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Abstract
Thirty-five years ago, Sir Michael Berry and his collaborator Mondragon stud-
ied the behaviors of neutrino, a massless relativistic quantum particle, in a clas-
sically chaotic billiard—the neutrino billiard problem. To celebrate Sir Michael
Berry’s eightieth birthday, here we report results on the role of geometric sym-
metries of the billiard system in relativistic quantum scarring. In particular, we
investigate a Dirac billiard system with a four-fold rotational symmetry whose
classical dynamics are fully chaotic. The system is described by the massless
Dirac equation in the fundamental domain that consists of one fourth of the full
billiard, with proper boundary conditions on the symmetry lines to preserve the
physical properties under the symmetry operations. We show that the relativis-
tic quantum characteristics of spin induced phase play a fundamental role in the
quantum behaviors of the Dirac particle in the billiard. We find that the peaks
in the length spectra are due to the interference of states circling the funda-
mental domain orbits (FDOs) in opposite propagating directions, which can be
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constructive or destructive depending on the accumulated phases. In addition,
we derive the quantization conditions of the scarring states about the unstable
periodic orbits within the fundamental domain from the phase along the FDOs.
Our work is a vivid demonstration that relativistic quantum scarring, or more
generally quantum manifestations of classical chaos, can be fully understood
by analyzing the behaviors of the geometric phase—a powerful approach in
modern physics pioneered by Sir Michael Berry.

Keywords: Dirac billiards, scar, quantization, four-fold rotational symmetry

(Some figures may appear in colour only in the online journal)

1. Introduction

Sir Michael Berry is a pioneer and one of the most influential academics in the field of quantum
chaos. In classical systems, the hallmark of chaos is sensitive dependence on initial conditions
and a necessary condition for the sensitivity to arise is that the system be nonlinear. However,
in quantum systems, the fundamental Schrödinger or Dirac equations are linear. As a result,
in general a sensitive dependence on initial conditions cannot occur in quantum systems, so
‘real’ chaos cannot arise in quantum systems. Longer than three decades since, Sir Michael
Berry incisively stated [1]: ‘there is no quantum chaos, in the sense of exponential sensitivity
to initial conditions, but there are several novel quantum phenomena which reflect the pres-
ence of classical chaos. The study of these phenomena is quantum chaology’. Nevertheless,
the somewhat misleading term ‘quantum chaos’ has survived. It is now agreed among most
physicists that the field of quantum chaos means the study of the manifestations or fingerprints
of classical chaos in quantum systems [2, 3]. Traditional quantum chaos deals with nonrela-
tivistic quantum systems described by the Schrödinger equation, whose characteristic feature
is a quadratic dependence of the energy on the momentum [4–12]. The relatively more recent
field of relativistic quantum chaos [13–15] deals with relativistic quantum systems described
by the Dirac equations with a linear energy–momentum relation.

The ground-breaking work on relativistic quantum manifestations of classical chaos was
due to Sir Michael Berry and his collaborator Mondragon, in which the quantum behaviors of
a neutrino in a classically chaotic billiard were studied—the so-called neutrino billiard [13].
The system is described by the massless Dirac equation for spin-1/2 particles, subject to hard-
wall boundaries mathematically described by the infinite-mass confinement, where the time-
reversal symmetry is broken in the absence of any magnetic field. It was shown that for the
chaotic Africa neutrino billiard, a cubic conformal map of the unit circle, the eigenvalues are
locally distributed according to the statistics of the Gaussian unitary ensemble in the random
matrix theory. About ten years ago, a uniquely relativistic quantum class of scarring states in
such billiard was discovered, which are chiral scars about selective classical periodic orbits
with an odd number of reflections at the boundary [16]. For a chiral scar, due to the time
reversal symmetry breaking, the counterclockwise and the clockwise propagations along the
underlying classical periodic orbits are nonequivalent [16]. Later, it was found that the chiral
scars can be tuned by a vertical magnetic flux through the billiard domain [17]. Quite recently,
a framework unifying the traditional scars in nonrelativistic quantum systems [18, 19] and the
relativistic quantum scars was established through the solutions of the massive Dirac equation
in chaotic billiards with the particle mass being a tunable parameter [20].

Systematic research in relativistic quantum chaos was motivated by the tremendous devel-
opment of Dirac materials [21, 22] in the past two decades. The most commonly studied Dirac
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material is graphene [23–25], an atomic layer of the hexagonal lattice form of carbon. Starting
with graphene, a variety of two-dimensional (2D) solid state materials have been discovered, in
which the low energy excitations (quasiparticles) exhibit a linear dependence of the energy on
the momentum. Such a linear dispersion relation is characteristic of classical relativistic parti-
cles, e.g., a photon or a neutrino. As a result, it is necessary to use the Dirac equation to describe
the physics of the 2D Dirac materials. The field of relativistic quantum chaos seeks to uncover,
understand, and exploit fundamental phenomena arising from the interplay of chaos with rel-
ativistic quantum mechanics [14, 15, 26]. In terms of fundamental science, the field connects
the three revolutionary concepts of modern physics: relativity, quantum mechanics, and chaos
theory. From an applied perspective, the field has the potential to lead to new methodologies in
developing next generation’s nanoscale electronics and spintronics based on Dirac materials.

In the original neutrino-billiard work [13], the billiard domain possesses no geometric sym-
metry. Here, to honor Sir Michael Berry’s eightieth birthday, we extend the study to billiard
systems with a geometric symmetry and focus on the new physical phenomena arising from the
interplay among the symmetry, chaos, and relativistic quantum mechanics. To be concrete, we
investigate a two-dimensional (2D) relativistic massless Dirac billiard with a four-fold rota-
tional symmetry. The entire billiard domain can be divided into four fundamental domains,
and any periodic orbit can be decomposed into the fundamental domain orbits (FDOs), each
residing in one fundamental domain [27]. Unlike nonrelativistic quantum billiards described
by the Schrödinger equation in which the time reversal symmetry is preserved, there is time-
reversal symmetry breaking not only in the whole billiard domain but also in each symmetric
subdomain. By calculating and analyzing the peaks of the length spectra located at different
periodic orbits, we find that the breaking of the time reversal symmetry in the fundamental
symmetric domain affects the spectral statistics in a nontrivial way. Specifically, due to the
phase change induced by spin when the direction of particle motion is altered, e.g., associated
with a reflection at the boundary, the Dirac billiard system can exhibit more complicated inter-
ference patterns in the length spectra. We derive the quantization conditions for scarring states
about distinct FDOs and validate the conditions through the statistics of the scarring states in
the fundamental domain. Our work is a further proof that the principle of geometric phase, a
powerful approach in modern physics pioneered by Sir Michael Berry, can be used to under-
stand the intricate behaviors arising from the interplay among symmetry, chaos, and relativistic
quantum mechanics.

