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A tipping point presents perhaps the single most significant threat to an
ecological system as it can lead to abrupt species extinction on a massive
scale. Climate changes leading to the species decay parameter drifts can
drive various ecological systems towards a tipping point. We investigate the
tipping-point dynamics in multi-layer ecological networks supported by mutu-
alism. We unveil a natural mechanism by which the occurrence of tipping
points can be delayed by multiplexity that broadly describes the diversity of
the species abundances, the complexity of the interspecific relationships, and
the topology of linkages in ecological networks. For a double-layer system of
pollinators and plants, coupling between the network layers occurs when
there is dispersal of pollinator species. Multiplexity emerges as the dispersing
species establish their presence in the destination layer and have a simul-
taneous presence in both. We demonstrate that the new mutualistic links
induced by the dispersing species with the residence species have fundamental
benefits to the well-being of the ecosystem in delaying the tipping point and
facilitating species recovery. Articulating and implementing control mechan-
isms to induce multiplexity can thus help sustain certain types of ecosystems
that are in danger of extinction as the result of environmental changes.
1. Introduction
Complex networked systems in the real world are often dependent upon each
other. Such interdependent, multi-layer networks are also referred to as
networks-of-networks [1]. One of the best-known examples of such systems
is urban infrastructure systems [2] consisting of transportation, communication,
electric power and water supply networks, which are heavily dependent upon
each other. For instance, the operation of electric power grids is controlled by
the communication network, but the former provides electricity that is essential
to the latter. Another example is brain networks, where the necessity to use
multi-layer modelling and analysis to understand the structure and function
of the human brain has begun to be appreciated [3–7]. In recent years, the con-
cept of multi-layer networks has also been adopted to ecology [8–12].

The dynamics and robustness of multi-layer networks have been an area of
active research in network science and engineering [13–27]. Most previous
studies of dynamical processes on multi-layer networks focused on cascading
failures [1,14,15,28,29], percolation [13,21,24,25,30–36] and disease spreading
[22,23,26,27]. Take the urban infrastructure systems as an example. Because of
the sharing of services among these systems, the loss of a single service such
as mobility can impact others including electric power and clean water
supplies. From a dynamical point of view, when a node or a link in one infra-
structure network fails, because of the interdependencies, the failure can
propagate to other infrastructure networks [37]. To understand the ways by
which interdependencies in multi-layer networks affect robustness is essential
to making resilience recommendations and developing control strategies.
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Multiplexity is a basic notion in complex multi-layer net-
works, where a subset of nodes belong simultaneously to
different network layers. An example is virus or disease
spreading in the human society, where an individual is sim-
ultaneously a node in the physical contact layer that
actually spreads the virus and a node in the virtual layer
that diffuses all kinds of real information or disinformation
about the virus [22]. In such a case, multiplexity arises natu-
rally and is intrinsic to the dynamical processes in both the
physical and virtual layers. As to be explained, the main
point of this paper is that multiplexity can also arise in multi-
layer ecological networks and, more importantly, it has the funda-
mental benefits to sustaining the whole networked system and
keeping it in a healthy state by delaying, often significantly, the
occurrence of a catastrophic tipping point that would otherwise
lead to extinction on a massive scale.

In complex ecological networks, tipping point is a funda-
mental dynamical phenomenon [38–59]. A tipping point is a
point of ‘no return’ in the parameter space where, as the
bifurcation parameter of the system passes through a critical
value, the whole system collapses. In a physical network,
such a collapse can manifest itself as a catastrophic break-
down of the system. In an ecological network, the collapse
can result in massive species extinction. From a dynamical
point of view, a tipping point is the result of the system’s pas-
sing through a bifurcation point, typically a forward or a
backward saddle-node bifurcation. A typical scenario is
that, in a parameter regime of interest, there are two coexist-
ing stable fixed-point attractors: one corresponding to the
normal or ’healthy’ state of the system but the other to a cat-
astrophic behaviour, e.g. extinction. Suppose that, as the
parameter value increases, a backward saddle-node bifur-
cation occurs, after which the healthy fixed point together
with its basin of attraction is destroyed, leaving the cata-
strophic fixed point as the only attractor in the system. The
critical parameter value at which the saddle-node bifurcation
occurs is the tipping point.

