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There is a growing recognition that ecological systems can spend extended
periods of time far away from an asymptotic state, and that ecological under-
standing will therefore require a deeper appreciation for how long ecological
transients arise. Recent work has defined classes of deterministic mechan-
isms that can lead to long transients. Given the ubiquity of stochasticity in
ecological systems, a similar systematic treatment of transients that includes
the influence of stochasticity is important. Stochasticity can of course pro-
mote the appearance of transient dynamics by preventing systems from
settling permanently near their asymptotic state, but stochasticity also inter-
acts with deterministic features to create qualitatively new dynamics. As
such, stochasticity may shorten, extend or fundamentally change a system’s
transient dynamics. Here, we describe a general framework that is develop-
ing for understanding the range of possible outcomes when random
processes impact the dynamics of ecological systems over realistic time
scales. We emphasize that we can understand the ways in which stochasti-
city can either extend or reduce the lifetime of transients by studying the
interactions between the stochastic and deterministic processes present,
and we summarize both the current state of knowledge and avenues for
future advances.
1. Introduction
Two major goals of ecological theory are to make predictions and to explain
past observations. In both cases, qualitative changes in dynamics through
time represent both a challenge and an opportunity. For prediction, a sudden
change in dynamics is important to capture. In parallel, understanding the
limits to prediction, in time or in other ways, is important. Both for prediction
of the future and for understanding the processes that lead to the current state
of the system, the presence of large changes in dynamics [1,2] presents a
challenge. How can these events be understood using ecological models?

There is increasing recognition that transients can play a critical role in eco-
logical systems [3–10], building on the variety of long transient behaviours
exhibited by nonlinear dynamical systems [11–13]. For example, regime shifts
are an important phenomenon in ecology, in which the system behaviour
changes suddenly without any warning (e.g. sudden species extinction)
[14–16]. The traditional view is that regime shifts are caused by parameter
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Figure 1. Real-world dynamics fall into the light grey regions, where deterministic and stochastic processes interact. The length and nature of transient dynamics in
these regions depend both on the presence of deterministic features known to promote long transients and on properties of the noise. DLT, deterministic long
transient (i.e. a long transient that exists in the deterministic part of the dynamics); DST, deterministic short transient. The definition of a ‘long’ transient can
be found in §3, and for simplicity we refer to all other transients as ‘short’.
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drifting. However, as recently emphasized, even without any
parameter change, transient behaviour can lead to regime
shifts [8,9].

Earlier work has emphasized the possibility of sudden
changes in dynamics even in deterministic models with con-
stant parameters [8], but stochasticity is ubiquitous in real
ecosystems and will affect transients [10]. How has the
deterministic view limited our understanding of sudden
shifts in ecosystems, and how does this understanding
deepen when we account for stochasticity in our theoretical
constructs and models? This question, in the context of obser-
vations of changing ecological dynamics [1,2], fits in with the
recent recognition of the importance of focusing on dynamics
on ecological time scales. Stochasticity can play an important
role in determining dynamics on realistic time scales.

Real-world ecosystemsare subject to inevitable and constant
influences of stochastic disturbances that can have significant
effects on the population dynamics [8,17–31]. A particularly
notable example includes the population dynamics of Dunge-
ness crab, Cancer magister, along the West Coast of the USA
[32]. In this system, chaotic-like oscillations were analysed
using a method that combined data analysis and modelling
fitted from data to reveal that the oscillations were actually
long transient relaxations due to stochastic perturbations of a
stable equilibrium. In addition, random perturbations of cyclic
population dynamics can also result in a chaotic-like behaviour,
which was observed in the experimental dynamics of Tribolium
[33]. Although there have been many individual, well-studied
examples illustrating these points, a recognition of common
themes arising in a discussion of stochastic transients in ecologi-
cal systems both reveals new insights into ecological dynamics
and suggests important future research directions.

We start from the premise that, in natural systems, noise
and random disturbances are inevitable. We consider noise
that affects one or more state variables, perturbing them
with some magnitude, direction and frequency. Noise can
influence long transients in a variety of ways (figure 1).
Noise may certainly alter long transient dynamics that were
created by another mechanism and already present in the
ecological system. Importantly, stochasticity can also provide
an alternative mechanism for long transient dynamics, creat-
ing a long transient that would not otherwise occur.

There are two major types of stochasticity in ecological
systems: external perturbations due to random variations
in the environmental conditions and internal population
fluctuations. Environmental stochasticity can sometimes be
modelled as additive Gaussian white noise [34,35] or in many
cases as multiplicative noise proportional to the population
density, while internal stochasticity is effectively demographic
noise [24,36–38] that needs to be described as multiplicative
noisewith its strength depending on the fluctuating abundance
variable. Demographic noises are thus correlated, coloured
stochastic processes.

