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Abstract—Variational quantum algorithms (VQAs) are the
leading algorithm for achieving quantum advantage using near-
term quantum computers. VQAs use parameterized quantum
circuits for inference, and the variational parameters in quantum
circuits can be trained using a classical optimizer. The parameters
are trained to guide how the quantum bits evolve and make the
final measurements closely match the ground truth. However, this
way of learning from raw data makes it difficult to capture the
underlying dynamic information in the data, especially for time
series data. To address this limitation, we proposed continuous
variational quantum algorithms (CVQAs) for time series in this
paper. CVQAs use quantum variational circuits to parameterize
the dynamics of time series, thus they can learn the dynamic
information behind the data. After the dynamics are trained,
the prediction results will be obtained by a differential equation
solver working on the dynamics. Since we aim to model the
dynamics of data instead of the data itself, the quantum circuit
in our approach will need fewer qubits and variational gates.
To evaluate our proposed approach, we compare our model with
baseline models on several weather time series. Experimental
results prove that our approach has better or equivalent results
but with fewer qubits and variational gates compared to baseline
models.

Index Terms—Quantum machine learning, Variational quan-
tum circuit, Dynamics, Time series

I. INTRODUCTION

Quantum machine learning (QML) has been attracting at-
tention recently because they are able to achieve a significantly
better effective dimension than comparable classical ones [1],
[2]. QMLs utilize the laws of quantum computing (QC),
such as superposition and entanglement, to perform high-
dimensional computations. This leads to quantum advantages
in terms of better simulations, faster computations, or network
performance.

However, existing available quantum hardware implements
only a few hundred physical bits. Even worse, the information
carried by the quantum bits is easy to be swamped by noise if
the gates have long sequences. Due to these limitations, many
of the expected algorithms, such as Shor’s [4], remain out
of reach. As a result, people focus their attention on noisy
intermediate-scale quantum (NISQ) devices. There is a grow-
ing belief that NISQ devices may find useful applications and
commercialization in the near future [5], [6]. As prototypes
of quantum computers are made available to researchers for

experimentation, algorithmic research is adapting to match the
pace of hardware development [3].

To be executed on NISQ devices, some effective QML algo-
rithms that are suitable for small-scale quantum systems have
been proposed [7]. Currently, the simplest and most efficient
approach to benefit from near-term quantum computers is to
use variational quantum circuits (VQCs) [8]–[10]. This kind
of algorithm is called a variational quantum algorithm (VQA),
which belongs to the hybrid quantum-classical approach. The
quantum component is implemented by a variational quantum
circuit whose output depends on a tunable parameterized
gate in the circuit. The classical component, on the other
hand, utilizes the classical optimization tools to optimize the
VQAs by tuning the parameters. Thus, the variational quantum
circuits run on a quantum computer, while the optimization
function is performed on a classical computer.

VQA is particularly suitable for implementing QMLs and
has an immediate impact on many applications. For in-
stance, [39] and [12] showed VQAs can be successful in clas-
sification tasks. [13] enhances a conventional NN architecture
by adding a variational quantum layer that outperforms its
classical equivalent. [14] reshapes classical deep reinforcement
learning algorithms like experience replay and target network
into a representation of variational quantum circuits. [22]
proposed the hybrid quantum-classical model of LSTM and
showed this quantum version of LSTM converges faster, or
equivalently, reaches a better accuracy than its classical coun-
terpart. [23] designed a hybrid quantum-classical recurrent
neural network that aims at solving time series prediction
problems.

Recently, many methods have been studied in the field
of machine learning for time series prediction [15]–[17]. A
particularly challenging field is represented by the weather
forecast because small errors grow into larger errors, causing
the model to diverge from the actual weather over time. It
becomes more difficult to predict when rapid instability oc-
curs [18]. Deterministic systems struggle to interpret stochastic
fluctuations hence quantum computing may provide a more
robust approach to address the problem [23].

Quantum computing has had many applications in time
series prediction [19]–[23], but at present, especially regarding
weather time series, there are still few works that demonstrate
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the practical advantages of classical quantum hybrid networks.
Moreover, the extant quantum-classical hybrid models em-
phasize the concept of layers and fit the observations of the
data one by one, which makes it difficult to learn the overall
continuous dynamic information implicitly behind the data
points.