Given the ubiquity of multi-layer networks in natural
and engineering systems, a concerning issue of considera-
ble interest is the interplay among the tipping-point
dynamics in different network layers. For example, if the
network in one layer has experienced a tipping point,
would a tipping-point transition occur in another layer
because of the interdependence between the two layers? A
related issue is whether the processes of recovery in the after-
math of a tipping point in different network layers would
promote or impede each other. In spite of the large literature
on multi-layer networks and on tipping-point dynamics, the
interplay between the two has not been studied. This rep-
resents a gap in our knowledge about complex dynamical
systems. The aim of this paper is to fill this gap.

For simplicity, we consider an interdependent networked
system of two layers that are coupled together through some
physical flow or flux between them. We assume that each
layer has a mutualistic network of plants and pollinators
[51,54,60–62], so the whole system models the situation of
interaction and interdependence of two ecological networks
that are, respectively, located in two adjacent geographical
regions. The coupling between the two network layers is
due to the dispersal of pollinator species. Depending on the
specific networks in the two layers, there are two different
scenarios of coupling. In the first scenario, the two networks
share a subset of identical pollinator species, which are the
common nodes in the two layers, so the double-layer con-
figuration is intrinsically a duplex networked system. In
this case, the common species can disperse from one layer
to another without establishing new nodes and new mutua-
listic relationships with the existing species in the latter.
While the coupling changes the overall species abundances
in both layers, the network structures remain intact. For con-
venience, we call this type of interaction between the two
layers that results in no change in the network structure
type-I coupling. In the second scenario, prior to the occurrence
of any species dispersal, there are no common species
between the two layers. That is, in the absence of coupling,
the double-layer system does not have a duplex structure.
In this case, the dispersing species from one layer can estab-
lish new nodes and new mutualistic relationships with the
resident species in the other layer. The coupling thus not
only changes the structure of the mutualistic network in the
latter, but more importantly, induces multiplexity. This is
denoted as type-II coupling. We note that type-II coupling
can be understood as a species turnover and rewiring. In par-
ticular, the migration rates are randomly selected and the
migrating species may survive at a low abundance or even
disappear in the original layer, but could survive and
rewire in the new sublayer. When migrating species reach
the new sublayer, they wire new links over the original net-
work structure, resulting in a new structure. This can occur,
for example, when certain pollinator species migrate to a
different region. A key observation is that, regardless of the
coupling type, there is multiplexity in the double-layer
interdependent network system.

The main findings are the following. Type-I coupling can
result in a slight delay in the occurrence of a tipping point in
the network layer into which the species disperse, and the
coupling has little effect on the resilience of the whole
double-layer system. However, type-II coupling has a much
more significant effect on delaying the tipping point than
type-I coupling, and the tipping point can be suppressed
when the coupling is sufficiently strong. In particular, by estab-
lishing new mutualistic relationships there, mutualism is
strengthened, leading to stronger connections among the
species. As the number of established mutualistic relationships
increases, there is a substantial delay in the occurrence of the
collapsing tipping point. That is, induced multiplexity can make
the whole system significantly more resilient. (In the electronic
supplementary material, we develop a heuristic theoretical
understanding of these findings through an effective
dimension-reduced model and obtain solutions of the delay
of the tipping point as the result of the induced multiplexity.)

It is worth noting that mutualistic networks are
ubiquitous in ecosystems, providing coexisting symbiotic
relationships by which species depend on and benefit from
each other [51,60–73]. Examples include the coral polyps
that make up the giant coral reefs [74] and bacteria in
human intestinal flora [75]. The pollinator–plant network is
one such example, being highly important because flowering
plants rely on pollinators for reproduction and survival, and
the pollinators rely on plants to sustain themselves. Habitat
destruction, parasites, diseases and pesticides leading to
environmental changes are linked to large-scale population
extinctions of wild bees, possibly through the dynamical
mechanism of a tipping-point transition. At the same time,
many of the still-surviving species are in danger of extinction.
The extinction and decline of pollinator species are damaging



layer A
initial state:
extinction

plants

plants

layer B
initial state:
survival

pollinators

pollinators

migration of
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Figure 1. Schematic illustration of a double-layer mutualistic network system and simulation setting. The layers are denoted as A and B. Each layer hosts a mutua-
listic network, where the filled circles represent pollinator and plant species, and interactions occur only between the pollinator and plant species. In layer A, a
tipping point has already occurred so its network is in the extinction state. In layer B, the network has not experienced a tipping point so it is in the survival state.
Pollinator dispersal occurs both ways, but initially the dominant flux is from B to A (the solid arrows), because the species abundances in B are much larger than
those in layer A, enabling recovery of the species abundances in A. During the recovery process, the flux from A to B gradually increases (dashed arrows), preventing
a tipping point from occurring in layer B.
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to both ecosystems and agriculture, rendering it important
and critical to devise strategies to preserve pollinator diver-
sity [56,76]. Our finding and understanding of how the
tipping points of two interdependent mutualistic networks
are affected by their coupling and the uncovered beneficial
role of multiplexity provide insights into developing methods
to mitigate or control the tipping point.
2. Double-layer mutualistic network model and
coupling types