We begin this exploration of the role of noise in creating
and influencing long transientswith some simple examples, illus-
trating the important point that stochasticity can either extend or
reduce transients. Using the simple examples as a jumping-off
point, we then undertake a systematic exploration of transients
in nonlinear (density-dependent) ecological systems. Even these
simple examples bring out the important point that the definition
of a transient for a stochastic systemmay be less clear-cut than for
a deterministic one. In particular,we have to be clear about termi-
nology for the case where there is no long transient for the
deterministic skeleton of amodel, yet the addition of stochasticity
produces long-term dynamics that are different from the equili-
brium dynamics of the underlying deterministic model. As a
way tooutline the frameworkof the currentpaper,we summarize
the current state of synthesis in figure 1. The more systematic
approach suggested by this figure first requires attention to the
definition of transients and the kinds of stochasticitywe consider,
followed by different ways in which transients arise and the
effects of stochasticity in different cases.
2. Simple examples of transients
Before starting with a systematic exploration of the influence
of stochasticity on transients with an emphasis on long
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transients, simpler systems can provide background. Starting
with the simplest case of linear deterministic systems, and
then adding stochasticity, will demonstrate first the ecological
importance of the phenomena and provide insights into the
role of stochasticity.

Age-structured systems provide some of the simplest
examples of transient dynamics, which are present even in
linear systems. The dynamics of a population of salmon pro-
vide a straightforward illustration [39]. Individuals of most
salmon species typically reproduce once and then die. In
addition, in many populations, almost all individuals repro-
duce at the same age. We can denote the number of females
of age i at time t by ni(t) in a discrete time description.
We assume that the survival from age 1 to age 2 is given
by s1 and similarly by s2 for age 2 to age 3. Finally, denote the
fecundity of 2-year-olds by m2 with m2 > 1 and the fecundity
of 1- and 3-year-olds by ϵ1 and ϵ3, respectively, where ϵi≪ 1.
Thus the dynamics of the females would be given by the
following Leslie matrix model, if almost all individuals
reproduce at age 2:

n1(tþ 1)
n2(tþ 1)
n3(tþ 1)

0
@

1
A ¼

e1 m2 e3
s1 0 0
0 s2 0

0
@

1
A

n1(t)
n2(t)
n3(t)

0
@

1
A: (2:1)

It is easy to see that, if ϵ1 = ϵ3 = 0, this matrix would have two
dominant eigenvalues of the same magnitude. If instead these
fecundities are small and positive, then these two eigenvalues
would have nearly the same magnitude. In this case, if in a
given year almost all individuals were of age 2 and very few
were of age 1, then for many years the dominant age class
would alternate between 1 and 2. The addition of stochasticity
to the return time (i.e. varying the age of reproduction) could
greatly reduce the time the system would need to approach
stable age distribution (i.e. where the ratio of individuals in
different age classes would be constant from year to year).

A second example of a linear ecological transient is givenbya
simple predator–prey systemwith an equilibrium that is a stable
focus, but with complex eigenvalues with very small, negative
real parts. In this case, the deterministic system would have
oscillations whose magnitude would decay very slowly, while
the presence of environmental stochasticity could extend
the time to reach equilibrium [40] by interrupting the decay in
cycle magnitudes. Importantly, a similar effect is observed with
demographic, as opposed to environmental, stochasticity [41].

What is interesting about these two simple examples is
the contrasting effect of stochasticity. In the first one, the
Leslie matrix model, clearly stochasticity would shorten
the transient by accelerating the approach to the stable age
distribution. By contrast, for the predator–prey models, as
originally demonstrated [40,42] using Fourier analysis, a
stochastic system can continue to exhibit cyclic behaviour
indefinitely and thus stochasticity greatly extends the lifetime
of the transient, even making it effectively infinite.

If even linear systems can exhibit interesting and contrast-
ing effects of stochasticity on transients, nonlinear systems,
which can exhibit longer and more varied kinds of transients
[8], will provide a much richer set of phenomena that will be
key for ecological understanding. But, before presenting a
systematic exploration of long nonlinear transients, it is
important to highlight a particular class of stochastic transi-
ents which are prominent in ecology and more broadly.

Increasing attention is being paid to tipping points, and
early warning signs for tipping based on the concept of critical
slowing down have been well studied [43,44]. Critical slowing
down refers to the slower return to equilibrium and related
phenomena as a bifurcation is approached through parameter
change, and thus is related to issues of time scales and therefore
transients. Without stochasticity to perturb a system, there
would be no opportunity to observe critical slowing down,
and thus nopossibility of earlywarning signs. Thus, the concept
of critical slowing down has at its core ideas about both transi-
ents and stochasticity.