In this work, we introduce a novel continuous varia-
tional quantum algorithm (CVQA) for time series prediction.
CVQAs aim to extract and learn the dynamics behind the
time series. Unlike current VQAs, which try to fit a fixed set
of discrete points, CVQAs learn the underlying continuous
dynamics of the data, which can make the model more
powerful and easier to generalize to unknown data.

The core idea of CVQAs is to use a variational quantum
circuit to parameterize a vector field of the time series. The
variational quantum circuit takes the current state of the system
as input and produces the time derivative of that state as output.
The parameterized gate in the VQC determines the quantum
state evolution over time. The output will be obtained by
quantum measurement at the end of the circuit, which reflects
the final state of the time series evolution. The entire procedure
represents how the time series system will change over time.
Integrating the vector field over time makes it possible to
calculate the system’s trajectories and make predictions about
its future behavior. Thus, our approach learns the continuous
trajectories of the system evolution. Since the VQC is used
to parameterize the dynamics, the size of the VQC is smaller
than directly applying it to time series data. The structure of
our approach is shown in Fig 2.

Fig. 1. Variational quantum algorithm (VQA)

II. RELATED WORK

A. Variational Quantum Circuits (VQCs)

The machine learning tasks can be improved when car-
ried out on a quantum computer since quantum information
processing is expected to bring us exponential speedups on
some problems [24]. However, due to the limitations of current
quantum computer hardware, many algorithms can only stay
in the theoretical stage, such as [4]. Therefore, avoiding high-
depth quantum circuits is one of the key factors to achieving
quantum advantage at this stage. In this context, hybrid
classical-quantum algorithms consisting of quantum circuits
of relatively low depth have been proposed. For example, the
quantum variational solver (QVE) [25], [26] and the quantum
approximate optimization algorithm [27]–[29] (QAOA).

Variational quantum circuits [8]–[10] are a pervasive class
of hybrid algorithms. It allows one to train quantum machine

learning algorithms in the same way one trains neural net-
works. By adjusting the parameter θ iteratively, the expected
value relative to the ansatz state |ψ(θ)⟩ will be optimized.
A gradient-based systematic optimization of parameters is
introduced for the tuning parameters in the quantum circuit,
just like the backpropagation method utilized in feed-forward
neural networks [8].

B. Continuous Deep Learning Architectures

Continuous deep learning architectures have recently
reemerged as Neural Ordinary Differential Equations (Neu-
ral ODEs) and their variants [30]–[34]. This infinitely deep
approach theoretically bridges the gap between deep learning
and dynamical systems, providing a new perspective [35].
According to [30], the scalar-valued loss with respect to all
inputs of any ODE solver can be computed directly without
backpropagating through the operations of the ODE solver.
The intermediate quantities of the forward pass will not need
to be stored. It means the Neural ODEs can be trained with
a constant memory cost. Because of the limited quantum
sources, memory efficiency is more valuable in the quantum
field. However, it is still an unknown field regarding how to
design a continuous QML model.

Meanwhile, the way of working by solving differential
equations to obtain feasible solutions makes continuous deep
learning suitable for learning dynamics, particularly for time
series. Quantum computing works on the high dimensions and
provides a new perspective for time series forecasting [36]–
[38], which inspires us to design a quantum version of a
continuous model for time series.

III. PRELIMINARY

A. Variational Quantum Algorithms (VQAs)

VQAs are a kind of hybrid quantum-classical algorithm
that effectively executes QML algorithms on NISQ devices.
Designing a quantum circuit has a certain resemblance to
designing a neural network. For example, we can use VQC
to fit a function, similar to what a traditional neural network
is designed to do [45]. For a VQC, during the feed-forward
process, VQCs use a parameterized quantum circuit to prepare
quantum states and use measurements on final states to obtain
observable results. The quantum state is described by a wave
function, which has a probability amplitude that represents the
probability of each possible state. The wave function is used to
make predictions about the behavior of a quantum system, and
its properties are determined by the Schrödinger equation [51].
During the backpropagation process, classical optimization is
used to find the best set of parameters that minimize the cost
function.