2. Symmetries, Dirac Hamiltonian, conformal mapping method, and basic
solution properties

2.1. Exploiting symmetries in quantum chaotic billiards

When a quantum system possesses certain discrete symmetries, the physical properties of the
fundamental domain may differ from those of the original system [28–31]. For example, if
a system has the time-reversal symmetry and a three-fold rotational symmetry, a subsystem
determined by the rotational symmetry group may violate the time-reversal symmetry and such
a violation has signatures in, e.g., the energy level-spacing statistics [28]. It has been well estab-
lished that the quantum spectral statistics of classically chaotic systems follow universal classes
as determined by the random-matrix theory [2, 3, 32–38]. In particular, if a system preserves
the time reversal symmetry but no other discrete symmetries, the energy level-spacing statistics
follow the class of Gaussian orthogonal ensembles (GOE). When the time reversal symmetry
is broken, the spectral statistics belong to the class of Gaussian unitary ensembles (GUE).
If the classical dynamics are integrable, the spectra follow the Poisson statistics [39]. The
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GOE statistics in systems with the time-reversal symmetry and the GUE statistics in situations
where this symmetry is broken were previously confirmed in microwave billiard experiments
[29–31, 40–43].

The classical dynamics of a billiard system with discrete symmetries can be conveniently
studied through its fundamental domains, where the whole system can be constructed through
symmetric operations such as duplication, reflection, rotation, and attachment along the sym-
metry lines between two adjacent fundamental domains. Accordingly, any original periodic
orbit can be decomposed into FDOs residing only in a fundamental domain [27]. For the cor-
responding quantum system, the Hamiltonian of the whole system can be written in a block
form determined by the discrete symmetry, where each block represents a symmetric sub-
space. The study of the quantum behaviors of the whole system can often be greatly facilitated
by focusing on the subsystem in a fundamental domain and applying proper connecting condi-
tions at the symmetry lines separating the fundamental domains. There is complete equivalence
between the properties under the symmetry operation for the subsystem and those of the origi-
nal system. Previously, a semiclassical analysis of quantum billiards with discrete symmetries
was developed, unraveling the role played by the FDOs in the spectral fluctuation properties
[44–47].

Quite recently, a Schrödinger billiard with a four-fold rotational symmetry was studied [48],
where it was observed that intriguing interference patterns can arise in the length spectra. In
comparison with the billiard system with a threefold symmetry [49], the four-fold symmetric
system has the advantage that the interference due to the FDOs can be maximally enhanced or
destroyed.

2.2. Relativistic quantum (Dirac) billiard with four-fold rotational symmetry

A relativistic massless spin-half particle confined in a finite 2D domain D by an infinite mass
boundary [13], as shown in figure 1, is described by the following Hamiltonian:

Ĥ = −ih̄vFσ̂ · ∇+ V(r)σz, (1)

where vF is the Fermi velocity, σ̂ = (σx , σy) and σz are Pauli matrices, the potential V(r) is zero
inside D and infinite outside. The corresponding free-space eigenvalue problem is

−i

(
0 ∂x − i∂y

∂x + i∂y 0

)(
ψ1(r)
ψ2(r)

)
= k

(
ψ1(r)
ψ2(r)

)
, (2)

where k is the wavenumber with the energy E = h̄vFk, and ψ(r) = [ψ1(r),ψ2(r)]T is the two-
component spinor wavefunction subject to the hard-wall type of boundary conditions. The
infinite mass potential outside the domain boundary causes the local current in the normal
direction of the boundary to vanish: j · n = 0, with the relativistic current j defined as

j(r) = vFψ
†σ̂ψ = 2vF[R(ψ∗

1ψ2), I(ψ∗
1ψ2)]. (3)

The corresponding boundary condition for the spinor wavefunction can be conveniently written
as [13]

ψ2(r0)
ψ1(r0)

∣∣∣∣
r0∈∂D

= i exp(iα), (4)

where ∂D is the boundary of domain D andα is the angle from the positive x axis to the normal
direction of the boundary in the counterclockwise direction, as shown in figure 1(a).
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Figure 1. Billiard system with the four-fold rotational symmetry. (a) A sketch of the two-
dimensional billiard domain D with boundary (r, θ) determined by equation (5), where
α is the angle from the positive x axis to the normal direction n at arc length s. θ and s
are counted from positive x axis. There is no mirror reflection symmetry in the system.
(b) The Poincare surface of section for the ray dynamics in the billiard, indicating fully
chaotic motion.

The domain of the billiard has a four-fold rotational symmetry, which can be mapped from
the unit disk in the complex plane by the following complex function [48]

w =
[
z
(

1 + 0.075z4 + 0.075ei π2 z8
)]

× R, (5)

with R defining the scale of the system and z belonging to the unit disk

z = ρ exp(iφ), φ ∈ [0, 2π] and ρ ∈ [0, 1], (6)

where ρ = 1 yields the boundary points r0 ∈ ∂D. The position vector r ∈ D can be expressed
in the Cartesian coordinates as [x, y] = [R(w(z)), I(w(z))], or in the polar coordinates as
(r, θ) with r = abs(w) and θ = arg(w). It is straightforward to verify r0(θ + π/2) = r0(θ).
The fundamental domain can be chosen as the region enclosed by the radial lines θ = θ0 and
θ = θ0 + π/2 for any θ0 with r running from 0 to r0. The classical ray dynamics of this bil-
liard is fully chaotic, as shown in figure 1(b), with the largest Lyapunov exponent being about
0.935 [48].

The four-fold rotationally symmetric Dirac billiard system is invariant under rotation R̂
of π/2:

R̂ = e−
i
h̄
π
2 Ĵz = e−

i
h̄
π
2 (L̂z+ŝz),

where L̂z = −ih̄ ∂
∂θ is the angular momentum operator about the z axis, ŝz = (h̄/2)σz is the spin

operator in the z direction, and Ĵz = L̂z + ŝz is the total angular momentum operator about the
z axis, which commutes with the Hamiltonian [Ĥ, R̂] = 0. The eigenwavefunctions of Ĥ can
then be chosen to be the eigenwavefunctions of R̂:

R̂ψ(m)(r, θ) = e
−i π2

(
m+ 1

2

)
ψ(m)(r, θ)

5
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for m = 0, 1, 2, 3 as the value only depends on mod(m, 4). Another useful property is

R̂ψ(m)(r, θ) = ψ′(m)(r, θ) = e−
i
2
π
2 σzψ(m)