More generally, the concept of critical slowing down can
be difficult to apply in practice, as emphasized both from a
theoretical [16] and from an empirical [45] standpoint.
Though there have been notable and important examples of
success in detection of early warning signs in experiments
[46,47], much more work is needed to understand this
issue. An integration of concepts of stochasticity and transi-
ents is one way forward.

An emphasis of early warning sign work has been the
detection of parameter changes that push the system through
a saddle–node bifurcation. At such a bifurcation, the system’s
stable equilibrium is replaced by a ghost attractor which can
lead to a long transient [7]. A natural question is how stochas-
ticity affects the length (in time) of a transient resulting from a
ghost attractor.

These simple but illustrative examples provide an impor-
tant starting point for a discussion of transients in stochastic
systems. But transients arise in many other ways, and, given
the ubiquity of stochasticity, a more thorough and systematic
investigation is called for. Clearly, the first steps are an unam-
biguous definition of transients and a consideration of how
stochasticity enters into ecological systems.
3. Definitions of long transients
There are two different ways to define transients in math-
ematical models (including those with noise) as well as in
empirical systems. In this study, we are emphasizing long
transients owing to their crucial role in ecological appli-
cations including sudden regime shifts. Producing a strict,
precise definition of transients is challenging for reasons we
note below. We thus view our definition as one that is
useful rather than one that is without flaws.

Consider first the scenario where the system is function-
ing in a certain dynamical regime in which its major
characteristics remain unchanged for a long time (for stochas-
tic systems we operate with average characteristics). Here by
‘long time’we understand the situation where the duration of
the regime is much longer than its internal characteristic time
(e.g. the period of oscillations). The characteristic time of an
ecological system thus depends on the interactions among
species. Although not strictly true in an ecological context,
this notion of long typically corresponds to a regime duration
that is much longer than the generation time of species
involved. To the external observer exploring the system
based on time series, such a system would appear to be
stable. Now suppose that at some moment in time, but with-
out any directional changes to the properties governing the
dynamics, the system demonstrates a rapid transition (as
compared with the duration of the regime) to another
regime, which, in turn, conserves its new characteristics
unchanged for a long time again. In this case, we call the pre-
ceding dynamical regime a long transient. Note that the post-
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transitional regime can be transient as well and a new tran-
sition may occur later on. In fact, the above-mentioned
scenario of transient behaviour describes a shift between
regimes. It is also important to emphasize that according to
the considered scenario the transition between regimes
occurs without external forcing of the system, i.e. without
any secular change to model parameters in the course of
time. Obviously, however, the presence of the long transient
depends on the relationship between the initial conditions
and the asymptotic behaviour for the system, so a regime
shift due to long transients may be originally triggered by
some initial disturbance of either the parameters or the
state of the system.

The other long transient scenario involves the situation
where the system itself is in slow transition to a stable or
quasi-stable state. We assume that the pattern of dynamics
evolves very slowly with time as compared with the charac-
teristic time of the current system. For example, this can be
the case for damped oscillations with a very long relaxation
time where both the amplitude and the period change only
slightly. An important practical case is where the transition
of the system to the final attractor actually requires an arbitra-
rily large time [32]. This can happen in the presence of large
noise since there will always be perturbations kicking the
system away from the eventual asymptotic state. In this
case, the resultant pattern of dynamics will be an infinite
sequence of transient regimes. We note that calling this be-
haviour a transient is, perhaps, an arbitrary decision, as the
combination of stochasticity plus the deterministic skeleton
produces behaviour that persists indefinitely. We believe
that this is the more useful choice because it encompasses
the role that stochasticity plays in altering dynamics and
also note that this provides consistency in our definition.

Another important issue that arises is that any finite popu-
lation with demographic stochasticity will eventually go
extinct. Given this notion, any population is in a transient,
which may seem to make the definition too broad. For cases
like this, we would suggest that if the addition of stochasticity
changes a system from one where the deterministic analogue
produces a stable equilibrium and the stochastic version leads
to extinction on a time scale too long to be of ecological interest
then the transient nature is not the important focus. We view
this kind of example as not invalidating our approach, but
emphasizing the difficulty of producing a precise definition.