The parameterized quantum circuit always includes the
encoding layer, entanglement layer, variational layer, and
measurement layer. The encoding layer corresponds to the
input layer to encode the classical data in the quantum
circuit. The entanglement layer creates quantum entanglement
among qubits, which is typically realized by the CNOT gates.
The encoding and entanglement layers are important because
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Fig. 2. The structure of CVQAs. In the center of CVQAs, the vector field is parameterized by a VQC to learn the dynamics of time series. The solver
integrates the vector field over time to obtain the final state of the time series.

generally, they can create a single superposition quantum state
and multi-particle entangled states, respectively, which realize
the exponential speed up and parallel operation on the qubits.
The variational layer includes parametrized quantum gates to
optimize the output, which is similar to a neural network
but with different functional forms. The entanglement and
variational layers can be regarded as one standard layer and
can be repeated to achieve the learning goal, sometimes they
are regarded just as one variational layer [22]. In the end,
the measurement layer extracts classical information from the
quantum output.

There are several ways to encode the classical data into
the quantum states [46]–[48]. A direct way is to convert a
single integer into a binary number and make each binary bit
corresponds to a qubit. The number of qubits is O(Nlog(M)),
where N is the number of input elements and M is the input
integer. However, this approach requires many quantum bits
when the input elements and M become large, which may
destroy the quantum advantage. To avoid this situation, we
use the rotation gate for encoding. A rotation gate Ri(ϕ) is
a single qubit rotation through an angle ϕ around the i axis
on the Bloch sphere, where i ∈ {x, y, z}. In this way, the
number of qubits needed is O(N), thus it is the so-called
scaled encoding [45].

In the variational layer, the parameters are typically real
numbers that are encoded into the quantum circuit using
gates that depend on them. These gates are often called
“parameterized gates”. Similar to the rotation gate used in the
encoding layer, Rx(θ), Ry(θ), and Rz(θ) are three typically
parameterized gates, which represent the single qubit rotation
through an angle θ around the x-axis, y-axis, and z-axis,
respectively. The difference between the rotation gate used
in the quantum encoding layer and the quantum variational
layer is that in the encoding layer, the rotation gate is used
to map classical data into a quantum state, whereas, in the
variational layer, the rotation gate is used to perform a specific
computation and its parameters can be optimized to improve
the performance of the circuit. These parametrized gates
change the starting wave function and determine the final

quantum state, which is used as a preliminary solution to the
problem. The subsequent processing of the quantum state leads
to the final solution to the given problem.

At the end of the VQCs, one can extract information from a
quantum state through the measurement layer. Measurement in
quantum computing is to obtain the outcome from a quantum
state by collapsing the quantum state into one of its eigen-
states. When a quantum system is measured, the wave function
collapses into one of its eigenstates, and the corresponding
eigenvalue provides information about the state of the quantum
system [49], [50]. Measurements in quantum computing are
typically performed by applying a Hermitian operator, which
represents an observable property of the quantum system.
Pauli operators such as Pauli X, Pauli Y, and Pauli Z gates
are typically used as measurement operators. Because the
computational basis of Pauli Z is common [45], we use the
Pauli Z gate.

We illustrate the working process of a variational quantum
circuit. Suppose x is the input classical data, |0⟩ is the initial
quantum state, and U(x) is the quantum gate we use to encode
the classical data in the encoding layer. In the beginning, x is
encoded into a quantum state |ψin(x)⟩ through using a unitary
gate U , as shown in Equation. 1.

|ψin(x)⟩ = U(x) |0⟩ . (1)

After the encoding layer, the variational layer is applied to
the quantum state |ψin(x)⟩. Specifically, another unitary gate
U(θ) is applied into |ψin(x)⟩, where the θ is the parameter that
can be tuned. An output state |ψout(x, θ)⟩ will be generated
after the variational layer:

|ψout(x, θ)⟩ = U(θ) |ψin(x)⟩ . (2)

