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Exact controllability of complex networks
Zhengzhong Yuan1, Chen Zhao1, Zengru Di1, Wen-Xu Wang1,2 & Ying-Cheng Lai2,3

Controlling complex networks is of paramount importance in science and engineering.

Despite the recent development of structural controllability theory, we continue to lack a

framework to control undirected complex networks, especially given link weights. Here we

introduce an exact controllability paradigm based on the maximum multiplicity to identify

the minimum set of driver nodes required to achieve full control of networks with

arbitrary structures and link-weight distributions. The framework reproduces the structural

controllability of directed networks characterized by structural matrices. We explore the

controllability of a large number of real and model networks, finding that dense networks with

identical weights are difficult to be controlled. An efficient and accurate tool is offered to

assess the controllability of large sparse and dense networks. The exact controllability

framework enables a comprehensive understanding of the impact of network properties on

controllability, a fundamental problem towards our ultimate control of complex systems.
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O
ne of the most challenging problems in modern network
science and engineering is controlling complex networks.
Although great effort has been devoted to understanding

the interplay between complex networks and dynamical processes
taking place on them1–5 in various natural and technological
systems6–16, the control of complex dynamical networks remains
to be an outstanding problem. Generally, because of the ubiquity
of nonlinearity in nature, one must consider the control of
complex networked systems with nonlinear dynamics. However,
at present there is no general framework to address this problem
because of the extremely complicated interplay between network
topology and nonlinear dynamical processes, despite the
development of nonlinear control17–22 in certain particular
situations such as consensus23, communication24,25, traffic26

and device networks17,27. To ultimately develop a framework to
control complex and nonlinear networks, a necessary and
fundamental step is to investigate the controllability of complex
networks with linear dynamics. There exist well developed
theoretical frameworks of controllability for linear dynamical
systems in the traditional field of engineering control28–32.
However, significant challenges arise when applying the
traditional controllability framework to complex networks33

because of the difficulty to determine the minimum number of
controllers. A ground-breaking recent contribution was made by
Liu et al.34 who developed a minimum input theory to efficiently
characterize the structural controllability of directed networks,
allowing a minimum set of driver nodes to be identified to
achieve full control. In particular, the structural controllability of
a directed network can be mapped into the problem of maximum
matching35–37, where external control is necessary for every
unmatched node. The structural controllability framework also
allows several basic issues to be addressed, such as linear edge
dynamics38, lower and upper bounds of energy required for
control39, control centrality40 and optimization41.

Although the structural controllability theory offers a general
tool to control directed networks, a universal framework for
exploring the controllability of complex networks with arbitrary
structures and configurations of link weights is lacking.
Mathematically, the framework of structural controllability is
applicable to directed networks characterized by structural
matrices, in which all links are represented by independent free
parameters34. This requirement may be violated if exact link
weights are given, motivating us to pursue an alternative
framework beyond the structural controllability theory. For
undirected networks, the symmetric characteristic of the
network matrix accounts for the violation of the assumption of
structural matrix, even with random weights. Thus, we continue
to lack a reliable tool to measure the controllability of undirected
networks. For some practical issue concerning actual control,
such as predicting the control energy with given link weights,
necessary and sufficient conditions to ensure full control are the
prerequisite. Taken together, we need a more general and
accurate framework to study the controllability of complex
networks.

In this paper, we develop an exact controllability framework as
an alternative to the structural controllability framework, which
offers a universal tool to treat the controllability of complex
networks with arbitrary structures and link weights, including
directed, undirected, weighted and unweighted networks with or
without self-loops. Structural controllability can be reproduced by
our framework for structural matrix that can be ensured by
assigning random weights to directed links. In particular, based
on the Popov–Belevitch–Hautus (PBH) rank condition42 that is
equivalent to the Kalman rank condition28, we prove that the
minimum number of independent driver nodes or external
controllers is equal to the maximum geometric multiplicity of all

eigenvalues of the network matrix. If the network matrix is
diagonalizable, for example, as for undirected networks,
controllability is simply determined by the maximum algebraic
multiplicity of all eigenvalues; that is, the minimum number of
inputs is determined by the dimension of eigenvectors for
arbitrary networks and, for symmetric networks, this number is
nothing but the eigenvalue degeneracy. For simple regular net-
works, their exact controllability can be calculated analytically.
For more complicated model networks and many real-world
weighted networks with distinct node-degree distributions, the
exact controllability can be efficiently assessed by numerical
computations. The minimum set of driver nodes can be identified
by elementary transformations based on the exact controllability
framework. A systematic comparison study indicates that the
results from our exact controllability theory are consistent
with those in ref. 34 for cases where both frameworks are
applicable. Application of our framework also reveals a number
of phenomena that cannot be uncovered by the structural
controllability framework. For example, we find that for
random43 and small-world networks6,44 with identical link
weights, the measure of controllability is a non-monotonic
function of the link density with the largest controllability
occurring in the intermediate region. For highly sparse or dense
networks, the former being ubiquitous in real-world systems, the
exact controllability theory can be greatly simplified, leading to an
efficient computational paradigm in terms solely of the rank of
matrix.