Our double-layer system is constructed from the bipartite
mutualistic network model [51,54,60–62] with the Holling
type of dynamics [77], where the two layers are coupled
through species dispersal, as schematically illustrated in
figure 1. For a single mutualistic network, a generic model
must include the following processes: intrinsic growth, intraspe-
cific and interspecific competitions, and mutualistic interactions
among the plant and pollinator species. These effects were con-
sidered by Lever et al. and Rohr et al. in their pioneering work to
derive a comprehensive model of differential equations [51,60],
with all detailed reasoning and derivation steps therein. Here,
we adopt their single-layer differential equation model to our
double-layer system. In particular, mathematically, a double-
layer network dynamics model is described by the following
set of differential equations:

dXðaÞ
i

dt
¼ XðaÞ

i
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i �
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where the superscripts ( · )(a) and ( · )(b) denote layers A and B,
and the capital letters X and Y represent the abundances of
the pollinator and plant species, respectively. For example,
XðlÞ

i and YðlÞ
j are the abundances of the ith pollinator and the

jth plant in layer l for l=A or l= B, respectively, SðlÞX and SðlÞY
are the numbers of pollinators and plants in layer l. The par-
ameters aXðlÞ

i and aYðlÞ
i are the intrinsic growth rates of the

pollinator and plant species, respectively, kX
ðlÞ

i is the rate of
pollinator decay. In layer l, the intraspecific competitions
within an individual pollinator species and interspecific
competitions among the different pollinator species are charac-
terized by the parameters bXðlÞ

ii and bXðlÞ
ij , respectively. In the

pollinator–plant mutualistic system, typically intraspecific
competitions are stronger than interspecific competitions
[51,60], so we have bXðaÞ

ii � bXðaÞ
ij , bYðaÞ

ii � bYðaÞ
ij , bXðbÞ

ii � bXðbÞ
ij ,

and bYðbÞ
ii � bYðbÞ

ij . The saturation effect is quantified by the
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half-saturation constant h of the Holling type-II functional
response [77]. In equations (2.1)–(2.4), the fractional terms rep-
resent the various mutualistic interactions with the strength γ.
For example, in equation (2.1), gX

ðaÞ
ik is the strength of the mutua-

listic interaction from the kth plant to the ith pollinator in layer
A. The coupling between the two layers is characterized by the
following four parameters: mðaÞ

in , mðaÞ
out, m

ðbÞ
in and m

ðbÞ
out, where m

ðlÞ
in

and m
ðlÞ
out are the dispersal rates of species dispersing into and

out of layer l, respectively, for l=A, B. There is no dispersal
term for any plant species.

The inward dispersal rate terms mðaÞ
in X

ðbÞ
i in equation (2.1)

and m
ðbÞ
in XðaÞ

i in equation (2.3) can be justified as follows. In a
real ecological system, there are many species, and the
number of dispersing species is determined by their abun-
dances and the ability to disperse that depends on the
environmental conditions. For all the pollinator species in
the same layer, the environmental conditions are approxi-
mately identical, but their abundances can be drastically
different. It is thus reasonable to choose the rate parameters
m
ðaÞ
in and m

ðbÞ
in to be layer dependent but not species dependent.

For a given pollinator species Xi, the effective dispersal rate as
characterized by the term m

ðaÞ
in X

ðbÞ
i or mðbÞ

in XðaÞ
i does depend on

the species abundance. The dispersal follows a two-way pat-
tern: the species in both layers not only disperse into each
other, but their own abundances are affected by the dispersal.
The size of the outward dispersal is determined by the
species abundance in the layer: the richer the species, the
greater is the probability that dispersal occurs.

Intuitively, a single layer hosting species with high abun-
dances may not have the sufficient habitat capacity, so more
species are likely to disperse in order to find a new habitat.
The increase in the probability represents a dispersal ‘ten-
dency’ for the species to explore other habitats. In fact, as
our simulations will show, the dispersal probability does
not have any significant effect on the steady-state abun-
dances, even though the probability of dispersal becomes
larger as the species abundance increases.