(
r, θ − π

2

)
,

where ψ′(m)(r, θ) is the wavefunction obtained after rotating ψ(m)(r, θ) by R̂ and the
second equality is the property of the two-component spinor wavefunction which
can be verified from the general form of wavefunctions in the polar cordinate. We
thus have

ψ(m)
(

r, θ +
π

2

)
=

(
eim π

2 0
0 ei(m+1) π2

)
ψ(m)(r, θ). (7)

The Hamiltonian evaluated on a set of base functions with the above property (e.g.,
equation (16)) can be written in a diagonalized form:

H =

⎛⎜⎜⎝
H(0)

H(1)

H(2)

H(3)

⎞⎟⎟⎠, (8)

where each block H(m) (m = 0, 1, 2, 3) corresponds to a symmetric subspace and has its own
eigenenergy and eigenwavefunctions:

H(m)ψ(m)
j (r) = E(m)

j ψ(m)
j (r). (9)

The calculation is simplified as only each block H(m) needs to be diagonalized instead of the
full Hamiltonian matrix (equation (8)). Equivalently, the Hamiltonian (1) can be solved on a
fundamental domain, θ ∈ [θ0, θ0 + π/2), to obtain E(m)

j and ψ(m)
j (r) for each m, where r is in

this fundamental domain, with the boundary along the symmetry lines given by equation (7).
In our study, the eigenenergies and eigenwavefunctions are obtained from equation (9), while
the fundamental domain is only being used to derive the phase accumulation along the FDOs,
where θ0 is chosen accordingly in order to analyze different FDOs.

2.3. Solutions of Dirac equation in the four-fold chaotic billiard: conformal mapping method

To solve the eigenequation (2) with the boundary condition (4) in domain D in the w plane,
we employ the conformal mapping method [16, 20]. Briefly, the domain D generating clas-
sical chaos can be mapped to the unit disk z = ρeiφ with ρ ∈ [0, 1] and φ ∈ [0, 2π) through
the inverse mapping of equation (5), where the Dirac equation can be analytically solved. In
particular, in the complex z = (ρ,φ) plane, the solutions of the Dirac equation in the unit disk
subject to the boundary condition (4) can be written as

ψl,q(ρ,φ) = Ñl,q exp(ilφ)

(
Jl(μl,qρ)

i exp(iφ)Jl+1(μl,qρ)

)
, (10)

where l = . . . ,−1, 0, 1, . . . , q = 1, 2, 3, . . . , Jl(μl,qρ) is the Bessel function, μl,q is the eigen-
value and it is the qth zero of Jl(μl,q) − Jl+1(μl,q) (equation (104) in reference [13]), and

Ñl,q = 1

/√
2π

∫ 1

0
dρ ρ[J2

l (μl,qρ) + J2
l+1(μl,qρ)]

is the normalization constant.

6



J. Phys. A: Math. Theor. 55 (2022) 374003 Z-Y Li et al

In the original complex w plane, we apply the differential operator twice to equation (2)
to get

−∇2ψ(r) = k2ψ(r). (11)

Since the function w(z) is analytic, we replace the ∇2 by ∇2
z/|dw/dz|2 in equation (11), where

ψ(r) = e−i θcm
2 σzψ(z) ≈ ψ(z) with θcm = arg(dw/dz) being the angle induced by the rotation of

the spinor wavefunction due to the conformal mapping. With this change of variable, in the
unit disk of the complex z plane, equation (11) becomes

− 1
|dw/dz|2 ∇

2
zψ(z) = k2ψ(z). (12)

Due to the functional form of the conformal mapping (5), the operator − 1
|dw/dz|2 ∇

2
z has the

four-fold rotational symmetry too. The analytic solution set of the Dirac equation, {ψl,q}, forms
an orthonormal basis satisfying the boundary condition (4) on the unit disk |z| = ρ � 1. The
solution ψ(z) of equation (12) can then be expanded as

ψ(ρ,φ) =
∑

l,q

cl,qψl,q(ρ,φ). (13)

The task then becomes that of determining the coefficients cl,q, for if they are determined, the
eigenfunctions in the original billiard D can be obtained.

Substituting the expansion (13) back to equation (12) and exploiting the orthogonal relations
of the base vectors, we get

νl,q

k2
−
∑
l′,q′

Ml,q,l′,q′νl′,q′ = 0, (14)

where ν l,q = μl,qcl,q and the elements

Ml,q;l′,q′ =
Ñl′,q′Ñl,q

μl′ ,q′μl,q

∫ 2π

0
dφ exp(i(l′ − l)φ)

∫ 1

0
dρ ρT(ρ,φ)

× (Jl(μl,qρ)Jl′(μl′,q′ρ) + Jl+1(μl,qρ)Jl′+1(μl′,q′ρ))

define the matrix M with T(ρ,φ) = |dw/dz|2. Once the matrix elements {Ml,q;l′ ,q′ } are
obtained, we can solve the eigenproblem M· ν = λν with a set of eigenvalues and eigen-
vectors {λn,νn} (n = 1, 2, . . .). The expansion coefficients in equation (13) are then given by
cn

l,q = νn
l,q/μl,q and the solutions of the Dirac equation in the original chaotic domain are

ψn(ρ,φ) =
∑

l,q

νn
l,qψl,q/μl,q, (15)

with the eigenwavenumber given by kn = 1/
√
λn. The eigenvalues kn and the eigenwave-

functions ψn(r) constitute the solution set of the original Dirac billiard system as defined by
equation (2) and the boundary condition (4).

Two remarks are in order.
First, because of the relation ψ(r) = e−i θcm

2 σzψ(z), the solution ψ(z) satisfying the boundary
condition for the unit disk on the z plane will not lead to aψ(r) satisfying the boundary condition
for the billiard domain D. The resulting eigenwavenumber kn and eigenwavefunction ψ(r) are

7
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Figure 2. Phases of the spinor components belonging to different symmetry subspaces.
(a) and (b) Phase distribution in the domain space for the first and second component
of the 3rd eigenfunction of H(0). (c), (d), (e), (f), (g) and (h) Show the corresponding
phases of the two components of the 2nd, the 5th and the 6th eigenfunction of H(1), H(2)

and H(3), respectively.

not precisely those for equation (2) subject to the boundary condition (4) in the original billiard
domain D. However, this inaccuracy is significant but only for the first few eigenwavefunctions,
as these wavefunctions usually have large values on the boundary, leading to errors in the
eigenwavenumber as well. This inaccuracy diminishes for higher energy states, as the values
of the wavefunctions on the boundary are negligible [20].