Results
Exact controllability measurement of complex networks. A
necessary step towards ultimately controlling nonlinear network
systems is to fully understand the controllability of complex
networks with linear dynamics. Consider a network of N nodes
described by the following set of ordinary differential equations:

_x ¼ AxþBu; ð1Þ
where the vector x¼ (x1,?,xN)T stands for the states of nodes,
AARN�N denotes the coupling matrix of the system, in which aij

represents the weight of a directed link from node j to i (for
undirected networks, aij¼ aji). u is the vector of m controllers:
u¼ (u1,u2,?,um)T, and B is the N�m control matrix. The classic
Kalman rank condition28,45 stipulates that system (equation (1))
can be controlled from any initial state to any final state in finite
time if and only if rank(C1)¼ rank[B, AB, A2B,...,AN� 1B]¼N.
The standard way to address the controllability problem is to find
a suitable control matrix B consisting of a minimum number of
driver nodes so as to satisfy the Kalman rank condition. However,
a practical difficulty is that there are 2N possible combinations of
the driver nodes. The notion of structural controllability was then
introduced by Lin29 and was recently adopted to directed
complex networks34. Relying on the maximum matching
algorithm, the structural controllability framework developed by
Liu et al.34 enables efficiently identifying a minimum set of
unmatched nodes that need to be controlled to achieve full
control of the system. Thus, the unmatched nodes are the driver
nodes, the number of which determines the controllability of the
network. The computation complexity of finding B based on the
efficient maximum matching algorithm can therefore be
significantly reduced. In general, the structural controllability
theory is valid for directed networks associated with structural
matrices in which all links are represented by independent free
parameters. This limitation prompts us to develop an exact
controllability framework for arbitrary network structures and
link weights.

To formulate a theoretical framework of exact controllability,
we need a new starting point. Our theory is based on the PBH
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rank condition32,42,45,46 from control theory, according to which
system (equation (1)) is fully controllable if and only if

rank cIN �A;Bð Þ ¼ N ð2Þ
is satisfied for any complex number c, where IN is the identity
matrix of dimension N. It can be proved that, if and only if any
eigenvalue l belonging to matrix A satisfies equation (2), full
control can be ensured32,42,45,46. For system (equation (1)), there
are many possible control matrices B that satisfy the controllable
condition. The central goal is to find a set of B corresponding to
the minimum number ND of independent drivers or controllers
required to control the whole network. In general, ND is defined
in terms of B as ND¼min{rank(B)}, as in the structural
controllability-based formulation34. The PBH condition has
been employed recently to study the controllability of leader–
follower systems47 and regular graphs48,49.

We develop a general theory to calculate ND based on the PBH
rank condition (see Methods and Supplementary Note 1). It can
be proven that for arbitrary network structures and link weights,
say arbitrary matrix A, the minimum number ND of controllers or
drivers is determined by the maximum geometric multiplicity
m(li) of the eigenvalue li of A:

ND ¼ max
i
fmðliÞg; ð3Þ

where m(li)¼ dimVli
¼N� rank(liIN�A) and li (i¼ 1,...,l)

represents the distinct eigenvalues of A. For undirected networks
with arbitrary link weights, ND is determined by the maximum
algebraic multiplicity d(li) of li:

ND ¼ max
i
fdðliÞg: ð4Þ

where d(li) is also the eigenvalue degeneracy of matrix A. We need
to stress that equation (3) is rigorous and generally valid without
any limitations for matrix A and equation (4) is proven to be valid
for general undirected networks with diagonalizable matrix A.

To compute the geometric and algebraic multiplicities for large
networks is computationally demanding. However, the task can
be greatly simplified if the network is either sparse or dense. In
fact, complex networks arising in real-world applications are
typically sparse1. For a large sparse network, in which the number
of links scales with N in the limit of large N50, with a small
fraction of self-loops, ND is simply determined by the rank of A:

ND ¼ maxf1;N � rankðAÞg: ð5Þ
For a densely connected network with identical link weights w,

in which the zeros in A scale with N in the limit of large N, with a
small fraction of self-loops, we have

ND ¼ maxf1;N � rankðwIN þAÞg: ð6Þ
With the simplified formulas (equation (5)) and (equation (6)),

ND can be evaluated by computing the rank of the network
matrix A or wINþA in an efficient manner. For undirected sparse
networks, LU (lower and upper matrix) decomposition with
computation complexity O(N2.376)51 can yield reliable results of
rank(A). For other types of networks, (singular-value decom-
position) method with O(N3)52 can give accurate results of
rank(A) as well as the eigenvalues of A.