To study the interplay between the tipping-point
dynamics in the two layers in a concrete way, we focus on
the setting where the network in layer A has gone through
a tipping-point transition and is in the extinction state, but
no tipping point has occurred in layer B, so its network is
in the survival state. Through coupling, layer B keeps feeding
dispersing species into layer A. A question is whether,
because of the species dispersing from layer B, the species
populations in layer A can be recovered. If so, during the pro-
cess of recovering the abundances of species in layer A,
dispersal to layer B can also occur. It is worth noting that,
before species recover in A, effectively there is no dispersal
from A to B, as the species abundances in layer A are near
zero. As in previous work [54,56], we choose the pollinator
decay rates kX

ðlÞ
i (l =A, B) as the bifurcation parameters

whose increase can lead to a tipping point. Specifically, in
an isolated layer, the mutualistic network can experience a
tipping-point transition as the decay rate increases through
a critical value. This choice of the bifurcation parameter is
based on the hypothesis that there is a correspondence
between the species apoptosis rate κ and the state of the
environment for species survival, i.e. a deterioration in the
environment corresponds to an increase in κ and vice versa.
Species extinction occurs as the apoptotic κ value increases.
The tipping point of the system is defined as the threshold
value of κ at which all species become extinct.
For type-I coupling, multiplexity is intrinsic and the abun-
dances of the pollinator species in both layers are disturbed in
a dynamical way, but the network structures are unaffected. In
particular, every pollinator species in layer B has a probability
to disperse to layer A, but, when some individuals from this
species arrive at their destination, they simply use the existing
mutualistic connections there and do not establish any new
mutualistic connections with the plant species in layer A. That
is, only the total abundance of species in layer A is increased
due to the inter-layer coupling. Thedispersal rate foreach species
in layerBdepends linearlyon the abundance.Note thatdispersal
of a species does notmean that the correspondingnode in layerB
disappears, as the speciesdisperses at a finite rate. That is, in spite
of the dispersal and certain loss of abundances, the species in
layer B continue to survive according to their own mutualistic
dynamics. In this case, the inter-layer coupling can be under-
stood as the action of feeding individuals of the pollinator
species from layer B into A. As the species abundances in layer
A increase from near zero, they also disperse.

For type-II coupling, multiplexity is induced by dispersal.
The network structures of the two layers are modified in the
sense that the quantities characterizing the network structures
such as the numbers of the nodes and of the connected edges
are changed. For example, the dispersal of a pollinator species
from layer B into layer A can establish new mutualistic connec-
tions with one or more plant species in layer A, and similarly
from A to B. To be concrete, in our simulations, we choose the
number of dispersing species to be one, five or 10. In the first
two cases, the species engaged in dispersal are chosen ran-
domly, so are the plant species in a given layer that get the
mutualistic connections with the dispersing species from the
other layer. Aswith type-I coupling, the species in one layer dis-
persing to another do not disappear at the destination layer or
change their original mutualistic interactions during or after
the dispersal. However, the abundances of species decrease
due to the outward dispersal. Taken together, the quantities
that have an impact on the network structure are: (i) the
number and the set of species in one layer that randomly dis-
perse to another layer, (ii) the number of new nodes created
by the dispersing species, and (iii) the number of newmutualis-
tic connections that the dispersing species randomly establish.
Type-II coupling thus takes into account the change in the topo-
logical structure in both networks due to the inward dispersing
species.
3. Results
We construct two mutualistic networks, one for each layer.
Before dispersal occurs (i.e. when the networks are
uncoupled), each network has 30 pollinator and 10 plant
species, but their connecting structures are random and
differ in detail. With the pollinator species decay rate chosen
as the bifurcation parameter, without coupling the collapse tip-
ping point kX

ðaÞ
c0 of the network in layer A is kX

ðaÞ
c0 � 1:0 while

that in B is kX
ðbÞ

c0 � 1:3. Suppose the network in layer A has
gone through a tipping-point transition and is in the extinction
state, but the layer B network remains in the survival state. At
t = 0, layer B begins to feed dispersing species to layer A.