Second, since the non-uniform billiard system (12) has the four-fold rotational symmetry,
the basis function ψl,q can also be grouped into four classes in terms of the values of l due to
distinct responses to R̂ of π/2. The solutions can then be grouped by summing l selectively,
depending on m, in the expansion equation (13):

ψ(m) =
∑
lm,q

clm ,qψlm ,q, (16)

where lm = 4p+ m, p = 0,±1,±2, . . . . For each value of m, the matrix M(m) can be
constructed in a similar way of (8), yielding the corresponding coefficients clm ,q and
the eigenvalues k(m)

n in the same symmetric subspace. The resulting eigenwavefunctions
ψ(m)

n belong to the same class of m. In actual calculations, the expansion (16) must be
truncated. We choose the first 40 000 eigensolutions in increasing order of μlm ,q as the
base to construct ψ(m)(ρ,φ), whose first 10 000 solutions are accurate enough for further
analysis [16].

2.4. Phase relation of the wavefunction after rotation of π/2

The phase of the spinor wavefunction plays an important role in scarring. Equation (7) stip-
ulates that the relations of the two wavefunction components at (r, θ + π/2) and (r, θ) are

ψ(m)
1

(
r, θ +

π

2

)
= exp

(
im

π

2

)
ψ(m)

1 (r, θ) (17)

8
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Figure 3. Level-spacing statistics. (a)–(d) Nearest-neighbor level spacing distributions
P(S) (solid staircase curves) for the symmetric subspaces H(0), H(1), H(2) and H(3), respec-
tively. In each case, the first 3900 eigenenergies are used for generating the statistics. (e)
P(S) (solid staircase curve) for the whole system with all the eigenenergies in (a)–(d). (f)
Spectral rigidity Δ3(L) (solid curve) for the whole system. The dotted, dash-dotted, and
dashed curves are the theoretical (random-matrix) results for Poisson, GOE and GUE
distributions, respectively. The circles in (e) and (f) are random matrix results with the
four GUE ensembles, each with 6000 eigenvalues.

and

ψ(m)
2

(
r, θ +

π

2

)
= exp

(
i(m + 1)

π

2

)
ψ(m)

2 (r, θ), (18)

respectively. Figure 2 shows the phase distributions of the two spinor components in space for
eigenwavefunctions from H(0) to H(3). Comparing the phases of the eigenwavefunction at an
arbitrary point (r, θ) and its image point after rotating π/2, (r, θ + π/2) through equations (17)
and (18), we see that the phases increase by the amounts mπ/2 and (m + 1)π/2 for the first and
second components, respectively. We thus have that ψ(m)

2 has the same phase relation asψ(m+1)
1 ,

with ψ(3+1)
1 = ψ(0)

1 . For example, for ψ(3)
2 and ψ(0)

1 , the phases at (r, θ) and (r, θ + π/2) are the
same, as shown in figures 2(a) and (h). For ψ(0)

2 and ψ(1)
1 , the amount of phase increment from

(r, θ) to (r, θ + π/2) is π/2, and the phase increase from (r, θ) to (r, θ + π) is π, as evidenced
from figures 2(b) and (c). The same phase relation holds for other panels in figure 2.

2.5. Energy level-spacing statistics

In the Dirac Hamiltonian (1), the time reversal symmetry is broken [13]. This symmetry
is broken in each block H(m). To compare the level-spacing statistics for different eigenen-
ergy sets, the system-dependent details need to be removed through an unfolding procedure
[15]. In particular, for a series of eigenenergies {E1, E2, . . . , En, En+1, . . .}, the step-wise num-
ber function N(E) is the total number of eigenenergies below E. Let 〈N(E)〉 be the smooth
part of N(E), then xn ≡ 〈N(En)〉 is the unfolded spectrum. The nearest-neighbor spacing is
Sn = xn+1 − xn and P(S) is the unfolded level-spacing statistics of the series of Sn, for which

9
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the normalization 〈Sn〉 =
∫

P(S)SdS = 1 holds regardless of the system details. In addition
to P(S), another important quantity characterizing the level-spacing statistics is the spectral
rigidity [2] defined as

Δ3(L) =

〈
min(a, b)

1
L

∫ L
2

− L
2

dx[N(x0 + x) − ax − b]2

〉
x0

.

Figures 3(a)–(d) show the distribution P(S) for the unfolded spectra of H(0) to H(3), where
the first 3900 eigenenergies for each symmetric subspace are used. Figures 3(e) and (f) show
P(S) and the spectral rigidity Δ3(L) for all the eigenenergies (the solid blue curves). For the
eigenfunctions from H(0) to H(3), the level spacing statistics all follow GUE, in accordance
with the breaking of the time-reversal symmetry for each symmetric subspace. However, the
spectral statistics for the whole system deviate from GUE. For example, while P(S) is close
to Poisson, the spectral rigidity Δ3(L) is close to Poisson only when L is small—it deviates
from Poisson for large L. This can be understood by noting that, since the four symmetric
subspaces are uncorrelated, the level spacing statistics for the whole system resemble that of a
combination of four independent eigenenergy series with each following GUE. To verify this,
we generate four GUE random matrices of order 6000, diagonalize them to yield four series of
eigenvalues, and then combine them to form a single eigenvalue series. After unfolding, P(S)
and Δ3(L) are plotted as circles in figures 3(e) and (f), respectively. It can be seen that they
agree with the data for the whole system well.

3. Main result: length spectra and its understanding based on FDOs

Length spectra analysis is a convenient tool to investigate the classical correspondence of
quantum systems [2] as they reveal the trajectory contributions and the phase interference
between conjugated orbits. The length spectra can be calculated, as follows. Once a series of
eigenenergies or eigenwavenumbersare obtained, the density of states can be calculated, whose
fluctuation component ρ(m)

osc(k) for each symmetric subspace m can be extracted by removing
the smooth component numerically.

In particular, the rotation operations R̂ of π/2 form a fourth order cyclic group
{R̂0, R̂1, R̂2, R̂3}, which is Abelian, whose nonequivalent and irreducible presentations are
all of dimension one. Following reference [44] for the symmetry-projected trace formula and
references [50–54] for analyzing the spinor wavefunction, we obtain the fluctuation component
of the density of states for the mth subspace as

ρ(m)
osc(E) =

1
2π h̄

∑
γ±

Tγ±

| det(Mγ± − 𝟙2)|1/2
Tr(K(m)

γ± ) exp

(
i
Sγ±

h̄
− iμγ±

π

2

)
, (19)

where the summation γ± is over all FDOs with both forward (+) and backward (−) orienta-
tions, Tγ± denotes the primitive period of γ±, and Mγ± is the monodromy matrix along the
orbit. The trace over the spin propagator [53] K(m)

γ± accounts for the effect of spin degree in the
propagation of the spinor wavefunctions, the quantity Sγ± = h̄klγ is the action and μγ± is the
Maslov index along the orbit. Note that only the spin propagator K(m)

γ± depends on the orienta-
tion of the orbit and on the subspace index m. All other quantities, i.e., Tγ± , Mγ± , Sγ± , and μγ±

are independent of both m and the orientation so that the notation ± can be omitted for clarity.