The measure of controllability nD, or simply controllability, of a
network can be defined as the ratio of ND to the network size N 34:

nD ¼ ND=N: ð7Þ

Identify driver nodes. We offer a general approach to identifying
a minimum set of driver nodes that need to be controlled by using
the PBH rank condition (equation (2)). According to the exact
controllability theory, ND is determined by the maximum geo-
metric multiplicity m(lM) of the eigenvalue lM. Thus, the control

matrix B to ensure full control should satisfy the condition
(equation (2)) by substituting lM for the complex number c, as
follows:

rank lMIN �A;B
� �

¼ N: ð8Þ

The question becomes how to find the minimum set of drivers
identified in B to satisfy equation (8). We note that the rank of the
matrix [lMIN�A, B] is contributed by the number of linearly
independent rows. In this regard, we implement elementary
column transformation on the matrix lMIN�A (or A� lMIN),
which yields a set of linearly dependent rows that violate the full
rank condition (equation (8)). The controllers located via B should
be imposed on the identified rows to eliminate all linear correla-
tions to ensure condition (equation (8)). The nodes corresponding
to the linearly dependent rows are the drivers with number N�
rank(lMIN�A), which is nothing but the maximum geometric
multiplicity m(lM). Note that each column in B can at most
eliminate one linear correlation, such that the minimum number of
columns of B, say, min{rank(B)} is the same as the number m(lM)
of drivers, regaining our exact controllability theory.

To illustrate the method explicitly, we present three typical
simple examples, as shown in Fig. 1. For each graph, we first
compute the eigenvalues l of the matrix A and their geometric
multiplicity m(l) to find the eigenvalue lM corresponding to the
maximum geometric multiplicity m(lM). The matrix A� lMIN

associated with lM can then be established so as to identify linear
correlations. We perform elementary column transformation on
A� lMIN to obtain its column canonical form that reveals the
linear dependence among rows. The rows that are linearly
dependent on other rows correspond to the driver nodes that
need to be controlled to maintain full control. Note that the
configuration of drivers is not unique as it depends on the order
of implementing the elementary transformation and there are
many possible choices of linearly dependent rows. Nevertheless,
the minimum number of drivers is fixed and determined by
m(lM), analogous to the structural controllability theory. The
approach of finding drivers is rigorous, ensured by the PBH rank
condition, the maximum multiplicity theory (MMT) and the
column canonical form associated with matrix rank. Thus, the
method is applicable to arbitrary networks, including networks
described by structural matrices. We have tested its performance
on structural matrix by assigning each link a random parameter,
which shows excellent agreement with the result from the
structural controllability framework (Supplementary Fig. S1 and
Supplementary Note 2), but with different computational
efficiency. The maximum matching algorithm with computation
complexity O(N1/2L; L denotes the number of links) outperforms
our elementary transformation-based algorithm with
O(N2(logN)2) (ref. 53) for dealing with structural matrices.

In general, our framework of exact controllability can quantify
the minimum number of drivers and identify them. Applying the
framework to model and real networks will provide deep insights
into the significant problem of network control.

Exact controllability of model and real networks. We now
present controllability measure nD of a large number of model
networks with identical- and random-weight distributions and
real-world unweighted and weighted networks from the exact
controllability theory and the structural controllability theory in
cases where it is applicable. In many real situations, it is not
possible to have the exact link weights because of the measure-
ment noise and nonlinear effects. Thus, it is reasonable to assume
random-weight distributions rather than identical weights when
dealing with real networks. However, in some man-made net-
works, identical weights or a small number of different weights
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are possible, prompting us to consider the controllability of
unweighted networks. Further, revealing the effect of network
topology on a variety of dynamics is of paramount theoretical
importance in network science and with tremendous interest1–3.
As the central issue related to network dynamics, the influence of
topology on controllability deserves to be fully understood in
unweighted networks without complications from other factors.
Considered together, we study nD with respect to unweighted
networks (identical weights) and networks with random weights.

For undirected regular graphs with identical weights, ND and
the relevant eigenvalues can be calculated precisely, as listed in
Table 1. We see that the chain and ring graphs can be controlled
by one and two controllers, respectively. However, for the star
and fully connected networks, almost all nodes need to be
independently controlled. The results of chain and star networks
are consistent with those from the structural controllability
theory34, but the results of ring and fully connected networks are
different (Supplementary Note 3). This difference, as will be
explained below, indicates the need for the exact controllability
framework.