At the end of the circuit, one can measure the expectation
values of some chosen observables. For example, we can use
a subset of the Pauli operators {B} ⊂ {I,X, Y, Z}⊗N for the
measurement, where N represents the number of qubits of the
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circuit. The expectation value of an observable Ô in the state
|ψout(x, θ)⟩ is defined as:

⟨Oθ,x⟩ = ⟨ψout(x, θ)| Ô |ψout(x, θ)⟩ (3)

= ⟨ψin(x)|U†(θ)ÔU(θ) |ψin(x)⟩ . (4)

By using a classical output function l, such as a linear map,
one can obtain the final output ŷ:

ŷθ,x = l(⟨O⟩). (5)

After the execution of the VQC, a cost function C(ŷθ,x, y)
is evaluated, and the parameter θ is updated with the help
of an optimizer in a classical computer. Specifically, these
parameters are adjusted by minimizing the cost C. The VQCs
can be trained using gradient-based algorithms, as other neural
networks. The way to get the partial derivatives by evaluating
parameter-shifted instances of a variational circuit is called the
parameter-shift rule [8], [39]:

∂⟨Oθ,x⟩
∂θ

=
1

2
(⟨Oθ+π

2 ,x⟩ − ⟨Oθ−π
2 ,x⟩). (6)

Thus, gradients can be backpropagated in the quantum layer,
and the entire hybrid quantum-classical network can be trained
using the backpropagation method.

B. Continuous Deep Learning Model for Dynamics

Neural ODEs are recently popular continuous deep learning
models. They can learn the dynamics of a continuous system
by solving a set of ordinary differential equations (ODEs). This
makes them particularly powerful for modeling systems that
evolve over time, such as time series data or physical systems.
One of the key advantages of Neural ODEs is that they can
learn complex, non-linear dynamics using a continuous-time
formulation, which allows them to capture intricate patterns in
the data that might be missed by traditional neural networks.
Additionally, because they are based on ODEs, they can be
easily integrated over time, which makes them well-suited for
tasks that require the prediction of future states or behaviors.
Neural ODEs can be interpreted as a continuous version of
Residual Networks [40]. Recall the formulation of a residual
network:

ht+1 − ht = f(ht, θf ), (7)

where the f is the residual block and the θf represents the
parameters of f . The left side of Equation 7 can be seen as
a denominator of 1, so it can be represented by ht+1−ht

1 =
f(ht, θf ). When the number of layers becomes infinitely large,
and the step becomes infinitely small, Equation 7 will become
an ordinary differential equation format, as shown in Equation
8.

lim
dt→0

ht+dt − ht
dt

=
dh(t)

dt
= f(h(t), t, θf ). (8)

Thus, the NODE will have the same format as an ODE:

h′(t) = f(h(t), t, θf ), h(0) = x0, (9)

where x0 is the input data. Typically, function f will be
some standard simple neural architecture, such as a Multilayer

perception (MLP). The θf represents trainable parameters in
f .

To obtain any final state of h(t) when t = T , all that is
needed is to solve an ordinary differential equation with initial
values, which is called an initial value problem (IVP):

h(T ) = h(0) +

∫ T

0

f(h(t), t, θf )dt. (10)

Thus, a Neural ODE can transform from h(0) to h(T ) through
the solutions to the IVP of the ODE.

By the properties of ODEs, Neural ODEs are always invert-
ible; we can reverse the limits of integration, or alternatively,
integrate −f . The Adjoint Sensitivity Method [41] based on
reverse-time integration of an expanded ODE, allows for
finding gradients of the initial value problem solutions h(T )
with respect to parameters θf and the initial values h(0) [30].
The forward evaluation and backpropagation process of a
Neural ODE model can be calculated by using a black-box
differential equation solver, called ODE solvers [53]–[55].

ODE solvers can be divided into fixed step size solvers and
adaptive step size solvers, and both of them can be used for
Neural ODEs. Given a final time T , a fixed step size solver
will choose the time ti from [0, T ] where ∆t = ti+1−ti. ∆t is
fixed in advance and independent of i. An adaptive step solver,
such as Runge-Kutta Method [55] is a relatively modern solver,
which can vary the size of the next step so that the error made
during the solver is approximately equal to some tolerance.