Earlier [9] a key property of long transients was described:
there is a scaling law describing the duration of transients
while a particular model parameter is varied. The length of a
transient regime (in stochastic systems the length should be
understood as themean length) can bemade as large as possible
when a certain bifurcation parameter (including the magnitude
of noise) approaches a critical value. This mathematically quan-
tifies the common-sense notion of ‘long’ transient (i.e. how long
is long). From the ecological point of view, the duration of a tran-
sient is always limited by natural constraints and we usually
assume the average length of transients to be larger than several
characteristic generation times [8]. The existence of a scaling law
allows us to classify transients into different types [9].
4. Types of noise
In this contribution, we focus primarily on extrinsic temporal
noise, that is, those sources of stochasticity that arise because
of relationships and quantities external to the modelled
system, but also consider demographic stochasticity in
some cases. One classic example is detrended environmental
variation. Coulson et al. [48] describe active and passive sto-
chasticity, where active noise interacts with deterministic
nonlinearity to produce dynamics that cannot result from
either factor independently [49], and passive noise influences
the transients among different deterministic states. The
impact of environmental noise that affects the modelled
system will depend on the modelled time frame of interest,
the influence of the particular factor, the time scales of vari-
ation in the noise relative to the time scales of response and
the characteristics of the noise itself.

There are many properties to consider, such as whether the
stochasticity is continuous, a single perturbation or seasonal,
whether it has larger or smaller magnitude and whether it has
frequencies in a similar range to the intrinsic dynamics. Under-
standing the structure of noise is critical for understanding its
potential impact. For example, continuous long-term trended
variation such as climate change, short-term uncorrelated vari-
ation and directed impacts through management might all be
expected to have different effects on the same system.

Themost familiar description of environmental stochasticity
is as random draws, independent in time, from a Guassian dis-
tribution with small variance. In this white noise process,
deviations from the mean at one time step are unrelated to the
size and magnitude of deviations at another time step. That is,
white noise is uncorrelated in time. Or put another way, all fre-
quency components of the signal have the same value. The fact
that the variance of noise is small has little bearing on its dyna-
mical impact. To take a trivial case, even small variations close to
a critical value in a bifurcation parameter can have a large
impact on the dynamics of a system. Environmental stochasti-
city of relatively small variance can also create oscillations
through resonance effects [40,50].

Most environmental signals such as temperature, rainfall
and river flow rates have large variance and are autocorrelated
in time even after detrending (e.g. [51,52]). The strength of this
autocorrelation depends on the signal itself (e.g. air tempera-
ture versus sea surface temperature), the geographical
location (e.g. continental air temperatures versus maritime air
temperatures) and the time period. In particular, climate
change is altering the autocorrelation of related environmental
signals [53,54]. The autocorrelation of deviations can be large,
and, in these cases, can cause clustering of extreme events
[55]. Therefore, when we model the impact of environmental
stochasticity as a white noise process, we may err in our esti-
mates of the probability of long transient behaviour, as these
signals can push a system away from (or towards) an attractor
by virtue of the autocorrelated variation.

Patterned noise, for example seasonal forcing [56,57],
can have large impacts, and episodic noise (flow-kick) can
move and maintain a system far from any attractor in the
deterministic scaffold [58].
5. Interactions between stochasticity and
transients

The effects of noise on transients are numerous and diverse
(figure 1). Noise can make the lifespan of the transient con-
siderably shorter and/or decrease the range of the initial
conditions that result in the long transient dynamics, or
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noise-induced transients; and (d ) large noise level, γ = 5, where the system is noise dominated and does not exhibit transients.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210257

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 J

ul
y 

20
21

 

remove the long transient altogether. Alternatively, noise can
make the transient’s lifespan longer. With noise, the emer-
gence of long transient dynamics becomes a probabilistic
event rather than a deterministic one. Noise can turn a
deterministic long transient into stable, persistent dynamics
[40,42]. Moreover, noise can create long transients via
mechanisms that do not exist in a deterministic case [59–61].

The outcome of the interaction between noise and a long
transient depends both on the properties of noise and on the
mechanism behind the (deterministic) long transient. For the
transient created by a crawl-by [8] (i.e. caused by the close-
ness of the system to a saddle point), it is readily seen that
uncorrelated noise makes the lifespan of the transient shorter
(but does not remove it unless the noise is large), as the
random movement of the system in the phase space pushes
it, on average, away from the equilibrium. Consequently,
the system does not necessarily follow the phase flow along
the stable manifold that otherwise would bring it into the
close vicinity of the saddle (cf. fig. 2 in [9]). Interestingly, in
the presence of noise, long transient dynamics can also
emerge, with a certain probability, for a set of initial con-
ditions that would not otherwise lead to a long transient, as
the random movement of the system in the phase space can
occasionally bring the system into close vicinity of the saddle.

The effect of correlated, directed noise can also make a
transient much longer, by keeping the system in the vicinity
of a saddle or ghost attractor. In particular, this is readily
seen in a flow-kick system [58,62], where the kicks (directed,
quasi-periodical, time-discrete random perturbations of the
state variable) control the movement of the system over the
phase space, with the capacity to keep it close to a specific
location in that space (e.g. a saddle or a ghost attractor).