Figure 2a shows, for Erdös–Rényi (ER) random networks43

with identical link weights, the controllability measure nD as a
function of the connecting probability p. We see that, regardless
of the network size, for small values of p (for example, po0.006),
nD decreases with p. However, for high link density (for example,
p-values exceeding 0.994), nD begins to increase towards (N� 1)/
N, which is exact for p¼ 1. This counterintuitive increase in nD

was not noticed before our work, but our exact controllability
theory reveals that it can be attributed to the impact of identical
link weights. Note that nD is symmetric about p¼ 0.5, which can
be qualitatively explained by the density function of the
eigenvalues of random matrices54:

rðlÞ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Npð1� pÞ� ðlþ pÞ2

q

2pNpð1� pÞ ; ð9Þ

which is a continuous function. As the multiplicity measure is
discrete, r(l) cannot be used to derive nD. Nonetheless, the
positive correlation between the peak of r(l) and the maximum
multiplicity can be exploited to explain the behaviour of nD. In
particular, the maximum of r(l) occurs at 1= p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npð1� pÞ

p� �
54,

which is symmetric about p¼ 0.5, in agreement with the
behaviour of nD, providing an explanation for the symmetry of
nD about p¼ 0.5. Figure 2b shows the behavior nD for undirected
ER random networks43 with random link weights. We see that nD

is a decreasing function of p and the increasing behaviour in nD in
the region of high link density disappears. Figure 2c,d show the
results for undirected small-world and scale-free networks in the
absence of weights (or with identical link weights), respectively.
We see that the value of nD for Newman–Watts small-world
networks44 is 2/N for zero probability p of randomly adding edges
but nD quickly reduces to 1/N as p increases from zero and
remains at the value of 1/N until p exceeds a large value, for
example, 0.994, after which nD increases towards (N� 1)/N. Such
behaviours are analogous to those for the ER random network.
The reason that nD is close to the value of 2/N for p¼ 0 can be
attributed to the fact that the Newman–Watts small-world

Table 1 | Eigenvalues and minimum number of driver nodes
of regular unweighted, undirected graphs.

Network Eigenvalue NMMT
D

Chain 2 cos qp
Nþ 1 1

Ring network 2 cos 2pðq� 1Þ
N ; lq ¼ lN� qþ 2 2

Star network 0ðN� 2Þ; �
ffiffiffiffiffiffiffiffiffiffiffi
N� 1
p

ð1Þ N� 2
Fully connected network N� 1(1),� 1(N� 1) N� 1

NMMT
D denotes the minimum number of drivers calculated from the maximum algebraic

multiplicity. q¼ 1,2,?,N and the algebraic multiplicity of eigenvalues is indicated in ‘()’ for star
and fully connected networks.
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Figure 1 | Illustration of the exact controllability framework to identify a minimum set of drivers. (a) A simple undirected network with self-loops, (b) a

simple directed network and (c) an undirected network with dense connections. The matrix A� lMIN, the column canonical form of matrix A� lMIN by the

elementary column transformation, the eigenvalues l and the eigenvalue lM corresponding to the maximum geometric multiplicity m(lM) of A are given for

each simple network. The rows that are linearly dependent on others in the column canonical form are marked by red. The nodes corresponding to them are

the drivers that are marked by red as well in the networks. For the undirected networks in a and c, m(lM) is equal to the maximum algebraic multiplicity,

that is, the multiplicity of lM. The configuration of drivers is not unique as it relies on the elementary column transformation, but the number of drivers is

fixed and determined by the maximum geometric multiplicity m(lM) of matrix A.
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networks are constructed from a ring-like network for which
ND¼ 2 holds. Figure 2d shows, for Barabási–Albert scale-free
networks7 of different values of the average degree /kS, the
behaviour of nD. We observe that, for small values of /kS, nD

displays the same decreasing trend as for random networks.
Figure 3 shows the controllability nD of directed networks with

identical and random weights, where the latter in the absence of
bidirectional links can be exactly addressed by the structural
controllability framework. In Fig. 3a, the behaviors of nD of
directed ER random networks with identical weights and possible
bidirectional links are somewhat similar to those of their
undirected counterparts. Thus, high demand of drivers and
controllers in dense networks holds for any network structures
with identical link weights. In Fig. 3b, a random weight is
assigned to each directed link, resulting in a structural matrix,
allowing the comparison between the exact and the structural
controllability. The assumption of structural matrix is ensured by
the random weights together with the directed structure. We find
the behaviors of nD resulting from both methods are in complete
agreement with each other, indicating the reduction of the exact
controllability theory to the structural controllability for struc-
tural matrix. We have also tested the difference between the two
theories if the assumption of structural matrix is weakly violated
by setting identical weights, as shown in the inset of Fig. 3b. We
observe consistent results with negligible difference from each
other, suggesting the applicability of the structural controllability
in directed sparse networks with given link weights and the
insensitivity of controllability to the link weights in sparse
networks.