10
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Since E = h̄vFk, ρ(m)
osc can be expressed versus k

ρ(m)
osc(k) =

vF

2π

∑
γ±

Tγ

| det(Mγ − 𝟙2)|1/2
Tr(K(m)

γ± ) exp

(
i
Sγ

h̄
− iμγ

π

2

)

≡
∑
γ±

A(m)
γ± exp(iklγ). (20)

The length spectra ρ(m)
osc(l) can be calculated from ρ(m)

osc(k) through the Fourier transform [2]:

ρ(m)
osc(l) =

∫
ρ(m)

osc(k)e−ikl dk =
∑
γ±

A(m)
γ± δ(l − lγ). (21)

For a given subspace m and an orbit γ, A(m)
γ± is in general different for forward and backward

orbits, but the difference is typically just a phase factor:

A(m)
γ+

= A(m)
γ− eiΔΦ.

The plot of |ρ(m)
osc(l)|2 versus l exhibits peaks at lengths lγ with the height of the peak

proportional to

|A(m)
γ+

+ A(m)
γ− |

2 = |A(m)
γ− |

2|1 + eiΔΦ|2.

In addition, when the eigenvalues from different subspaces are mixed together, say, mi for
i = 1, . . . , r with r < 4, the height of the peak at lγ will be proportional to

|
r∑
i

(A(mi)
γ+

+ A(mi)
γ− )|2.

For a true FDO that is one fourth of a full orbit, for r = 4, the terms cancel each other and
the peaks annihilate. Therefore, it is critical to determine the relative phases of the coefficients
A(m)
γ± in order to understand the interfering behaviors of the length spectra peaks.

Numerically, there is a range for k, so the integration becomes

ρ(m)
osc(l) =

∫ kmax

0
ρ(m)

osc(k)e−ikl dk, (22)

where kmax ∼ 365.4/R is the maximum wavenumber in our calculation, and there are about
9000 energy levels in each symmetric subspace below kmax.

Figure 4(a) shows the length spectra for each symmetric subspace of the four-fold Dirac
billiard, where the peaks carrying the numbers from (1) to (8) correspond to the orbits within
a fundamental domain shown in figure 4(c). We denote T as the number of reflections at the
actual boundary of the whole billiard of the complete orbit, lγ as the length of the FDOs, and L
as the length of the complete orbit. The parameter values for these orbits are listed in table 1.
In figure 4(a), peaks (1)–(3) are associated with the FDOs that are one-fourth of the square-
type orbits and their lengths lγ , revealed in the spectra, are a quarter of the length L of the
full orbit. Peaks (4)–(6) are associated with the bouncing ball orbits whose length is half of
that of the full orbit, and the peak heights are identical for all the four subspaces. Because of
the four-fold rotational symmetry, the corresponding scarring states are of the cross-type. Peak
(7) corresponds to a bouncing ball orbit residing completely in a fundamental domain, which
is a full orbit (not an FDO as in the other cases). The corresponding scarring states consist

11
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Figure 4. Length spectra in four-fold Dirac billiard. (a) From top to bottom, the length
spectra for the symmetric subspaces H(0), H(1), H(2), H(3) and the spectrum for the whole
system. The corresponding wavenumber k is up to kmax ∼ 365.4/R and there are about
9000 energy levels in each symmetric subspace. (b) Length spectra for different mixtures
of two subspaces. From top to bottom: length spectra of the energy levels of H(1,2), H(0,3),
H(1,3), H(2,3), H(0,2), and H(0,1). (c) The FDOs as represented by the solid line segments.
The two dotted lines divide the whole billiard into four fundamental domains, each being
a quarter of the full billiard. The numbers label the orbits corresponding to the peaks in
(a). The FDOs (1)–(3) are one-fourth of a square. The FDOs (4)–(6) are one-half of a
bouncing ball orbits passing through the center, leading to cross-like scarring states as
a rotation by π/2 is also a solution of the system. Orbit (7) is a full bouncing ball orbit
that resides completely inside a fundamental domain. The FDO (8) is one-fourth of a
parallelogram orbit.

Table 1. Parameters of the orbits within a fundamental domain.

Orbits (1) (2) (3) (4) (5) (6) (7) (8)

T 4 4 4 2 2 2 2 4
L(R) 5.5 5.815 6.405 3.895 4.113 4.529 2.528 5.269
lγ(L) 1/4 1/4 1/4 1/2 1/2 1/2 1 1/2
lγ(R) 1.375 1.454 1.601 1.948 2.057 2.265 2.528 2.635

of four such orbits due to the four-fold rotational symmetry. In figure 4(c), the position of a
parallelogram’s FDO is also marked by (8), which is missing in the length spectra because of
the destructive interference phase between motions in opposite directions.

When the energy levels from all four symmetric subspaces are combined, phase interference
from the FDOs can arise. In this case, all the peaks except (7) disappear, due to the destructive
interference among the FDOs, as shown by the bottom trace in figure 4(a). Orbit (7) is unique
because, while it resides in the fundamental domain, it is a complete orbit of the original billiard
without intersecting the symmetry lines defining the fundamental domains. As a result, the

12
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contributions from different symmetric subspaces are summed and squared, leading to a peak
with height 16 times of that from a single subspace.

When the energy levels from two symmetric subspaces are combined, the interference
becomes more complicated, and so is the resulting length spectra, as shown in figure 4(b).
When mixing H(0) and H(1), or H(2) with H(3), peaks (1)–(3) are greatly enhanced but peaks
(4)–(6) are totally annihilated. On the contrary, for the combinations of H(1) and H(3), or
H(0) with H(2), peaks (1)–(3) are annihilated and peaks (4)–(6) are enhanced. For the mix-
ture of H(1) and H(2), or H(0) with H(3), peaks (1)–(6) disappear. Peak (7) survives in all cases,
due to its correspondence with the bouncing ball orbit within a fundamental domain.

To explain the interference patterns observed in the length spectra, we analyze the phase
accumulations along the FDOs and examine the quantization conditions of the scarring states
along the FDOs. That will also explain the statistics of the scarring wavefunctions on the
classical orbits.