Perhaps the simplest and best-known example where noise
can change the system properties qualitatively is the bistable
system.Wemention here that bistable systems are highly ecolo-
gically relevant; in particular, they are used as the paradigm of a
regime shift [63] resulting from slow parameter change. With-
out noise or even with extremely small noise, the system
remains in the vicinity of one of the steady states indefinitely
long (figure 2a,b). However, slightly larger uncorrelated noise
can push the system out of the attraction basin of the current
state, so that it rapidly converges to the alternative state: a
purely noise-induced regime shift occurs. The dependence of
the state variable (e.g. the population size) on time takes the
form of alternating periods with a quasi-stationary value
(figure 2c). The time spent by the system in the vicinity of the
given state increases as the noise intensity decreases and,
hence, can be very long. Therefore, small noise creates long tran-
sient dynamics. We mention here that there are empirical
examples of stochastic switching with long transients in eco-
logical systems [64–66] as well as in epidemiology [67].
Interestingly, noise of larger intensity can destroy the long
transient as the system diffuses across the whole span of the
phase space between the two states (figure 2d). Therefore, the
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dependence of the lifetime of the transient dynamics on the
strength of noise is non-monotonous. This non-monotonicity
is a generic property of population dynamics with stochasticity
and is seen in a variety of systems and models (e.g.
[68–70]). Below, we see a similar phenomenon emerging in
high-dimensional ecological systems.

Another example of a situation where noise can create
long transients is the dynamics of excitable systems [60].
A relevant ecological system that exhibits excitable dynamics
is a prey–predator system with Holling type III predation
[71]. In a certain parameter range (e.g. where the linear pred-
ator nullcline is to the left of the trough of the prey nullcline;
see figure 3a), the coexistence state is globally stable, but there
is a threshold separating different types of approach to it. For
initial conditions on one side of the threshold, the system
approaches the steady state directly. For initial conditions
on the other, excitable side of the threshold, the system
takes an excursion around state space to large abundance of
prey and then predator before returning to settle at the
steady state. In the deterministic case, once the system has
returned to the steady state, it stays there indefinitely. How-
ever, the excitability threshold runs close to the steady state,
so noise can push the system over the threshold, triggering
another large excursion around the phase plane before finally
returning to the vicinity of the coexistence state where it
can remain for a long time until noise pushes it out again
(figure 3b,e). Altogether, the state variable exhibits small-
amplitude, random oscillations around the steady-state
value intermittent with occasional large-amplitude cycles.
An increase in the noise level makes the large-amplitude
cycles more frequent; see figures 3c,f. The periods of small-
amplitude oscillations are long transients. This dynamic can
be viewed as a noise-induced mixed-mode oscillation [72,73].

Another highly relevant example of transient dynamics
facilitated by noise is noise-induced synchronization [61,74]:
population oscillations at different locations in space (e.g. in
different patches of a fragmented habitat) that would occur
asynchronously in the absence of noise can become synchro-
nized under the effect of noise. In ecology, this phenomenon
is often referred to as the Moran effect and it is believed to be
responsible for masting [75,76]. However, full synchroniza-
tion only happens when the controlling parameter (e.g. the
strength of the noise) exceeds a certain critical value. In the
subcritical parameter range, intermittent synchronization
occurs, so that the periods of synchronized and asynchro-
nized dynamics alternate [61,77]. In this case, the intervals
of synchronized dynamics can be regarded as transients.
When the controlling parameter approaches its critical
value, their lifetime becomes very long; the average transient
time follows the power law [77].

Noise can also turn a transient regime into permanent,
sustainable dynamics. As a simple example, let us consider
damped population oscillations. In models, such oscillations
are frequently observed around a stable focus. Their charac-
teristic life time is t � 1=jRel0j, where λ0 is the eigenvalue
with the largest negative real part. Correspondingly, for
jRel0j � 1, they last for very long and hence can be regarded
as long transient dynamics. The effect of noise can be to turn
these long-term damped oscillations into sustained oscil-
lations [40,42,78] through a mechanism known as stochastic
resonance [79]. Such quasi-cycles have been reported
in several empirical systems, including the dynamics of
populations of Dungeness crab [32] and bluefin tuna [80].