We have also found that the exact controllability of undirected
and directed networks with identical weights can be estimated by
the cavity method36,37 developed for studying structural con-
trollability, offering a good analytical prediction and revealing the

underlying relationship between the structural controllability and
the exact controllability (Supplementary Fig. S2 and Supplementary
Note 4).

Tables 2 and 3 display, respectively, the exact controllability
measure of a number of real-directed and -weighted networks. In
both Tables, nMMT

D and nS
D stand for the result from our exact

controllability and simplified theory (equation (5)), respectively.
From Table 2, we see that the values of nMMT

D agree with those of
nS

D for all real networks, owing to the fact that these real-world
networks are sparse. For Table 2, as the networks are directed, the
structural controllability measure, denoted by nLSB

D , can also be
calculated. For all cases except the food webs, the values of nMMT

D
and nLSB

D are quite close. In general, we observe the inequality
nMMT

D � nLSB
D . The consistency between the results from our exact

controllability theory and from the structural controllability
theory confirms the similarity between them for directed and
unweighted networks. Further validation of our theory is obtained
by assigning random weights to all the networks in Table 2. In this
case, the coupling matrices of all networks become structural
matrix, and the new values of nMMT

D are exactly the same as the
values of nLSB

D for the networks associated with structural matrices.
For the originally weighted real-world networks, only the values of
nMMT

D and nS
D are given, as shown in Table 3.

Discussion
We have developed a maximum multiplicity theory to character-
ize, exactly, the network controllability in terms of the minimum
number of required controllers and independent driver nodes.
Our approach by transforming the network controllability
problem into an eigenvalue problem greatly facilitates analysis
and offers a more complete understanding of the network
controllability in terms of extensive existing knowledge of
network spectral properties. Our theory is applicable to any
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Figure 2 | Exact controllability of undirected networks. Exact controllability measure nD as a function of the connecting probability p for (a) unweighted

ER random networks and (b) ER random networks with random weights assigned to links (WER). (c) nD versus the probability p of randomly adding links

for Newman–Watts small-world networks. (d) nD versus half of the average degree /kS/2 for Barabási–Albert scale-free networks. All the networks are

undirected and their coupling matrices are symmetric. The data points are obtained from the MMT equation (4) and the error bars denote the s.d., each

from 20 independent realizations. The curves (SoD) are the theoretical predictions of equations (5) and (6) for sparse and dense networks, respectively.

The representative network sizes used are N¼ 1,000, 2,000 and 5,000.
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network structures, directed or undirected, with or without link
weights and self-loops. Our exact controllability framework can
reproduce the structural controllability for directed networks
associated with structural matrices. For dense or sparse networks,
our theory can be simplified, resulting in formulas that can be
used to calculate the minimum number of driver nodes in an
efficient manner. This is particularly encouraging, as most real-

world complex networks are sparse. We have studied a large
number of real-world networks and compared with the results
predicted by the structural controllability theory in cases where it
is applicable.

Despite the advantage of our theory in studying the
controllability of complex networks, insofar as the exact weights
of links are unknown, at the present the structural controllability
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Figure 3 | Exact controllability of directed networks. (a) Exact controllability measure nD as a function of connecting probability p in directed ER

random networks with identical weights (DER) for different network sizes. (b) Exact controllability and structural controllability nD versus p in directed ER

random networks with random weights (RW DER) in the absence of bidirectional links. The inset of b, exact controllability and structural controllability nD

versus p in unweighted, directed ER random networks (UW DER) in the absence of bidirectional links. Here MMT stands for the exact controllability

determined by the maximum geometric multiplicity equation (3), SoD stands for the exact controllability of sparse or dense networks from equations

(5) and (6), respectively, S denotes the exact controllability of sparse networks from equation (5) and, LSB denotes the structural controllability from the

maximum matching algorithm. In a, nMMT
D and nSoD

D are in good agreement with each other for different network sizes. In b, nMMT
D , nS

D and nLSB
D

coincide exactly without any difference in the network described by the structural matrix. In the inset of b, the assumption of structural controllability is

weakly violated, ascribed to the unweighted property of the network. The structural controllability nLSB
D is still consistent with the exact controllability nMMT

D

but with negligible difference. For example, at p¼8� 10�4, nMMT
D ¼ nS

D¼0.21584, whereas nLSB
D ¼0.21576. At p¼ 10� 3, nMMT

D ¼ nS
D¼0.1352, whereas

nLSB
D ¼0.1350. For the networks in a, the connecting probabilities of two directions between two nodes are both p, but the corresponding random variables

are independent of each other. For the networks in b, based on the structure of an undirected ER random network, we randomly assign a direction to each

undirected link. All the results are from 20 independent realizations and the error bars denote the s.d. The network size in b is 5,000.

