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Tipping Point

1	um

Google: the point at which a series of 
small changes or incidents becomes 
significant enough to cause a larger, 
more important change.

Merriam-Webster: the critical point 
in a situation, process, or system 
beyond which a significant and often 
unstoppable effect or change takes 
place

From: alchemy4thesoul.com



Tipping point: Prediction & 
Control?

Barnosky, Anthony D., et al. Nature 486, 52-58 (2012).



Plant-pollinator network with complex 
mutualistic interactions



Perturbation Types

Parameter 
change 

Bipartite mutualistic network

Cause of perturbation: global 
warming caused climate change, 
excessive use of pesticides leading 
to death of pollinators, loss of 
habitats due to pollution, etc.



Empirical Data

Network A: Data from 
Hicking, Norfold, UK - 61 
Pollinators, 17 plants, and 146 
mutualistic interactions [L. 
Dicks, S. Corbet, and R. 
Pywell, “Compartmentalization 
in plant-insect flower visitor 
web,” J. Anim. Ecol. 71, 32-43 
(2002)]

Network B: Data from 
Hestehaven, Denmark – 42 
pollinators, 8 plants, and 79 
mutualistic connections [A. C. 
Montero, “The ecology of 
three pollinator network,” 
Master thesis, Aarhus 
University, Denmark (2005)] 

Data from 59 such networks are currently available: http://www.web-of-life.es



Nonlinear Network of Mutualistic Interactions 
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γ ij = εij
γ0

(ki )
t ,  0 ≤ t ≤1 (t = 0: structure has no effect; t =1: structure is important)

εij =1 if plant/pollinator i and pollinator/plant j  are connected; 0 otherwise;
Pi,Ai −  Abundance of ith plant and ith pollinator;
SP,SA −  numbers of plants and pollinators; 
αi

(P ),αi
(A) −  intrinsic growth rates of ith plant and ith pollinator;

βii,βij −  intraspecific and interspecific competition strength (βii >> βij );
µP,µA −  immigration of plants and pollinators;
γ0 −  strength of mutualistic interaction;
κ i −  pollinator decay rate - bifurcation parameter

• Lever, Nes, Scheffer, and Bascompte, “The sudden collapse of pollinator communities,” Ecol. Lett. 
17, 350-359 (2014)

• Rohr, Saavedra, and Bascompte, “On the structural stability of mutualistic systems,” Science 345, 
1253497 (2014).

• J.-J. Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting 
tipping points in mutualistic networks  through dimension reduction,” PNAS (Plus), in press

Holling type-II 
dynamics

Possible control 
parameters



Derivation of 2D 
Dynamical System (1)

Plants

Pollinators
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Derivation of 2D 
Dynamical System (2)

Plants

Pollinators
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J.-J. Jiang, Z.-G. Huang, W. Lin, T. Seager, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting tipping points 
in mutualistic networks through dimension reduction,” PNAS (Plus), in press.



Universality of 2D Model

Pollinators Plants

Red surface: stable steady states of pollinator from effective system
Green surface: stable steady states of plants from effective system
Blue dots: corresponding stable steady states from 59 available   

real-world networks



Average Abundance Predicted by 
Effective Dynamical System

Plants

Red – from 
original system
Blue – from 
effective system 
with unweighted 
average
Cyan – from 
weighted 
average
One realization 

Pollinators
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Predicting network tipping point 
from effective dynamical system

Example of successful prediction of tipping 
point (from one realization)

Red – from 
original system
Blue – from 
effective system 
with unweighted 
average – not 
good agreement

Cyan – from 
weighted 
average

Symbols -
individual 
realizations 
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Predicting network tipping point 
from effective dynamical system

Example of successful prediction of a tipping 
point (many realizations)

Red, Green –
from original 
system

Blue – from 
effective system 
with unweighted 
average

Cyan – from 
weighted 
average

Ensemble 
averaged results

Network    
A

Network    
B



Tipping Point Prediction

Red – pollinator 
abundance from 
original system;
Green – plant 
abundance from 
original system
Cyan – results 
from reduced 2D 
model



Random bipartite networks

• Both weighted and unweighted averaging methods give good results. 
• Realistic mutualistic networks are far from random – weighted 

averages are necessary!



Control Method 1: Maintaining the 
Abundance of a Single Pollinator

Network A Network B

Improved environment

Hysteresis



Control Method 2: Setting Decay 
Parameter = 0 for a Single Pollinator

Network A Network B

Improved environment

Hysteresis



Hysteresis Loop and Benefit of Control

• Once the tipping point is reached, one must pay a higher price to bring the 
system back.

• Control can effectively remove the hysteresis, greatly facilitating system 
recovery from the tipping point.