3.1. Type-I coupling
We demonstrate that type-I coupling can lead to species
recovery in the network in layer A. Before coupling is
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Figure 2. Inter-layer coupling-induced species recovery. (a) Time series of species abundances of both layers for kX
ðaÞ ¼ 1:12 . kX

ðaÞ
c0 , where the blue and red

curves represent the abundances in layers A and B, respectively. The horizontal purple line on the abscissa indicates the collapse state of the layer A network in the
post-tipping-point regime. Owing to inter-layer coupling, the abundances in both layers reach a healthy steady state. (b) A case of unsustainable recovery. The
legends are the same as in (a), except that the network in layer B is also in the post-tipping-point regime, even if initially it is in a survival state with its initial
abundances chosen randomly between 1 and 4. The parameter values are aXðaÞ ¼ aY ðaÞ ¼ aXðbÞ ¼ aY ðbÞ ¼ �0:3, bXðaÞ

ii ¼ bYðaÞ
ii ¼ bXðbÞ

ii ¼ bY ðbÞ
ii ¼ 1 and

h = 0.2. The parameters gðX
ðaÞÞ, gðY

ðaÞÞ, gðX
ðbÞÞ and gðY

ðbÞÞ are normalized by the nodal degrees of the network in the layer and are set as one in the simulations.
The dispersal parameters mðaÞ

in and mðaÞ
out are chosen randomly from the interval [0, 0.3], while mðbÞ

in and mðbÞ
out are chosen randomly from the unit interval. The two

insets show the recovery time series of layer A over a short initial period of time.
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turned on, we set kX
ðaÞ ¼ 1:12 . kX

ðaÞ
c0 so the original species in

layer A are extinct, and kX
ðbÞ ¼ 1:0 , kX

ðbÞ
c0 so that the network

in layer B is in a steady survival state. Without coupling, the
species abundances in layer A are taken to be near zero, as
indicated by the thick horizontal purple line in figure 2a.
With coupling, the abundances in layer A can recover quickly,
as shown by the blue curves in figure 2a and its inset. In fact,
the recovery process begins immediately after dispersal from
layer B starts. Owing to the dispersal, the species abundances
in layer B decrease initially but quickly approach a steady
survival state, as shown by the red curves in figure 2a. The
end result is that, due to inter-layer coupling, the networks
in both layers now remain in the survival state, although
the steady-state abundance levels are different. If the layer
B network is also in the post-tipping-point regime, even
when it was in a survival state initially, eventually the species
abundances in both layers collapse. When the network in
layer B collapses so that the source of dispersal disappears,
the recovery process in layer Awill stop and the abundances
of its species will approach zero. This is demonstrated in
figure 2b and its inset, where we set kX

ðbÞ ¼ 2:0 . kX
ðbÞ

c0 .
Because the network in layer B is in the collapse regime, its
species abundances decrease from the initial values to zero,
as shown by the red curves in figure 2b. The inset in figure
2b reveals that the recovery process in layer A starts initially
but quickly reverses course as the abundances in layer B
begin to collapse. After certain time, the species abundances
in both layers are zero and the entire double-layer system
collapses.
3.2. Type-II coupling
We assume three cases in which one, five, or all species in
layer B disperse to the collapsed layer A, and that each
dispersing species randomly establishes mutualistic connec-
tions with the species in layer A. With the exception that all
species in layer B disperse, the species engaged in dispersal
are selected randomly. The variations in the dispersed species
abundances are influenced by intraspecific competitions and
mutualistic connections with the resident species in layer A.
As the m dispersing species are indirectly connected through
mutualistic interactions in layer A, they have the same com-
petitive and mutualistic advantages as those that were
already in layer A. For this type of dispersing coupling, the
issue is what the impacts of the newly created connections
on the tipping point in layer A would be. We fix the species
dispersal rate from layer B at a specific value to guarantee
that layer B provides a constant source of dispersal. For out-
ward dispersal, the tacit assumption is that the extinction of
the species in the original network is not the result of disper-
sal, so the outward dispersal rates of both layers are set
between 0.1 and 0.3.