As we noted above, tipping points with simple saddle–
node bifurcations of equilibria are a core example of the inter-
action between stochasticity and transients. This interaction
becomes even more important with a deterministic system
with a chaotic attractor that experiences a crisis [11,12]
when its controlling parameter p passes the critical value pc.
Before the bifurcation point, i.e. for p < pc, there is a chaotic
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attractor so that chaos is self-sustained; at p = pc the chaotic
attractor turns into a chaotic saddle so that for p > pc chaotic
dynamics are transient. In the presence of chaos, for p > pc,
some, but not all, trajectories may leave the basin of attraction
at any given time. The chaotic dynamics that are sustained
for the trajectories that remain in the basin instead become
transient for the trajectories that leave. The classic three-
species food chain [81] is an important ecological example
that has this kind of bifurcation. The presence of noise further
complicates the situation and can lead to very long transients—
supertransients—even for those parameter values where the
deterministic system would have a stable chaotic attractor.
As previously reviewed [9], in the region where there is
deterministic stability, after some time the corresponding
stochastic system can cross the basin boundary and leave the
basin of attraction for the chaotic attractor and end up in the
basin of attraction for a different attractor. This situation is
thus a case where stochasticity leads to a transient. A rigorous
mathematical analysis of this case is possible [82,83].
one) at κr(0). In the deterministic case, as κ increases through κc(0), the
system collapses. Under noise of amplitude ε, the collapse can occur earlier
at κc(ε)—the phenomenon of noise-induced collapse. Likewise, as κ
decreases, noise can induce species recovery at κr(ε).

8:20210257
6. Systems with positive feedback
There is increasing recognition of the importance of positive
feedback in ecological systems [84], and, as figure 2 suggests,
stochastic transients are likely to be an important feature of
these systems. An important class of systems with positive
feedback is mutualistic networks [85–95], e.g. a bipartite net-
work of pollinator and plant species. As a way to illustrate
more details about stochastic transients, we describe the
analysis of a mutualistic network in more detail. Because
the number of species involved in the mutualistic interactions
can be large, the system is high dimensional. As is the
case in other contexts, much of the dynamical behaviour
even in high-dimensional systems can be understood as a
phenomenon in low dimensions or one dimension. The
distinct dynamical behaviour in complex mutualistic net-
works is a tipping-point transition, which is codimension 1.
In this case, the resulting lower dimensional dynamics are
essentially equivalent to the Allee effect.

Consider a complexmutualistic network subject to environ-
mental or demographic noise, or both. The setting thus
naturally has high dimensionality and stochasticity. Can transi-
ents arise and are they typical? The answer is affirmative. One
scenario is tipping-point dynamics [16,43,44,46,47,88,96–104].
In particular, in a mutualistic network, the deterministic behav-
iour is dominated by the dynamics about a tipping-point
transition [92,93]. For example, environmental deterioration
will result in massive species extinction, which can occur sud-
denly in mutualistic systems as a relevant parameter (e.g. the
species decay rate) increases through a critical point—a tipping
point. Under noise, even when the parameter value has not
reached the tipping point, a total system collapse can occur.
This is the phenomenon of noise-induced collapsewhich, dyna-
mically, is nothing but a transition from one steady state to
another: from a healthy, high-abundance state to an extinction
state. The collapse, of course, does not occur instantaneously:
it takes time for the transition to complete, and during this
time what we see is a transient. Likewise, when the system is
effectively extinct with near-zero species abundances, noise
can trigger a recovery of the species abundances. In this case,
the transition occurs in the opposite direction: from a low-
abundance steady state to a high-abundance one, which is the
recently discussed phenomenon of noise-induced recovery
[94] accomplished through a transient.

A dynamical picture of the phenomenon of noise-induced
collapse and recovery is illustrated in figure 4. In the determi-
nistic case, species collapse and recovery are the result of
saddle–node bifurcations. Let κ be the normalized species
decay rate (the bifurcation parameter). Environmental
deterioration is manifested as an increase in the value of κ.
As κ increases through a critical point, denoted as κc(0), a
reverse saddle–node bifurcation occurs, giving rise to a
tipping-point transition. Now consider the case where noise
of amplitude ε is present. The phenomenon of noise-induced
collapse corresponds to an earlier tipping-point transition,
now occurring at the critical point κc(ε), where κc(ε) < κc(0).
Likewise, without noise, species recovery occurs through a
forward saddle–node bifurcation at κr(0), but noise can
induce species recovery at a critical point κr(ε), where
κr(ε) > κr(0). For κr(0) < κ < κc(0), the deterministic system
has three equilibria: two stable equilibria and an unstable
equilibrium in between. The two stable equilibria are two
attractors with their own basins of attraction, while the stable
manifold of the unstable equilibrium is the basin boundary
[13,105]. Dynamically, the two transition phenomena are the
result of noise driving the system across the basin boundary.
Transients arise because of the competition between the
attractive dynamics in the neighbourhoods of the stable equili-
bria as controlled by the eigenvalues of the Jacobian matrix
with negative real part and stochastic hopping that brings the
system out of the attractor [106–108]. The transient dynamics
underlying noise-induced collapse and recovery are the result
of stochastic forcing that drives the system from one stable
steady state to another. For an ensemble of trajectories from
random initial conditions, the transient time required for the
transition is typically exponentially distributed [109,110] and
the average transient lifetime τ depends on the noise amplitude
ε. For stronger noise, the transition occurs more quickly, so we
expect τ to decrease with ε. A recent study of four real-world
mutualistic networks [111] demonstrated the phenomena of
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noise-induced collapse and recovery, and confirmed the
occurrence of transients.