Controllability Ranking of Pollinators
Network B (controlling pollinators 2, 3, 5, and 8)

Mm×n −  weighted matrix of original bipartite network
m−  # of pollinators, n−  # of plants
MP =M ⋅MT −  Projection matrix of pollinators
V −  component of eigenvector associated with the largest eigenvalue of MP



Benefit of Control: Enabling Species Recovery 

• Blue – without control 
1. Collapse abruptly and simultaneously
2. Unable to recover

• Red – with control
1. Collapse not as abrupt
2. Able to recover



Controlling Tipping Point in a Gene Regulatory Network
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Predicting Tipping Point: Data-Driven Method

• W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, PRL 106, 154101 (2011).
• W.-X. Wang, Y.-C. Lai, C. Grebogi, and J.-P. Ye, “Network reconstruction based on 

evolutionary game data,” PrX 1, 021021, 1-7 (2011).
• Z.-S. Shen, W.-X. Wang, Y. Fan, Z.-R. Di, and Y.-C. Lai, “Reconstructing propagation 

networks with natural diversity and identifying hidden source,” Nature Communications 5, 
4323 (2014).

• R.-Q. Su, W.-X. Wang, X. Wang, and Y.-C. Lai, “Data-based reconstruction of complex 
geospatial networks, nodal positioning and detection of hidden nodes,” Royal Society Open 
Science 3, 150577 (2016).

• W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Data based identification and prediction of 
nonlinear and complex dynamical systems,” Physics Reports 644, 1-76 (2016).

Problem 2: Reverse Engineering of 
Complex Networks

Network
Measured
Time Series

Full network topology?

Full network 
topology + 
dynamical 
equations

Crisis



Basic Idea (1)
Dynamical system:    dx/dt = F(x),         x ∈  Rm   
Goal: to determine F(x) from measured time series x(t)!
Power-series expansion of jth component of vector field F(x)

[F(x)] j = ... (a j
lm=0

n

∑
l2=0

n

∑
l1=0

n

∑ )l1l2 ...lm
x1
l1x2

l2 ....xm
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xk − kth component of x;            Highest-order power: n
(a j)l1l2 ...lm

 - coefficients to be estimated from time series 

- (1+n)m  coefficients altogether
If F(x) contains only a few power-series terms, most of the 
coefficients will be zero. 



Basic Idea (2)
Concrete example:  m = 3 (phase-space dimension): (x,y,z)
                                n = 3 (highest order in power-series expansion)
                                total (1 + n)m = (1+3)3 = 64 unknown coefficients
[F(x)]1 = (a1)0,0,0x

0y0z0 + (a1)1,0,0x
1y0z0 + ... + (a1)3,3,3x

3y3z3
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       - 64×1   

Measurement vector  g(t) = [x(t)0y(t)0z(t)0, x(t)1y(t)0z(t)0, ... , x(t)3y(t)3z(t)3]
                                            1 ×  64
So  [F(x(t))]1 = g(t)•a1      



Basic Idea (3)
Suppose x(t) is available at times t0,t1,t2,...,t10  (11 vector data points)
dx
dt

(t1) = [F(x(t1))]1 = g(t1)•a1

dx
dt

(t2 ) = [F(x(t2 ))]1 = g(t2 )•a1

 ...
dx
dt

(t10 ) = [F(x(t10 ))]1 = g(t10 )•a1

 Derivative vector  dX  = 
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We finally have   dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1   



Basic Idea (4)
 dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1

Reminder: a1  is the coefficient vector for the first dynamical variable x.
To obtain [F(x)]2,  we expand
[F(x)]2 = (a2 )0,0,0x

0y0z0 + (a2 )1,0,0x
1y0z0 + ... + (a2 )3,3,3x

3y3z3

with a2,  the coefficient vector for the second dynamical variable y. We have
dY  = G•a2                 or       dY10×1  = G10×64 • (a2 )64×1

where

 dY = 

(dy/dt)(t1)
(dy/dt)(t2 )

...
(dy/dt)(t10 )
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10×1

.

Note: measurement matrix G is the same.
Similar expressions can be obtained for all components of the velocity field.



Compressive Sensing (1)

Look at 
dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1

Note that a1  is sparse   - Compressive sensing!

Data/Image compression:
Φ :  Random projection (not full rank)
x  - sparse vector to be recovered

Goal of compressive sensing: Find a vector x with minimum number of 
entries subject to the constraint  y = Φ•x



Compressive Sensing (2)

 Why l1 − norm? - Simple example in three dimensions

Find a vector x with minimum number of entries 
subject to the constraint  y = Φ•x:  l1 − norm

E. Candes, J. Romberg, and T. Tao, IEEE Trans. Information Theory 52, 489 (2006),
Comm. Pure. Appl. Math. 59, 1207 (2006);

D. Donoho, IEEE Trans. Information Theory 52, 1289 (2006));
Special review: IEEE Signal Process. Mag. 24, 2008



Predicting Tipping Point (2)
Step 2: Performing numerical bifurcation analysis

Boundary
Crisis

Current 
operating 
point

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, PRL 106, 154101 (2011).



Take Home Message 

2. Control delays tipping point, eliminates hysteresis loop, 
and enables recovery that is not possible without control

1. An effective two-dimensional model to  predict tipping point 
in mutualistic networks 

J.-J. Jiang, Z.-G. Huang, W. Lin, T. Seager, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting 
tipping points in mutualistic networks through dimension reduction,” PNAS (Plus), in press.

3. Compressive sensing based identification and prediction 
of complex and nonlinear systems