We first consider the case where only one random species
from layer B disperses to layer A and establishes one mutua-
listic connection with one of the species in layer A. The
number of species that migrate from layer A to layer B is
five, and the number of new mutualistic connections estab-
lished in layer B is 25. Figure 3a shows that the best
recovered species in layer A is the one that establishes mutua-
listic connections with the dispersing species from layer B.
However, there are species in layer A that are unable to
recover, as indicated by the red lines on the abscissa in
figure 3a. The results from the case where the dispersing
species establish mutualistic connections with five random
species in layer A are shown in figure 3b. Compared with
the case in figure 3a, more species recover due to the presence
of more newly established mutualism, despite some species’s
failure to recover. Figure 3c shows the results from the setting
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where the dispersing species from layer B establish 10 mutua-
listic connections in layer A. In this case, all the species in
layer A are able to fully recover from the extinction state.
These results indicate that, the more mutualistic connections
are established between the dispersing species and the orig-
inal species in layer A, the more the collapsed species are
able to recover. Figure 4a,b shows the abundances in A for
the two cases where each of the five dispersing species
establishes mutualistic connections with one and all species,
respectively. When each new dispersing species only estab-
lishes one new mutualistic connection, even if all species in
layer B can disperse to layer A as in figure 4, the species in
layer A are unable to achieve full recovery.

Our simulations reveal that, when one species disperses
to layer A and establishes a mutualistic connection, 31 species
in layer A are unable to recover. When five species disperse,
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each establishing a mutualistic connection, seven species in
layer A cannot be fully recovered. When all species in layer
B disperse, with each establishing a new mutualistic connec-
tion, the number of species in layer A that are unable to fully
recover is reduced to three. These results indicate that, while
only one new mutualistic connection is unable to lead to the
recovery of all species, a larger number of dispersing species
can make the network dynamics evolve towards a full recov-
ery. More dispersing species can also expedite the recovery
process, as shown in figure 4b,d, where all species in layer
B disperse to layer A.

The results in figures 3 and 4 indicate that the key to chan-
ging the tipping point in layer A is not only the number of
species dispersing from layer B, but also the number of
mutualistic connections established by the dispersing species
with the resident species in layer A. For example, as shown in
figure 3c, even if only one species disperses and if it estab-
lishes mutualistic connection with 10 species in layer A, a
full recovery of the species abundances in A can be achieved.
Likewise, figure 4a shows that, with five species dispersing
and each establishing a mutualistic connection in layer A
with only one plant species, the recovery process is quite
similar to that in figure 3c, since the total numbers of the
new mutualistic connections in both cases are sufficiently
large. This is a feature of mutualistic networks, where even
if only one species in the network is not extinct, the species
connected to it can survive due to the mutualistic
connections. Depending on the structure of the mutualistic
network A, even if the dispersing species generate the same
number of mutualistic connections in layer A, a different
number of the dispersing species can result in a different tip-
ping point. For example, if 50 new mutualistic connections
are generated, the tipping point for layer A is about 1.13
with five dispersing species, 1.41 with 10 dispersing species,
1.50 with 20 dispersing species, and 1.59 with 30 dispersing
species. Likewise, the same number of dispersing species
can establish different numbers of mutualistic connections,
leading to different tipping points. Simultaneously, since dis-
persal between the two layers occurs in both directions, new
mutualistic connections generated in layer B also affect the
tipping point of layer A. For instance, the layer A tipping
points in situations where 10 dispersing species establish
one, 50 and 100 mutualistic connections in layer B are
about 1.09, 1.41 and 1.82, respectively.

To characterize the interplay among the number of dis-
persing species, the new mutualistic connections and the
tipping points, we introduce the densities rA and rB of new
mutualistic connections in layer A and layer B, respectively,
defined as the ratio of the number of randomly generated
new mutualistic connections to the maximum number of
mutualistic connections that can be generated for a fixed
number of dispersing species. Figure 5 shows a positive cor-
relation between the tipping point and rA for five, 10, 20 and
30 dispersing species, where a higher number of dispersing



1.2

1.4

1.6

1.8

1.0

0
25% 50% 75%

100%

1.2

1.4

1.6

1.8

1.0

0
25% 50% 75%

100%

0
25% 50% 75%

100%

(a) (b)

(d )

X
(a

)
k c

1.2

1.4

1.6

1.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.0

0
25% 50% 75%

100%

(c)

X
(a

)
k c

rA rA

Figure 6. Tipping point kX
ðaÞ
c versus the density rA of new mutualistic connections. (a–d ) Coupling-induced delay of the tipping point in A when the density of new

mutualistic connections rB in layer B is 5%, 25%, 50% and 75%, respectively. The pollinator decay rate in layer B is set to be kX
ðbÞ ¼ 1:297. Other parameter values

are the same as those in figure 2.