IV. METHODS

A. Continuous Variational Quantum Algorithms (CVQAs)

The basic idea of CVQAs is to use a variational quantum
circuit to parameterize the vector fields in a dynamic system
and use the ODE solver to solve the potential ODEs of the
system.

Suppose the input data is x, and the variational quantum
circuit used for parameterizing the vector fields is denoted as
Uv . After the input data passes Uv , we can obtain the quantum
state

|ψout(x, θ, t)⟩ = Uv(θ, x, t)
∣∣0⊗Nv

〉
, (11)

where the Nv is the number of qubits used in Uv .
At the end of Uv , we measure the expectation values of a

chosen observable Â. Thus, we obtain the measurement values
in terms of time t:

⟨A⟩θ,x,t =
〈
0⊗Nv

∣∣U†
v (θ, x, t)ÂUv(θ, x, t)

∣∣0⊗Nv
〉
. (12)

To reshape the output so that it has the same dimension as the
input data, we use a linear map l and obtain the output. We
denote the output as g′ since it is the output of a vector field:

g′(θ, x, t) = l ◦ ⟨A⟩θ,x,t. (13)

We use θl to denote the parameters in l. We see this problem
as an IVP of the ODE. The final state of g(t) is the solution.
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Algorithm 1 Training CVQAs
1: Input: Training Dataset D(x, y)
2: Initialize QVC Uv(θ), θl, iteration
3: for iteration do
4: Eq. (11): execute the QVC Uv(θ) on data x
5: ⟨A⟩θ,x,t ← measures the QVC using an observation
6: l◦⟨A⟩θ,x,t ← apply linear map l to reshape the readout

of measurement
7: g(T) ← ODESolver(x, Eq. (13), θ, θl)
8: calculate the MSE loss: C = MSE(g(T), y)
9: θ, θl ← Adam(C, Parameter-Shift-Rule(⟨A⟩θ,x,t), l)

update θ, θl
10: end for
11: return θ, θl

When t = T , we obtain the final state of the ODE as the
solution:

g(T ) =xt0 +

∫ T

0

g′(θ, x, t)dt (14)

=xt0 +

∫ T

0

l ◦ ⟨A⟩θ,x,tdt, (15)

where xt0 represents the input data x at t = 0, as the initial
state of the ODE.

B. Training CVQAs

We want to use a backward propagation algorithm to
optimize all the parameters, as the general VQAs. A key factor
is how to find the gradient. On one hand, the Adjoint Sensitivity
Method [41] allows for finding gradients of the initial value
problem solutions g(T ) with respect to parameters θg and the
initial values x [30].

On the other hand, the parameter-shift rule [8], [39] works
by adding a small shift to the parameters of the quantum circuit
and measuring the corresponding change in the expectation
value of the observable. This allows for the gradient of
the expectation value to be estimated, which can then be
used in gradient-based optimization algorithms to update the
parameters of the quantum circuit. All these techniques offer
the possibility of using gradient-based backward propagation
algorithms to optimize our model. We combine these tech-
niques and train our model by using the classical optimizer
Adam [56]. The training process of CVQAs is shown in
Algorithm 1.

V. EXPERIMENT AND ANALYSIS

A. Environment Setup

All the models were implemented in Python 3.9 and real-
ized in PyTorch. The machine used for the experiments was
provided with an NVIDIA GeForce GTX 1070. All quantum
models are based on PennyLane [44] with a simple state
simulator of qubit-based quantum circuit architecture. We
trained each dataset for 10 epochs and used a batch size of 16.
All the models are trained with the Adam algorithm, using a
learning rate of 10−2. Mean squared error (MSE) is used as the

loss function. To visually compare the prediction results, we
designed a prediction accuracy evaluation criterion as follows:

Accuracy = 1−

√√√√ 1

N

N∑
i=1

E2
i , (16)

where Ei = |yi−ŷi|
yi

is the relative error. To avoid possible
experimental errors, we ran each experiment three times for
each model and recorded the results according to mean and
standard values.