It should be noted that the quantities κr(ε) and κc(ε) are
empirical. Even with noise of arbitrarily small amplitude,
sooner or later the system will switch to an alternative steady
state, if an infinite amount of observational time is allowed.
What is important is whether such a switch can occur on a rea-
listic time scale. Computationally, one can set up a simulation
time that is much longer (typically one order of magnitude
longer) than any time scale of the system, such as the average
time it takes for the system to settle into a steady state from a
random initial state. In the presence of noise of amplitude ε,
one can choose a large number of uniformly spaced values of
the decay rate κ and determine the tipping-point transition
point κc(ε) and the noise-induced recovery point κr(ε).

The common dynamical feature of transition from one
stable steady state to another between noise-induced collapse
and recovery notwithstanding, the specific nature of the noise
does play an important role. In particular, environmental
noise is independent of the dynamical variables of the
system and is thus simply additive, but demographic noise
depends on the species abundances. Before reaching the tip-
ping point where the system is in the high-abundance steady
state, demographic noise is weak and environmental noise is
the dominant stochastic force to induce a system collapse. By
contrast, if the system is in the low-abundance steady state,
demographic noise is strong and may lead to extinction.
The specific roles played by demographic and environmental
noises have implications for devising strategies to manage
high-dimensional ecological systems. For example, because
of the detrimental role of environmental noise in causing an
ecosystem to collapse to a low state, it is imperative to
devise methods to reduce the level of environmental noise
to keep the system in the healthy state. Conversely, when
the system is already close to extinction, a suitable amount
of environmental noise may help facilitate recovery [94].
7. Flow-kick dynamics
So far, we have focused on systems where the stochastic influ-
ence is due to continual noise. But in real ecological systems
there may instead be large disturbances at regular or irregular
intervals. These exogenous disturbances may be stochastic or,
as in some management settings, they may be tightly con-
trolled. In analyses of transients in a deterministic setting
[8,9], the focus is often on the response to a single pertur-
bation of a system away from its asymptotic state. These
ideas provide the background behind the approach we use
to deal with cases of repeated large disturbances.

Consider a population that—in the absence of noise—has
an attracting state. If the system is subject to recurring dis-
turbance by disease, weather extremes, management, etc. it
may never even get close to the asymptotic dynamics, but
instead will stabilize in a region of state space where the
short-term transient dynamics balance the disturbance.

A familiar example is given by fishery management: an
undisturbed fish stock might grow to carrying capacity but,
when subject to repeated harvesting, does not recover to full
carrying capacity between harvests. Indeed, a management
strategy typically maintains stock population significantly
below carrying capacity to ensure a high recruitment rate
and corresponding yield. Alternatively, in the context of an
invasive species, the disturbance pattern might represent a cul-
ling strategy. In this case, a management strategy of regular
removal may be designed to keep the invasive species below
a threshold way below carrying capacity.

One approach to exploring this phenomenon mathemat-
ically is to combine the growth dynamics of the ecosystem
with the disturbance dynamics to define a new system
whose asymptotic dynamics represent a balance between
growth and disturbance. For example, given a continuous
population model dx=dt ¼ f(x) that is repeatedly disturbed
by a discrete kick κ to the state variable, the associated
flow-kick system (a special case of impulsive differential
equations) is defined by the discrete system

xiþ1 ¼ xi(ti)þ ki, (7:1)

for additive disturbance, or

xiþ1 ¼ kixi(ti), (7:2)

for multiplicative disturbance. Here, x(t) is the solution to the
undisturbed system with initial condition x, and the ith kick
κi occurs at time τi after the previous kick κi−1. In the fishery
context, f (x) represents the recruitment function, and the dis-
turbance pattern κi, τi represents a harvesting strategy. This
framework is used in [62] to quantify resilience of ecosystems
to regular recurrent disturbances, and in [58] to study the
resilience of socially valued properties of natural systems to
recurrent disturbance.