5

4

3

2

1

0 0

0.5

1.5

1.0

2.0

2.5

3.5

3.0

sp
ec

ie
s 

ab
un

da
nc

es

10 20 30

t

40 50 1 2 3

(a) (b)

X(a)kc

Figure 7. Delay in the tipping point due to inter-layer coupling. (a) Time series of species abundances recovery of both layers with type-II coupling, where the blue
and red curves represent the abundances in layers A and B, respectively. The horizontal purple line on the abscissa indicates that layer A remains in the collapsed
state without dispersal. (b) Comparison of the collapse process for layer A in a single layer and a double-layer network. The initial abundance of layer A is between
0.1 and 0.5, i.e. it is in a collapsed state, and the initial abundance of layer B is between 1 and 4, i.e. in a survival state. The dispersal terms for layers A and B are
randomly chosen from [0, 0.3] and from [0, 1], respectively. The larger the species abundance, the higher the dispersal rate. The red lines are the species abun-
dances in layer A as an uncoupled single layer, while the blue lines are the abundance as part of the double-layer network.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220438

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 O

ct
ob

er
 2

02
2 
species leads to a stronger correlation. Figure 6 shows that,
with an increase in the density of new mutualistic connec-
tions in layer B, the strong correlation in figure 5 still
persists as the densities of newly established mutualistic
connections rB in layer B vary.
Figure 7 shows the difference between layer A as a single
network and as a layer in a double-layer network. As shown
by the purple line in figure 3a, layer A in a collapse condition
without the benefit of layer B dispersal is unable to recover. In
fact, layer A has a tipping point at 1 as a single network and a
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tipping point at 1.8 as a single layer in a double-layer network,
as shown in figure 3b. The dispersal-induced duplexity can not
only help the recovery of the species but also significantly
delays the tipping point in the single-layer network. Figure 8
summarizes the benefits of type-II coupling-induced multi-
plexity to delaying the collapse tipping point in layer A with
different structures of layer B. Recall that the tipping point of
the network in the absence of coupling is at kX

ðaÞ
c0 � 1:0. We

define NmA and NmB as the numbers of species dispersing
into layer A and B, respectively, andNcA andNcB as the respect-
ive numbers of original species in layer A and B which can
establish new mutualistic connections with the dispersing
species. With the dispersing conditions in layer A set as
ðNmA , NcAÞ ¼ ð10, 10Þ, if 10 species disperse (NmB ¼ 10), each
establishing mutualistic connections with one species in layer
B (NcB ¼ 1), layer A’s collapse tipping point becomes
kX

ðaÞ
c � 1:4, as shown in figure 8a. If 10 species disperse

(NmB ¼ 10), each establishes mutualistic connections with five
species in layer B (NcB ¼ 5), layer A’s collapse tipping point
becomes kX

ðaÞ
c � 1:6, as shown in figure 8b. With the dispersing

conditions in layer A set as ðNmA , NcAÞ ¼ ð5, 10Þ, when five
dispersing species establish mutualistic connections with one
species in layer B [ðNmB , NcBÞ ¼ ð5, 1Þ], layer A’s collapse tip-
ping point is kX

ðaÞ
c � 1:35, as shown in figure 8d. When five

dispersing species in layer B establish mutualistic connections
with the five plant species in layer B [ðNmA , NcAÞ ¼ ð10, 5Þ], the
collapse tipping point is kX

