j is

pij ∝ mj(1 +
λ

rj
), (56)
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meaning that individuals only consider the inherent attractiveness of locations and their own

preferences induced by memory when selecting travel destinations.

Supplementary Figs. 11, 12, 13 and Supplementary Table 1 show the prediction results

from the competition-free model. We see that, in contrast to the memory-free model, the

competition-free model can reasonably reproduce the individual mobility patterns, but the

accuracy of predicting collective movement patterns is poor. These results further demon-

strate that both the memory effect and population induced competition effect are essential

for modeling and predicting human mobility patterns simultaneously at the individual and

population levels.

23



Supplementary References

[1] R. E. Wyllys, Empirical and theoretical bases of Zipf’s law. Library Trends 30, 53-64

(1981).

[2] C. Song, T. Koren, P. Wang, A. L. Barabási, Modelling the scaling properties of human

mobility. Nat. Phys. 6, 818-823 (2010).

[3] P. Frankhauser, The fractal approach. A new tool for the spatial analysis of urban

agglomerations. Population 10, 205-240 (1998).

[4] R. Gallotti, A. Bazzani, S. Rambaldi, M. Barthelemy, A stochastic model of randomly

accelerated walkers for human mobility. Nat. Commun. 7, 12600 (2016).

[5] G. Helmberg, Getting Acquainted with Fractals (Walter de Gruyter, 2007).

[6] T. Vicsek, M. Shlesinger, M. Matsushita, Fractals in Natural Sciences (World Scientific,

1994).

[7] A. A. Lale, B. V. Khiste, G. Burshe, S. Khobragade, Study of Sierpinski triangle gasket.

In 2011 3rd International Conference on Electronics Computer Technology (ICECT),

Vol. 3, pp. 386-390 (2011).

[8] S. M. Choudhury, M. A. Matin, Effect of FSS ground plane on second iteration of hex-

aflake fractal patch antenna, In 2012 7th International Conference on Electrical Com-

puter Engineering (ICECE), pp. 694-697 (2012).

[9] J. Bao, Y. Zheng, F. M. Mokbel, Location-based and Preference-Aware Recommen-

dation Using Sparse Geo-Social Networking Data. In ACM SIGSPATIAL (GIS 2012),

Redondo Beach, CA, US, 2012

[10] Data can be accessed via http://gis.nyc.gov/census/

[11] T. Sørensen, A method of establishing groups of equal amplitude in plant sociology

based on similarity of species and its application to analyses of the vegetation on danish

commons. Biol. Skr. 5 1-34 (1948).

[12] R. J. Hyndman, A. B. Koehler, Another look at measures of forecast accuracy. Int. J.

Forecast. 22, 679-688 (2006).

24