3.1. Square-type orbits (1)–(3)

For the scarring spinor wavefunction ψ(m)
j on a particular orbit in a particular symmetric sub-

space m, the phase accumulation around a complete cycle and thus the quantization condition
can be derived, as follows. First consider the square type orbits (1)–(3) shown in figure 4(c),
where the FDO contains one-fourth of the complete square orbit, with the two ends marked by
A and B with w(B) = iw(A). According to equation (7), the phase relation at the two straight
symmetric lines passing through A and B points is

ψ(m)
j

∣∣∣
B
=

(
eim π

2 0
0 ei(m+1) π2

)
ψ(m)

j

∣∣∣
A
, (23)

or

ψ(m)
j

∣∣∣
A
=

(
e−im π

2 0
0 e−i(m+1) π2

)
ψ(m)

j

∣∣∣
B
. (24)

In the semiclassical regime, the accumulated phase for a spinor particle traveling from A to
B along the FDO is contributed by two parts. The first part is from the change of the motion
direction due to the reflection at the boundary, as shown in figure 5(a), which is

Ms(Δθ) =

⎛⎜⎜⎝exp

(
−i

Δθ

2

)
0

0 exp

(
i
Δθ

2

)
⎞⎟⎟⎠, (25)

where Δθ = π/2 is the angle change from the motion direction before the reflection to that
after the reflection, measured counterclockwise, as illustrated in figure 5(a). The second part
is from the propagation of the spinor wave along the FDO, which is given by

Mlγ ,μ = exp
[
i
(

klγ − μ
π

2

)]
, (26)

where k is the wavenumber, lγ is the length of the FDO from A to B, and μ is the Maslov
index. Since for the massless Dirac billiard (1), the reflection coefficient R at the infinite mass
boundary equals one [13, 17, 20] (in contrast to R = −1 for a Schrödinger billiard with the
Dirichlet boundary conditions), the reflection coefficient has no contribution to the Maslov
index. Nevertheless, due to the conjugate points generated by the curved boundary along the

13
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Figure 5. Angle change θ due to the reflection at the boundary for square-type orbits
(1)–(3). The angle change for (a) the counterclockwise direction of the FDO of the
square orbit within a fundamental domain as indicated by the dotted lines, (b) the clock-
wise direction, (c) the FDO of the bouncing ball orbit within a fundamental domain,
(d) the counterclockwise direction of the FDO of the parallelogram orbit within a funda-
mental domain, and (e) the clockwise direction of the orbit in (d). The angle is counted
counterclockwise to ensure that the reflection coefficient R is one [13, 17, 20].

periodic orbit, each reflection contributes one to the Maslov index. We thus have μ = N, where
N is the number of reflections. For this FDO of the square-type orbit, we have N = 1.

For a particle traveling from A to B along the FDO and then teleporting back to A via the
phase relation equation (24), we have

ψ̃(m)
j

∣∣∣
A
=

(
e−im π

2 0
0 e−i(m+1) π2

)
Ms

(π
2

)
Mlγ ,μψ

(m)
j

∣∣∣
A

≡ K(m)
γ+

Mlγ ,μψ
(m)
j

∣∣∣
A
≡ eiΦ(m)

+ ψ(m)
j

∣∣∣
A
,

where the spinor propagator

K(m)
γ+

=

(
e−im π

2 0
0 e−i(m+1) π2

)
Ms

(π
2

)
= e−im π

2

(
e−i π4 0

0 e−i π4

)
= e−im π

2 −i π4 𝟙2

is reduced from an SU(2)-matrix to a U(1)-phase [52], leading to

Tr(K(m)
γ+

) = 2e−im π
2 −i π4 .
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Note that the phase factor e−im π
2 is due both to the four-fold rotational symmetry and the orbital

angular momentum: it is not exactly related with spin but is included here to simplify the
analysis. We thus have

Φ(m)
+ = klγ − μ

π

2
− m

π

2
− π

4
= klγ − m

π

2
− 3π

4
, (27)

which is the same for both components of the spinor wavefunction. For a scarring state to form
about this FDO with counterclockwise orientation, Φ(m)

+ needs to be an integer multiple of
2π: Φ(m)

+ = 2nπ, or

k+n =

(
n +

m
4
+

3
8

)
× 2π

lγ
. (28)

If the particle travels along the FDO reversely from B to A, the phase change of the motion
direction due to the reflection at the boundary is Δθ = 3π/2, as indicated in figure 5(b). Note
that, when counting the angles, the direction needs to be fixed, e.g., counterclockwise, so that
further complexities of the reflection coefficients can be avoided [13, 17]. The orbit connects
back to B via the phase relation equation (23) as

ψ̃(m)
j

∣∣∣
B
=

(
eim π

2 0
0 ei(m+1) π2

)
Ms

(
3π
2

)
Mlγ ,μψ

(m)
j

∣∣∣∣
B

≡Kγ−Mlγ ,μψ
(m)
j

∣∣∣
B

≡exp(iΦ(m)
− )ψ(m)

j

∣∣∣
B
,

where

Kγ− =

(
eim π

2 0
0 ei(m+1) π2

)
Ms

(
3π
2

)
= eim π

2

(
e−i 3π

4 0

0 ei 5π
4

)

= eim π
2 −i 3π

4 𝟙2,

and

Φ(m)
− = klγ − μ

π

2
+ m

π

2
− 3π

4
= klγ + m

π

2
− 5π

4
. (29)

Note that Mlγ ,μ is the same for both forward and backward directions. Correspondingly, the

quantization condition for a scarring state about this FDO with the same direction is Φ(m)
− =

2nπ, or

k−n =

(
n − m

4
+

5
8

)
× 2π

lγ
. (30)

Denoting A(m)
γ± as the amplitude of the contribution to the length spectra from the states along

the FDO A − B − A (denoted by ‘+’) and its reversed counterpart B − A − B (denoted by ‘−’)
of orbital length lγ , we have [2]

A(m)
γ+

= eiΔΦA(m)
γ− , (31)
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where ΔΦ = Φ(m)
+ − Φ(m)

− = π
2 − mπ. The height of the peak in the length spectrum at

length lγ is

|ρosc(lγ)|2 = |1 + eiΔΦ|2|A(m)
γ− |

2 = 2|A(m)
γ− |

2, (32)

regardless of the values of m.
For a combination of different subspaces, e.g., m1 and m2, assume

A(m)
γ± = eiΦ(m)

± A0(lγ), (33)

and

|ρ(m1,m2)
osc (lγ)|2 ∼ |A(m1)

γ+
+ A(m1)

γ− + A(m2)
γ+

+ A(m2)
γ− |2

∼ |eiΦ
(m1)
+ + eiΦ

(m1)
− + eiΦ

(m2)
+ + eiΦ

(m2)
− |2|A0(lγ)|2. (34)