Table 2 | Exact controllability measures of real unweighted, directed networks.

Type Name Nodes Edges nLSB
D nMMT

D nS
D

Trust Prison inmate 67 182 0.1343 0.1343 0.1343
WikiVote 7,115 103,689 0.6656 0.6656 0.6656

Food web St. Marks 45 224 0.3111 0.4 0.4
Seagrass 49 226 0.2653 0.3265 0.3265
Grassland 88 137 0.5227 0.5227 0.5227
Ythan 135 601 0.5111 0.5185 0.5185
Silwood 154 370 0.7532 0.7662 0.7662
Little Rock 183 2,494 0.5410 0.7541 0.7541

Electronic circuits s208a 122 189 0.2377 0.2377 0.2377
s420a 252 399 0.2341 0.2341 0.2341
s838a 512 819 0.2324 0.2324 0.2324

Neuronal C. elegans 297 2,359 0.1650 0.1650 0.1650
Citation Small World 233 1,988 0.6009 0.6052 0.6052

SciMet 2,729 10,416 0.4236 0.4251 0.4251
Kohonen 3,772 12,731 0.5604 0.5620 0.5620

World Wide Web Political blogs 1,224 19,090 0.3562 0.3595 0.3595
Internet p2p-1 10,876 39,994 0.5520 0.5531 0.5531

p2p-2 8,846 31,839 0.5778 0.5779 0.5779
p2p-3 8,717 31,525 0.5774 0.5778 0.5778

Organizational Freeman-1 34 695 0.0294 0.0294 0.0294
Consulting 46 879 0.0435 0.0435 0.0435

Language English words 7,381 46,281 0.6345 0.6345 0.6345
French words 8,325 24,295 0.6734 0.6736 0.6736

For each network, we show its type and name; number of nodes (N) and directed links (L). nMMT
D is computed from the maximum geometric multiplicity equation (3), nS

D is from equation (5) and nLSB
D is

the structural controllability measure34. When random weights are assigned to the originally unweighted networks, the resulting values of nMMT
D are exactly the same as those of nLSB

D that can be
computed for directed networks with random link weights. For data sources and references, see Supplementary Table S1 and Supplementary Note 7.
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framework is still the best approach to evaluating the controll-
ability of directed networks. This is mainly because of its error-
free characteristic based on the maximum matching algorithm. In
contrast, our framework relies on the eigenvalues and the rank of
the network matrix, the evaluation of which inevitably contains
numerical errors, although such error can be controlled by high-
accurate algorithms, such as the SVD algorithm. In addition, the
structural controllability approach outperforms our method in
terms of the computational efficiency in identifying the minimum
set of drivers. For example, in our method, finding driver nodes
based on the elementary transformation requires time on the
order of O(N2(logN)2), whereas the structural controllability
framework requires time on the order of O(N1/2L) to find
unmatched nodes, where L is the total number of links.
Nevertheless, our exact controllability framework can have a
broader scope of applications. For example, if the weights of
partial links are available, the framework will offer better
measurement of the controllability by setting the weights of
other unavailable links to be random parameters, namely, partial
structural matrix. Our framework is also valid for undirected
networks, where the structural matrix assumption is slightly
violated because of the network symmetry. The framework is as
well applicable to networks containing a number of self-loops
with identical or distinct weights, which will have quite different
consequences. Further, exploring exact controllability is impor-
tant to achieving actual control and predicting control energy,
especially in man-made networks. Taken together, our exact
controllability theory as an alternative to the structural controll-
ability theory offers deeper understanding of our ability to control
complex networked systems.

Methods
Exact controllability measurement for general networks. For an arbitrary
matrix A in system (equation (1)), there exists an N�N nonsingular matrix P such
that A¼ PJP� 1 or P� 1AP¼ J with J¼ diag(J(l1),J(l2),?,J(ll)), where li (i¼ 1,...,l)
represents the distinct eigenvalues of A and J(li) is the Jordan block matrix of A
associated with li

55. For every distinct eigenvalue li of matrix A, there are two
concepts of multiplicity55. (i) Algebraic multiplicity d(li): multiplicity of eigenvalue
li, which satisfies

Pl
i¼1 dðliÞ ¼ N , where d(li) is also the eigenvalue degeneracy;

(ii) geometric multiplicity m(li): the dimension of the eigenspace of A associated
with li, that is, m(li)¼ dimVli