B. Model and Baselines Setup

CVQAs model uses a variational quantum circuit Uv for
parameterizing the vector field of the dynamic of a time series.
To verify the effectiveness of our approach, we modeled the
vector field with two different ansatzes and evaluated their
performance, separately. As shown in Fig. 3, (a) is one qubit
ansatz, it uses the angle encoding layer realized by X rotation
gate Rx(x). The variational layer is realized by another X
rotation gate Rx(θ). Thus, (a) has one adjustable parameter
and two one-qubit gates. (b) is four qubits-ansatz. It also uses
the angle encoding layer, which is realized by X rotation
gates Rx(x). We use the CNOT gate for the purpose of
entanglement. The variational layer is also performed by X
rotation gates Rx(θ). (b) has four adjustable parameters, eight
one-qubit gates, and four two-qubit gates.

Fig. 3. Ansatz of vector fields in CVQAs. (a) uses one qubit to parameterize
the vector field, which includes one rotation gate in the encoding layer and
one rotation gate in the variational layer. (b) uses four qubits to parameterize
the vector field, which includes four rotation gates in the encoding layer,
four CNOT gates in the entanglement layer, and four rotation gates in the
variational layer.

The baseline models we used are Quantum Neural Networks
(QNNs) realized by the general variational quantum algo-
rithms, and the quantum version LSTM (QLSTM) [22]. For a
fair comparison, we design two QNNs, which have the exact
same structures of the ansatzes as (a) and (b), respectively.

For the QLSTM, four quantum circuits are used as four
weights calculations, as a simplified version of [22]. For each
quantum circuit in the QLSTM, we use the same ansatz as
shown in Fig 3 (b). It is worth noting that since QLSTM is
implemented by four quantum circuits, the size of QLSTM is
four times larger than that of our model of (b). The QLSTM

Authorized licensed use limited to: ASU Library. Downloaded on December 26,2023 at 22:09:12 UTC from IEEE Xplore.  Restrictions apply. 



uses a total of 4 × 4 = 16 qubits, 4 × 4 = 16 rotation gates
for encoding, 4× 4 = 16 CNOT gates for entanglement, and
4×4 = 16 rotation gates for the variational layers. A QLSTM
has 16 adjustable parameters in the ansatz.

C. Dataset

To evaluate our model, we compare different models’ per-
formances on the daily climate time series data [42], which
contains weather data collected from the city of Delhi over the
period of four years from 2013 to 2017. This data is collected
from Weather Underground API. We evaluate four weather
indicators including mean temperature, humidity, wind speed,
and mean pressure. The mean temperature was averaged from
multiple 3-hour intervals in a day. The units of humidity
value for the day are grams of water vapor per cubic meter
volume of air. Wind speed is measured in kilometers per hour.
The pressure is measured in atmospheric pressure. For all
experiments, the training set is the data from January 1, 2013
to December 31, 2016. The test set is the data from January
1, 2017 to April 24, 2017. We designed a window to be the
length of 4, i.e., to predict the current value based on four
days of historical data.

D. Prediction Results and Analysis

We first implemented our model with the ansatz of (a).
We compared the QNN with the same ansatz of (a) and the
QLSTM with our model. The mean and standard values of the
training loss were recorded for three runs. As shown in Fig. 4,
CVQAs converged with a relatively low loss compared to the
QNN and QLSTM during the training. This is more evident
in the top left and bottom right graphs. The top left, top right,
bottom left, and bottom right represent the mean temperature,
humidity, wind speed, and mean pressure, respectively.

Fig. 4. The loss of different models during training. CVQAs have a
low training loss compared to the baseline models, especially in the mean
temperature and mean pressure datasets.

We recorded the training loss and the accuracy based on
Equation 16 for the four datasets, as shown in Table I, Table II,
Table III, and Table IV, respectively.