Substituting equations (27) and (29), and searching for all combinations of (m1, m2), we find
that, for (m1, m2) = (0, 1) and (2, 3), the following holds:

|ρ(m1,m2)
osc (lγ)|2 ∼ 8|A0(lγ)|2 ∼ 4|ρ(m)

osc(lγ)|2. (35)

For all other combinations, we have

|ρ(m1,m2)
osc (lγ)|2 ∼ 0. (36)

Equations (35) and (36) are consistent with the length spectra peaks for FDOs (1)–(3) in
figure 4(b). In particular, the peaks in the length spectra for the square FDOs vanish when
the symmetric subspaces (0, 2) or (0, 3) are combined. Heuristically, we check the phase
interference in their mixtures

|ρ(0,2)
osc (l)|2 ∼ |A(0)

γ+
+ A(0)

γ− + A(2)
γ+

+ A(2)
γ−|

2

∼ |ei π2 + 1 + e−i π2 + eiπ|2|A(0)
γ−|

2 = 0. (37)

|ρ(0,3)
osc (l)|2 ∼ |A(0)

γ+
+ A(0)

γ− + A(3)
γ+

+ A(3)
γ−|

2

∼ |ei π2 + 1 + eiπ + e−i π2 |2|A(0)
γ−|

2 = 0. (38)

Similarly, |ρ(1,2)
osc (l)|2 and |ρ(1,3)

osc (l)|2 are also found to be zero.

3.2. Bouncing ball orbits (4)–(6)

For the bouncing ball orbits (4)–(6) that pass through the center of the billiard, the corre-
sponding scarring states have the structure of a cross, because the solution is invariant under
a π/2 rotation. To analyze the phase of such an orbit, we modify the orbit to generate an
infinitely narrow rectangle, as indicated in figure 5(b), where the two boundary points A and B
are infinitesimally close to each other but on the two sides of the center. The two points A and
B are related by a rotation of Δθ = π, leading to the phase relation:

ψ(m)
j

∣∣∣
A
=

(
e−imπ 0

0 e−i(m+1)π

)
ψ(m)

j

∣∣∣
B
. (39)
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Thus after a rotation from A to B, one spinor component changes its sign.
Consider a spinor particle that travels from A to B following the FDOs and teleports back

to A because of the phase relation equation (39). We have

ψ̃(m)
j

∣∣∣
A
=

(
e−imπ 0

0 e−i(m+1)π

)
Ms(π)Mlγ ,μψ

(m)
j

∣∣∣
A
= exp(iΦ(m)

+ )ψ(m)
j

∣∣∣
A
, (40)

where Ms and Mlγ ,μ are given by equations (25) and (26), respectively. Therefore

Φ(m)
+ = klγ − mπ − π. (41)

The resulting quantization condition for the scarring states around this FDO is

k+n =

(
n +

m
2
+

1
2

)
× 2π

lγ
. (42)

Similarly, through

ψ̃(m)
j

∣∣∣
B
= exp(iΦ(m)

− )ψ(m)
j

∣∣∣
B
,

we have

Φ(m)
− = klγ + mπ − π (43)

for the reversed direction. The corresponding quantization condition is

k−n =

(
n − m

2
+

1
2

)
× 2π

lγ
. (44)

For the peaks in the length spectra for a subspace m, we have ΔΦ = −2mπ = 0 mod 2π,
because the FDOs are indistinguishable between the forward and backward directions. The
height of the peak in the length spectrum at length lγ is

|ρosc(lγ)|2 = |1 + eiΔΦ|2|A(m)
γ− |

2 = 4|A(m)
γ− |

2, (45)

which is independent to m. That is, the heights of the length spectra peaks for the orbits (1)–(3)
should be the same for different m subspaces.

When the two symmetric subspaces m1 and m2 are combined, equation (34) indicates that
a search over all possible combinations yields

|ρ(m1,m2)
osc (lγ)|2 ∼ 16|A0(lγ)|2 ∼ 4|ρ(m)

osc(lγ)|2

for (m1, m2) = (0, 2) and (1, 3). For all other combinations, we have

|ρ(m1,m2)
osc (lγ)|2 ∼ 0.

Again, this is consistent with the length spectra peaks for the FDOs (4)–(6) in figure 4(b).
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3.3. The bouncing ball orbit (7) within a fundamental domain

Orbit (7) is a bouncing ball orbit residing completely inside a fundamental domain without
intersecting any symmetry line, as shown in figure 4(c). The four-fold rotational symmetry
does not impose any constraint on this orbit, so the quantization condition is the same as in
a conventional billiard, i.e., the total phase accumulation after a complete cycle around the
orbit is an integer multiple of 2π. As a result, the peak at length lγ of this orbit appears in any
symmetric subspace as well as in any combination of a pair of symmetric subspaces, with the
height four times of that of a single symmetric subspace. The peak for this orbit also appears
in the length spectra when all the symmetric subspaces are combined, with the height 16 times
of that for a single symmetric subspace.

3.4. The missing parallelogram orbit (8)

The parallelogram orbit has half length in the fundamental domain, but it does not emerge
at the position (8) in the length spectra in figure 4. To understand this behavior, we focus
on the traveling path of the FDO A − A′ − B′ − B − A in the fundamental domain and its
reversed counterpart B − B′ − A′ − A − B, as shown in figures 5(d) and (e), respectively. For
the forward orbit, the requirement that the wavefunction must be a single value function
yields

ψ̃(m)
j

∣∣∣
A
=

(
e−im π

2 0
0 e−i(m+1) π2

)
× Ms(ΔθBB′)Mlγ ,μ(lBB′ )

×
(

e−im π
2 0

0 e−i(m+1) π2

)
× Ms(ΔθA′A)Mlγ ,μ(lA′A)ψ(m)

j

∣∣∣
A

= exp(iΦ(m)
+ )ψ(m)

j

∣∣∣
A
,

where lA′A and lBB′ are the length of the orbit from A to A′ and from B′ to B, respectively,
ΔθAA′ = ΔθB′B = π/2 denote the angle change at the two reflection points, and

Φ(m)
+ = klγ − mπ − 3π

2
(46)

modulo 2π, where lγ = lAA′ + lB′B is the total length of the FDO.
For the backward path B − B′ − A′ − A − B, we have

ψ̃(m)
j

∣∣∣
B
=

(
eim π

2 0
0 ei(m+1) π2

)
× Ms(ΔθAA′)Mlγ ,μ(lAA′)