¼N� rank(liIN�A). Note that the geometric
multiplicity is determined by the eigenvectors associated with the eigenvalues,
which means that both multiplicities depend on the eigenvalues of the matrix A. In
general, we have m(li)rd(li). The two types of multiplicities will be used to derive
our theory of exact controllability. According to the definition of m(li), we can find
that m(li) is equal to the number of the basic Jordan blocks in J(li)55, that is,
J(li)¼ diag(j1, j2,?,jm(li)), where js (s¼ 1,2,?,m(li)) is the basic Jordan block

matrix having the form exemplified by equation (11) below. The key to our theory
lies in bridging the two multiplicities and the controllability via the PBH rank
condition42.

Applying the nonsingular transformation y¼ P� 1x and Q¼P� 1B, we can
rewrite system (equation (1)) in Jordan form as

_y ¼ JyþQu: ð10Þ
It can be verified that systems (equation (1)) and (equation (10)) have the same
controllability in the sense that rank(lIN�A, B)¼ rank(lIN� J, Q), with
rank(B)¼ rank(Q). We call Q the transformed control matrix, which can be used to
calculate the control energy (Supplementary Note 5).

Any basic Jordan block matrix j(l) associated with eigenvalue l has the form:

jðlÞ ¼

l 1 0 � � � 0 0
0 l 1 � � � 0 0
0 0 l � � � 0 0
..
. ..

. ..
. ..

. ..
.

0 0 0 � � � l 1
0 0 0 � � � 0 l

0
BBBBBB@

1
CCCCCCA
: ð11Þ

For each j(l) of order v, all elements in the first column of matrix lIv� J are
zero and other v� 1 columns are independent of each other. We thus have
rank(lIv� j(l))¼ v� 1. As the number of basic Jordan blocks associated with
eigenvalue li is equal to its geometric multiplicity m(li), the number of zero
columns in liIN� j(l) is m(li) and other N�m(li) columns are independent of
each other, yielding rank(liIN� J)¼N� m(li).

The PBH rank condition42 stipulates that system (equation (1)) is controllable if
and only if for each li of matrix A, the following holds:

N ¼ rankðliIN �A;BÞ ¼ rankðliIN � J;QÞ: ð12Þ
Because of the rank inequality56, equation (12) can be rewritten as N¼

rank(liIN� J, Q)rrank(liIN� J)þ rank(Q) so that rank(Q)ZN� rank(liIN� J).
Recalling that rank(Q)¼ rank(B), we have

rankðBÞ � N � rankðliIN � JÞ: ð13Þ
Equation (13) will be satisfied if rank(B) is larger than or equal to the maximum

value of N� rank(liIN� J) for all eigenvalues li. It can be shown that the equality
in equation (13) can be satisfied by specific construction of Q, indicating the
necessity of establishing Q via nonsingular transformation associated with the
Jordan blocks (Supplementary Note 2). In this regard, the minimum value of
rank(B) is the maximum value of N� rank(liIN� J); that is, the minimum number
ND of independent driver nodes, min{rank(B)}, is maxi{N� rank(liIN� J)}. As this
is equivalent to maxi{N� rank(liIN�A)}, according to the definition of geometric
multiplicity, we have equation (3): ND¼maxi{m(li)}. Although the maximum
geometric multiplicity as the lower bound of the number of controllers has been
implied in linear control theory32,46 and some literature47–49, we prove that the
maximum multiplicity is both necessary and sufficient conditions to ensure full
control and offer a rigorous scheme to identify the minimum set of drivers, leading
to the development of an exact and efficient controllability framework. If A is
diagonalizable, for example, for undirected networks, then we have m(li)¼ d(li) for
each eigenvalue and the number of independent drivers or controllers under this
condition is determined by equation (4): ND¼maxi{d(li)}.

Our theory thus offers an exact characterization of the controllability of
complex networks with any structures and weights in the presence or absence of
self-loops. It should be emphasized that ND¼maxi{d(li)} is valid for undirected
network or diagonalizable matrix A. In addition, we can show that the observability
of complex networks can be formulated in a similar way (Supplementary Note 6).

Exact controllability for dense and sparse networks. For a large sparse network
in the absence of self-loops, the expectation of eigenvalues of the coupling matrix A
is EðlÞ ¼ 1

N

PN
i¼1 li ¼ 1

N

PN
i¼1 aii ¼ 0; therefore, the maximum geometric multi-

plicity occurs at the eigenvalue l¼ 0 with high probability57. Moreover, it can be
proven that the geometric multiplicity associated with the zero eigenvalue is equal
to the rank deficiency56: m(0)¼N� rank(A). The minimum number of controllers
and independent drivers as determined by the geometric multiplicity associated
with the zero eigenvalue can then be estimated by equation (5):
ND¼max{1,N� rank(A)}.

