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The emergence and evolution of cooperation in complex natural, social and economical systems
is an interdisciplinary topic of recent interest. This paper focuses on the cooperation on complex
networks using the approach of evolutionary games. In particular, the phenomenon of diversity-
optimized cooperation is briefly reviewed and the effect of network clustering on cooperation is
treated in detail. For the latter, a general type of public goods games is used with the result that,
for fixed average degree and degree distributions in the underlying network, a high clustering
coefficient can promote cooperation. Basic quantities such as the cooperator and defector clus-
ters, mean payoffs of cooperators and defectors along their respective boundaries, the fraction
of cooperators for different classes as well as the mean payoffs of hubs in scale-free networks
are also investigated. Since strong clustering is typical in many social networks, these results
provide insights into the emergence of cooperation in such networks.

Keywords : Clustering coefficient; evolutionary game; cooperation; small-world networks; scale-
free networks; public goods game.

1. Introduction

Cooperation is ubiquitous in biological, economic
and social systems [Colman, 1995]. Understanding
the emergence and evolution of cooperation is an
outstanding problem in interdisciplinary research.

A suitable mathematical framework to address
cooperation is evolutionary game theory [Smith,
1982; Gintis, 2000]. In this regard, the types of
games that have been studied include those based
on pairwise interactions among players such as
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the Prisoner’s Dilemma Game (PDG) and the
Snowdrift Game (SG) [Szabó & Vukov, 2004;
Perc & Szolnoki, 2008; Zhong et al., 2006; Abram-
son & Kuperman, 2001; Ebel & Bornholdt, 2002;
Wu & Wang, 2007; Wang et al., 2006; Tang et al.,
2006; Ren et al., 2007; Wang et al., 2008; Fu et al.,
2008; Szolnoki et al., 2008]. A type of games that
allow for more general group interactions is Public
Goods Games (PGG), models based on which for
studying the emergence and the dynamics of coop-
eration have received a great deal of recent attention
[Hauert et al., 2002a; Szabó & Hauert, 2002; Hauert
et al., 2002b; Semmann et al., 2003; Brandt et al.,
2006; Guan et al., 2007; Huang et al., 2008; San-
tos et al., 2008]. For example, since agents are con-
nected with each other in a complex manner, they
can be regarded as nodes in a network with a com-
plex topology, and the mutual interactions among
the nodes are governed by the PGG rules. Similar
to PDG and SG, in the PGG defection represents
the dominant strategy that can lead to the deterio-
ration of cooperation.

In a typical PGG played by N individuals, each
individual can choose to cooperate or defect. Each
cooperator contributes an amount c to the PGGs,
while defectors do not contribute. The total contri-
bution is multiplied by a factor r, and is then redis-
tributed uniformly among all players. As a result
of this redistribution, defectors in a group can usu-
ally gain more payoffs than cooperators in the same
group. It has been known that in a well-mixed popu-
lation, for r < N, defectors will dominate the whole
population [Hauert et al., 2006]. This presents a
dilemma as to why cooperation is ubiquitous in real-
world systems. There have been efforts to resolve
the dilemma. For example, to provide an escape
hatch out of an economic stalemate, Hauert et al.
have introduced the mechanism of voluntary par-
ticipation and found that it results in a substan-
tial and persistent willingness to cooperate [Hauert
et al., 2002a]. Szabó and Hauert have studied vol-
untary participation in PGGs on a square lattice
and found that the existence of loners leads to a
cyclic dominance of the strategies and promotes
substantial levels of cooperation [Szabó & Hauert,
2002]. The effects of inhomogeneous activity in the
PGG have been studied [Guan et al., 2007], where
the cooperation level is found to be considerably
enhanced. Quite recently, social diversity has been
introduced by means of heterogeneous graphs [San-
tos et al., 2008]. It is found that diversity associated

with the number and the size of the PGG, where
each individual participates and contributes to each
game, can promote strong cooperation. This finding
is quite surprising as one might expect that coop-
eration can arise more easily in systems consisting
of more homogeneous individuals.

In a recent work [Yang et al., 2009], we pro-
posed a strategy for achieving maximum coopera-
tion in evolutionary games on complex networks.
Each individual is assigned a weight that is propor-
tional to the power of its degree, where the exponent
α is an adjustable parameter that controls the level
of diversity among individuals in the network. Dur-
ing the evolution, every individual chooses one of its
neighbors as a reference with a probability propor-
tional to the weight of the neighbor, and updates
its strategy depending on their payoff difference.
It was found that there exists an optimal value of
α, for which the level of cooperation reaches maxi-
mum. The results suggest that, in order to achieve
strong cooperation on a complex network, individ-
uals should learn more frequently from neighbors
with higher degrees, but only to a certain extent.