TABLE I
EXPERIMENT RESULT OF MEAN TEMPERATURE

Training Loss Accuracy
QNN 0.026± 0.008 0.815± 0.125

QLSTM 0.018± 0.004 0.917± 0.002
CVQA(Ours) 0.004± 0.000 0.919± 0.002

TABLE II
EXPERIMENT RESULT OF HUMIDITY

Training Loss Accuracy
QNN 0.011± 0.001 0.820± 0.018

QLSTM 0.009± 0.004 0.829± 0.019
CVQA(Ours) 0.007± 0.001 0.829± 0.014

Taking the mean temperature and humidity as examples,
we tested our model on time series. After training ten epochs,
CVQAs show a strong prediction ability as shown in Fig. 5.

We then extend the model to 4 qubits, as shown in Fig. 3(b),
and compare it to a QNN that is also 4 qubits. We also
recorded the mean value and standard values over three runs.
As shown in Fig. 6, for the same number of qubits, our model
has a smaller loss compared to QNN.

E. Size of CVQAs

In the era of NISQ, VQAs are always subject to the model
size. VQAs with more qubits and deeper quantum circuits
will suffer from more series noise effects. Thus, designing
VQAs with a small model size is valuable. In this section, we
compare different models in terms of the number of qubits,
the number of single-qubit gates, and the number of two-
qubit gates, i.e., the CNOT gates, and the number of variable
parameters in the ansatz.

As shown in Fig.7, CVQAs are smaller in size compared to
QLSTM and QNN but can achieve similar or better results. An
intuitive reason is that modeling the dynamic behavior of time
series is more effortless than modeling the time series itself.
CVQAs aim to use a quantum circuit to model the dynamics

TABLE III
EXPERIMENT RESULT OF WIND SPEED

Training Loss Accuracy
QNN 0.004± 0.001 −1.479± 0.138

QLSTM 0.003± 0.000 −0.630± 0.039
CVQA(Ours) 0.004± 0.001 −0.684± 0.323

TABLE IV
EXPERIMENT RESULT OF MEAN PRESSURE

Training Loss Accuracy
QNN 0.039± 0.005 0.995± 0.001

QLSTM 0.009± 0.007 0.998± 0.000
CVQA(Ours) 0.006± 0.002 0.998± 0.000
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Fig. 5. CVQAs’ predict results of mean temperature and humidity after
training 10 epochs.

Fig. 6. The training loss of a CVQA with four qubits and a QNN with four
qubits.

behind the time series, thus small-size quantum circuits are
sufficient to achieve relatively high performance.

VI. CONCLUSION

The NISQ devices always limit quantum machine learning
models, but using VQAs is the most straightforward way
to realize the quantum advantages today. In this paper, we
proposed a novel continuous VQA for dynamic learning in
time series, named CVQAs. We use a quantum circuit to
parameterize the vector field behind the dynamic system.
Instead of learning the given input data directly, CVQAs aim
to learn the dynamics behind the data utilizing a variational
quantum circuit. Thus, CVQAs learn the implicit dynamic
pattern from data better than other VQAs, particularly for
weather time series data. Experiments show that our model can
achieve equivalent or better accuracy but with fewer qubits and
quantum gates than baseline models. With a small quantum

Fig. 7. A comprehensive comparison: the accuracy, the number of qubits,
the number of variational quantum gates, and the number of CNOT gates of
different models.

circuit size, our model will have more potential and value in
the NISQ era.
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[46] Plesch, M. and Brukner, Č., 2011. Quantum-state preparation with
universal gate decompositions. Physical Review A, 83(3), p.032302.

[47] Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka,
T., Tezuka, H., Mitsuda, N. and Yamamoto, N., 2022. Approximate
amplitude encoding in shallow parameterized quantum circuits and its
application to financial market indicators. Physical Review Research,
4(2), p.023136.

[48] Łodyga, J., Mazurek, P., Grudka, A. and Horodecki, M., 2015. Simple
scheme for encoding and decoding a qubit in unknown state for various
topological codes. Scientific reports, 5(1), p.8975.

[49] Wiseman, H.M. and Milburn, G.J., 2009. Quantum measurement and
control. Cambridge university press.

[50] Aharonov, Y., Anandan, J. and Vaidman, L., 1993. Meaning of the wave
function. Physical Review A, 47(6), p.4616.

[51] Berezin, F.A. and Shubin, M., 2012. The Schrödinger Equation (Vol.
66). Springer Science & Business Media.
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