×
(

eim π
2 0

0 ei(m+1) π2

)
× Ms(ΔθB′B)Mlγ ,μ(lB′B)ψ(m)

j

∣∣∣
B

= exp(iΦ(m)
− )ψ(m)

j

∣∣∣
B
,

where ΔθB′B = ΔθAA′ = 3π/2, and

Φ(m)
− = klγ + mπ − π

2
(47)
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Figure 6. Examples of square scars and ηn statistics for the scarring wavefunctions. (a)
The intensity distribution of the 2034th wavefunction in the subspace H(3), (b) the corre-
sponding local current j(r) (arrows, clockwise) and 〈σz〉 (color scale). (c) The intensity
distribution of the 2535th wavefunction in H(3), (d) its local current j(r) (arrows, counter-
clockwise) and 〈σz〉 (color scale). (e)–(h) The ηn statistics for the scarring wavefunctions
around the square orbit in the subspaces H(m) for m = 0, 1, 2 and 3, respectively. The
left and right triangles indicate the states with counterclockwise and clockwise currents,
respectively. The horizontal solid lines indicate the predicted values.

modulo 2π. The phase difference between the forward and backward FDO is ΔΦ = Φ(m)
+ −

Φ(m)
− = π mod 2π, regardless of the m values. Its contribution to the length spectra is

ρosc(lγ)2 = |1 + eiΔΦ|2|A(m)
γ− |

2 = 0, (48)

explaining the disappearance of the length spectra peaks for the parallelogram FDO. Since the
peak is absent in each subspace, it does not appear in any combination of different subspaces.

4. Quantization and statistics of scarring states in a symmetric subspace

Since the bouncing ball orbits (4)–(7) are identical for the forward and backward directions
and the scarring states around the FDO (8) are too few to generate reliable statistics, we focus
on the square type of orbits, e.g., the FDO (2). Figures 6(a)–(d) plot the spinor wavefunction
intensity |ψ(m)

j |2 = |ψ(m)
j,1 |2 + |ψ(m)

j,2 |2 for m = 3 and j = 2034 and 2535, and their corresponding
local clockwise or counterclockwise currents as determined by equation (3). Note that, since
ĵ = vFσ̂ and vF is a constant, the local 2D current j(r) also reveals the expectation value of σ̂.
In addition, we have 〈σz〉 = ψ†σzψ = |ψ1|2 − |ψ2|2, which complements the intensity. We plot
〈σz〉 in figures 6(a) and (d) on different color scales. It can be seen that 〈σz〉 is prominent along
the square periodic orbits and oscillates on the wavelength scale because the two components
are related by equation (2).

According to equation (27), for a scarring state to form about this FDO with the forward
direction (counterclockwise orientation), the phaseΦ(m)

+ needs to be an integer multiple of 2π to
ensure that the wavefunctions are single valued, i.e., Φ(m)

+ = 2nπ, which leads to equation (28)
for k+n . If the particle travels along the FDO reversely from B to A, equation (29) stipulates
that the quantization condition for a scarring state around this FDO with the same direction is
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Φ(m)
− = 2nπ, leading to equation (30) for k−n . Consequently, for a given subspace m, two sets of

the scarring states with opposite directions arise. Neglecting the integer part (modulo of 2π),
the phase difference between the counterclockwise and clockwise flow states is (m/2 − 1/4)
in units of 2π, so for m = 0 and 2, it is −1/4, and 3/4 mod 1 (2π), while for m = 1 and 3,
the difference is 1/4 (2π). This can be characterised by the semiclassical η statistics [16].
Specifically, after a set of scars with wavenumbers kn being identified, a particular one can be
chosen with its wave number set as the reference point k0. The η quantity can be calculated as

η =
|kn − k0|

Δk
−
[
|kn − k0|

Δk

]
, (49)

where Δk = 2π/lγ , lγ is the length of the FDOs, and [x] returns the maximum integer equal to
or less than x. We have identified about 45 scarring states in each subspace. In figures 6(e)–(h),
the reference point k0 is chosen to be associated with a scarring state with the clockwise orien-
tation (right triangles). Then all the scarring states with the same orientation takes on η values
about either zero or one, while those with opposite orientations (left triangles) are about 3/4
for m = 0 and 2, and 1/4 for m = 1 and 3. The numerically observed η statistics (data points)
agree well with the results from our phase analysis (horizontal lines).

5. Discussion

The main accomplishments of this work are as follows. We have investigated the length spec-
tra and the quantum scarring states in a 2D massless chaotic Dirac billiard with the four-fold
rotational symmetry. Since the Hamiltonian commutes with the rotation operator of π/2, the
Hamiltonian matrix can be reorganized in a blocked form with four subspaces H(m) (m = 0, 1, 2,
and 3), where the relativistic quantum properties of the spinor wavefunction in each subspace
are analyzed using a billiard consisting of only one fundamental domain. In this ‘effective’
billiard system, in addition to the infinite-mass boundary condition for the original billiard, a
connection condition on the symmetry lines imposed by requiring the same physical properties
under the symmetry operation is necessary. For each subspace, we have analyzed the accu-
mulated spin-induced phases along the FDOs and found that, due to the interference along a
forward (counterclockwise) direction of the FDO and that for the backward direction, the peaks
of the length spectra can be either enhanced or destroyed. For various combined subspaces, the
interference can be more complicated.

It has been known previously that, if there is time-reversal symmetry breaking in the system,
e.g., in a Dirac billiard with infinite-mass confinement or in a Schrödinger billiard subject to a
singular Aharonov–Bohm magnetic flux, a non-2π phase can exist between the wavefunctions
in the two opposite directions, which may lead to destructive interference in their contribution
to the peaks in the length spectra, as observed in Dirac billiards [17, 20] and in nonrelativistic
quantum billiards with a geometric symmetry [48]. Our present work has elucidated the role
played by the FDOs in the sophisticated relativistic quantum interference process. In particular,
comparing with the results in nonrelativistic quantum billiards with the four-fold symmetry
[48], the accumulated phase in the Dirac billiard with the same symmetry is quite distinct,
leading to disparate interference patterns and drastically distinctive length spectral peaks. For
example, in the length spectra of a single subspace, FDO (8) has the most prominent peak
in the nonrelativistic case, but it disappears completely in the relativistic Dirac billiard case
(figure 4(a)). Characteristically distinctive behavior also exists for other orbits. In addition,
our phase-based theoretical analysis yields results on the length spectra that agree well with
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the numerical data. We have also demonstrated that, from the exact formula of the accumu-
lated phase along the FDOs, the quantization conditions underlying the scarring states in each
symmetric subspace can be derived. These conditions allow us to determine the relative phase
between the forward and backward states, as characterized by the local current flow, which
agrees with the statistics for the scarring states within each symmetry class. Taken together,
our work is another concrete proof that the powerful principle of geometric phase analysis pio-
neered by Sir Michael Berry can be exploited to understand intriguing physical phenomena
arising from the interplay among chaos, symmetry, and relativistic quantum mechanics.
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