This kind of flow-kick system illustrates the essential role
played by transient dynamics in the presence of disturbance
to yield different qualitative dynamics, in which kicks can
move the asymptotic state of the system in any arbitrary
way [58]. More formally, given any point x* in n-dimensional
state space, and any disturbance time τ, there is a kick κ so
that x* is an equilibrium of the flow-kick system (7.1) with
κi = κ and τi = τ for all i. In other words, using a perfectly
regular disturbance pattern of fixed kicks at fixed time inter-
vals, one can stabilize the disturbed system anywhere in state
space, regardless of the location of attracting sets or basins of
attraction of the underlying growth dynamics dx/dt = f (x).
This idea can be a very powerful conceptual tool in the
management of ecosystems [112].
8. Conclusion
An overarching challenge in understanding the dynamics of
ecological systems is to provide insights on ecologically rea-
listic time scales in the presence of both environmental
variability and stochasticity driven by small population
sizes. In this setting, the asymptotic behaviour of determinis-
tic systems is not relevant, and instead a focus on transient
dynamics is required. Examples of transient behaviour have
been observed in a variety of ecological systems as previously
summarized [8], but a more systematic approach is important
for understanding the role of stochasticity in ecological tran-
sients, especially in cases where detailed information about
the system may be limited. The importance of transients in
stochastic systems shows up in a variety of ecological con-
texts [10] and our contribution here emphasizes both the
importance of this phenomenon and the idea that a careful
mathematical treatment can find order in what may seem
like a series of idiosyncratic examples. This is an area
where, despite the advances we have covered here, much
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more work is needed. For example,the study of transients in
spatial systems is obviously important [113,114]. More gener-
ally, ecological systems are typically high dimensional and
the approach described here provides a guide for future
research on these, and related socio-ecological, complex
systems.

The work summarized here can also be thought of as an
extension to stochastic variation of the insights that come
from studying seasonal dynamics [57]. Analyses of seasonal
systems have emphasized ecological implications, such as
long-term variation of densities and species succession of
plankton communities of temperate lakes across the warm
season [115], where the random starting conditions play an
important role. The existence of transients with time scales
much larger than the time of a single season can guarantee
the coexistence of many plankton species within a short time
period—which would be impossible for a longer period in a
constant environment—since the ecosystem is ‘re-set’ each
year in a random fashion [116]. In other words, this type of eco-
logical transient seems to be a robust phenomenon; however,
mechanisms of observed long transients in many such systems
are still unclear owing to the high complexity of communities
containing dozens of interacting species, the existence of sev-
eral time scales and stochastic aspects. Further work based
on the ideas we have developed here will shed light on the
ecological implications of stochastic transients [10].

Here, we have emphasized using modelled stochastic
dynamics as a way to understand and predict real-world
dynamics. We might also consider the inverse problem, in
which we could think of stochasticity as obscuring the signal
of a process of interest. As a result, it is tempting to feel that eco-
logical insights would be improved if we could study
ecological systems in isolation from stochastic noise. However,
if we could observe ecological dynamics after long times in the
absence of noise, we would see one behaviour—the determi-
nistic asymptotic behaviour. In the simplest case, a system at
or near its equilibrium would simply sit at equilibrium. If our
observations began with the system out of equilibrium, we
could see a short transient or part of a long transient eventually
approaching the equilibrium. In the presence of noise, how-
ever, we have the opportunity to see all of these things
within a reasonable observation window, as perturbations
push the system from one domain to another [117].

One key example that we have highlighted in this work is
unexpected shifts between alternative stable states in ecologi-
cal systems [43]. Much attention has been focused on single
shifts, but many systems move more than once between
different states. Important quantities, such as the expected
interval between shifts and the proportion of time the
system is expected to be in each state, can be computed
with knowledge of each stable state’s basin of attraction
and the characteristics of the noise. In one dimension, knowl-
edge of the basin of attraction can be obtained from
the potential. In higher dimension, surfaces like the quasi-
potential [118] or the gradient of a Helmholtz–Hodge
decomposition [119] provide analogous information based,
respectively, on the most likely path or the average path
between basins of attraction. A system that mostly sits at or
very near one equilibrium gives us virtually no information
about these basins. We may not even know whether other
stable states exist in such a system. By contrast, a system
that experiences enough stochasticity could shift many
times [70].

In conclusion, here we argue that an investigation of noisy
nonlinear systems reveals a much richer view of the under-
lying deterministic structure of ecological systems than does
focusing exclusively on unperturbed systems. When we
observe a system at equilibrium, we can only infer that the
equilibrium exists, not what causes it. When we observe
how different parts of the system—such as the population
densities of different interacting species—change in response
to being in different states or configurations, we gain valuable
information about the nonlinearities and feedbacks that are
present. Extracting these insights, however, requires a good
understanding of how the types of stochasticity present
interact with these nonlinearities and feedbacks.

Finally, we emphasize that although we have focused on
ecological issues and models here, these themes arise in other
areas as well. In particular, interactions between stochasticity
and transients are clearly important in neuroscience
[120,121], as well as other areas of biology, engineering
[122], physics [123] and climate [124].
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