For a densely connected network with unit link weights, the zeros in A scales
with N in the limit of large N. In the absence of loops, the probability is high to find
two groups of nodes that are interconnected and have mutual neighbours.
In general, in this case the coupling matrix consists of many rows of the form

0 1 a13 a14 � � � a1N

1 0 a13 a14 � � � a1N

� � � � � � � � � � � � � � � � � �

2
4

3
5: ð14Þ

The corresponding rows in det(lIN�A) of the characteristic polynomial are

l � 1 � a13 � a14 � � � � a1N

� 1 l � a13 � a14 � � � � a1N

� � � � � � � � � � � � � � � � � �

������

������
: ð15Þ

Table 3 | Exact controllability measures of real-weighted
networks.

Type Name Nodes Edges nMMT
D nS

Fed Web Florida Bay dry 128 2,137 0.25 0.25
Florida Bay wet 128 2,106 0.2422 0.2422
Mangrove 97 1,492 0.2680 0.2680

Transportation USA top-500
Airport

500 5,960 0.25 0.25

Coauthorships Coauthorships 1461 2,742 0.3436 0.3436
Social
communication

Facebook-like 899 142,760 0.0067 0.0011

UCIonline 1899 20,296 0.3239 0.3239
Metabolic C. elegans 453 2,040 0.3245 0.3245

For each network, we show its type and name; number of nodes (N) and links (L). nMMT
D is

computed from the maximum geometric multiplicity equation (3), nS
D is from equation (5). For

data sources and references, see Supplementary Table S1 and Supplementary Note 7.
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We see that if l¼ � 1, the two rows are identical. We then have54

det(� IN�A)¼ det(INþA)¼ 0. As a result, � 1 is the eigenvalue of the matrix
(equation (14)). As, in a dense network with unit weights, the likelihood to observe
two rows with the form in matrix (equation (14)) is high, l¼ � 1 becomes the
eigenvalue corresponding to the maximum multiplicity, enabling an efficient
formulation of exact controllability for dense networks. In particular, the geometric
multiplicity is defined as N� rank(liIN�A). Substituting l by � 1 yields ND¼
max{1,N� rank(INþA)}. For identical link weights of arbitrary value w, the
eigenvalue becomes �w rather than � 1. Substituting l by �w yields
equation (6): ND¼max{1,N� rank(wINþA)}. Equations (5) and (6) are the exact
controllability theory for any sparse networks and dense networks with identical
link weights, respectively.

It is noteworthy that, although we assume the absence of self-loops so as to
derive the simplified formulas (equation (5)) and (equation (6)), they are still valid
in the presence of a small fraction of self-loops, insofar as the self-loops do not
violate the dominations of 0 and �w in the eigenvalue spectrum of matrix A for
sparse and dense networks, respectively. In fact, the combination of the number
and the weight distribution of self-loops has quite intricate roles in the
controllability, which will be discussed thoroughly elsewhere.

Computation of matrix rank and eigenvalues. We use the SVD method52 to
compute the eigenvalues of matrix A of any complex networks required by the
general MMT for quantifying the exact controllability of complex networks. To
count the number of eigenvalues with the same value, that is, the algebraic
multiplicity, we set a small threshold 10� 8. If the absolute difference between two
eigenvalues is less than the threshold, they are regarded as identical. We have
checked that the maximum algebraic multiplicity is quite robust to the setting of
the threshold. This is because of the fact that this multiplicity usually arises at
integer eigenvalues that are independent of the threshold.

The SVD method can also be used to calculate the accurate rank of the matrix
associated with an arbitrary network. For sparse networks and dense networks with
identical weights, the exact controllability is only determined by the rank of the
matrix. For sparse, undirected networks with identical or random weights, we have
checked that the LU decomposition method51 can yield reliable results of the
matrix rank, in good agreement with those from the SVD method. However, for
other types of networks, we have to rely on the SVD method. For both LU and
SVD methods, the tolerance level is set to be 10� 8. If a value in the diagonal is less
than the threshold, it will be treated as zero to determine the matrix rank. We have
examined that the matrix rank is insensitive to the threshold insofar as it is
sufficiently small. All the exact controllability measures of real networks presented
in Tables 2 and 3 are obtained via the SVD method to ensure accuracy. The
structural controllability of networks is computed via the maximum matching
algorithm34.

For the elementary column transformation for identifying driver nodes, we use the
Gaussian elimination method with computation complexity O(N2(logN)2) (ref. 53) to
obtain the column canonical form that reveals the linear dependence among rows.
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