ðaÞ
c � 1:35, as shown in figure 8d. As
a two-way dispersing network, the change in the tipping point
of layer A is not only related to the modification of its own net-
work structure, but also to the structure of layer B due to the
coupling.
3.3. Suppression of the tipping point
So far we have studied the phenomenon of tipping-point
delay with enhanced density of network connections for rela-
tively low mutualistic connection density. Here we show that,
as the numbers of dispersing species in and out of both layers
as well as the densities rA and rB of the newly created mutua-
listic connections increase, the collapse tipping points in both
layers can be completely suppressed. As shown in figure 9,
when the density of layer B increases to 80%, there is a
sudden decrease in the abundance of species in both layers
as the decay rate κX(a) increases, but they still remain in the
survival state. While there are individual species that go
extinct at high decay rates, the whole double-layer network
is still in a survival state. As the density of the mutualistic
connections in the double-layer network increases, almost
every new dispersing species is provided with a species for
creating a mutualistic partnership. Species that have estab-
lished mutualistic connections depend on each other for
survival even under difficult conditions, insofar as the species
with which they have mutualistic connection are still surviv-
ing. In a normal survival environment, species that have
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established mutualistic connections can depend on each
other’s abundances for stable survival. For the double-layer
network, even if a small number of individual species are
extinct as the result of an increase in the decay rate, the
entire network does not become extinct under hostile
environmental conditions (e.g. unusually high decay rates).
We find that, in general, increasing the magnitude and
density of dispersal within the double-layer network can
suppress the onset of the global collapse tipping point.
4. Discussion
Complex ecological networks are nonlinear dynamical
systems exhibiting multistability [78–80]. From a coarse-
grained perspective, an ecological system has two distinct
stable steady states: survival and extinction, so multistability
in fact manifests itself as bistability. From the dynamical
point of view, the bistability in complex mutualistic networks
is created by an inverse saddle-node bifurcation as a control
parameter, e.g. the species decay rate κ, decreases through a
critical point [56,58]. In the forward direction, i.e. as κ
increases, a tipping point arises: when κ is below the inverse
saddle-node bifurcation point, there are two coexisting states:
survival and extinction. In this case, if the system is already in
the survival state, its stability guarantees that small pertur-
bations are incapable of driving the system to extinction, so
that it remains in the healthy state. However, as κ increases
through the tipping point, the survival state disappears, leav-
ing extinction the only stable state in the system and leading
to the inevitable collapse of the system. Stochastic disturb-
ances, however, can affect the tipping point and facilitate
species recovery in the aftermath of a tipping-point transition
[57–59]. At present, parameter variations as the result of cli-
mate change which can potentially lead to a tipping point
are no longer exceptions. To sustain various ecosystems
into the future, it is of great interest to uncover mechanisms
in the natural world that can delay the tipping point.

This paper reports such potential behaviours and mechan-
isms in mutualistic systems. When coupling between two
mutualistic networks is enabled, e.g. by species dispersal, the
occurrence of a tipping point can be delayed, where the
amount of delay depends on the extent of dispersal and a sig-
nificant delay would not be infeasible. This finding, in addition
to its fundamental importance, has implications for ecosystem
management: seeking to enhance mutual coupling between
ecosystems with mutualistic interactions can in general be ben-
eficial. Our computation and analysis have revealed that, not
only is the coupling able to delay the tipping point, but even
when one ecosystem has already experienced a tipping point,
the coupling can lead to a recovery through the restoration of
species abundances. Articulating and implementing natural
or engineered mechanisms to induce coupling, e.g. in the
form of species dispersal, can be of significant value to sustain-
ing mutualistic ecosystems that are or will be in danger of
extinction as the result of environmental changes.

We have studied two types of dispersal coupling to form
the double-layer mutualistic system, where one layer is
responsible for supplying species to the other that is in the
extinct state. The first type of dispersal coupling does not
change the number of nodes, but only changes the species
abundances levels. The double-layer system in this case can
be seen as a higher-dimensional stochastic complex network,
where the dynamics of the two layers are identical with
intrinsic random coupling between them. The second type
of coupling allows variations in the number of nodes in a



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220438

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 O

ct
ob

er
 2

02
2 
layer, where the dispersing species can establish new links in
the destination layer, thereby changing its network structure.
In this case, multiplexity in the system is established as the
result of the coupling. The new nodes and links allow the
original resident species to recover in response to mutualistic
effects of the dispersing species. As the importance of the
species in the destination layer increases due to the new
links, more species achieve recovery as a result of mutualism.
As species within the two layers can disperse to each other
and establish mutualistic interactions in their respective
new layers, the change in network structure is not a change
in a single destination layer, but one in the destination of
both layers. With the benefit of new dispersing species and
new mutualistic relationships, each layer can maintain a
well-functioning survival state. Our analysis has revealed
that the ability to achieve a total recovery requires a focus
on increasing the number of new mutualistic interactions.
This is consistent with the effect of the importance of nodes
on controlling the global network [56,59].

The establishment of multiplexity through dispersal, as
studied in this work, is able to largely delay the tipping
point. Increasing the mutualistic strength through active dis-
persal of species or artificial addition of new species can be an
effective means of controlling tipping points and avoiding
widespread extinction. In real networks, complications can
arise. For example, in the absence of artificial selection,
foreign pollinators establishing mutualistic interactions with
local plants is one aspect, but dispersal can also induce inva-
sive competition between the foreign and local species, which
can cause habitat displacement with consequent extensive
loss of plants. The changes in a layer can also lead to a
number of related changes to the structural properties and
dynamical behaviors of the network such as the resilience
and robustness [21,81–83]. Further studies of these effects
are worthy.
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