In this paper, we address the effect of one
generic property of complex networks, namely
clustering, on the emergence and evolution of
cooperation. A complex network typically exhibits a
number of traits, such as the heterogeneous degree
distribution, clustering and degree–degree correla-
tion. In this regard, the property of clustering is
fundamental to complex networks, as a high degree
of clustering is one of the two defining character-
istics of small-world networks [Watts & Strogatz,
1998]. The degree of clustering can be character-
ized by the clustering coefficient, the probability
that two neighbors of a given node share also a con-
nection between them [Newman, 2003; Boccaletti
et al., 2006]. Topologically, the clustering coeffi-
cient is determined by the number of closed tri-
angles in the network. While clustering structures
associated with heterogeneous degree distributions
can promote cooperation in the PGG [Rong et al.,
2010], whether there is a general effect of cluster-
ing structures on cooperation is an open issue. To
address this question, we implement the PGG on
complex networks, vary the clustering coefficient
systematically but keep other topological proper-
ties of the network fixed. In order to do so, we
use the class of homogeneous small-world networks
(HOSW) [Santos et al., 2005] and the class of
scale-free networks with tunable degree of clustering
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[Holme & Kim, 2002]. Our main finding is that
strong clustering promotes cooperation in both
types of networks. We show that this phenomenon
can be explained qualitatively by the dynamical
organization of cooperators versus that of defectors,
where cooperators tend to form clusters in order
to survive. The payoffs of cooperators and defec-
tors along the boundary of clusters with the same
type of players are also examined to establish the
robustness of the cooperator clusters in resisting to
the invasion of defectors. In view of the ubiquity of
cooperation in real-world networked systems, our
finding points to a possible mechanism for the for-
mation of clustered structures in such systems from
the viewpoint of evolutionary games.

In Sec. 2, we describe the PGG model. In
Sec. 3, we present results on the dependence of
cooperation on the clustering coefficient for homo-
geneous small-world networks, together with qual-
itative explanations. In Sec. 4, we demonstrate
how clustering coefficient affects cooperation on
scale-free networks. The conclusion is presented
in Sec. 5.

2. The Model

Our game model is from [Santos et al., 2008].
Initially, cooperators and defectors are randomly
distributed among the population with equal prob-
ability. During the evolutionary process, each indi-
vidual x participates in interactions with kx + 1
neighborhoods that center about x and its kx neigh-
bors, where each neighborhood contains a central
node and all nodes that are directly connected to
it. Each cooperator contributes a cost c = 1 to each
neighborhood that it engages. If x is a cooperator,
the strategy is sx = 1 and sx = 0 if x is defector.
The payoff of an individual x associated with the
neighborhood centered at an individual y is given by

px,y = −sx +
r

ky + 1

ky∑

i=0

si, (1)

where i = 0 stands for y, si is the strategy of the
neighbor i of y, and ki is its degree. The total pay-
off of player x is Px =

∑
yεΩx

px,y, where Ωx denotes
the set of x and x’s neighbors. After each time step,
all the players update synchronously their strategies
according to the following rule. Each individual x
chooses at random a neighbor y and compares its
payoff Px with Py. If Py ≤ Px, no update occurs.

Otherwise, x will adopt y’s strategy with a proba-
bility given by (Py −Px)/M for Py > Px, where the
normalization constant M is the maximum possible
difference between the payoffs of x and y.

3. PGGs on Small-World Networks

We first consider small-world networks, which can
be constructed by following the standard rewiring
procedure [Watts & Strogatz, 1998]. Starting from
an undirected regular graph with fixed connectiv-
ity z and size N , a two-step circular procedure is
executed: (i) choose two different edges randomly
and (ii) swap the ends of the two edges. Here,
duplicate connections and disconnected graphs are
avoided. The annealed randomness is character-
ized by the parameter f (the rewiring probability),
which denotes the fraction of the swapped edges in
the network. HOSW networks have the small-world
property and the degree of each individual is kept
unchanged. Varying f thus provides a way to sys-
tematically vary the clustering coefficient C and the
average shortest path L. As shown in Fig. 1, L and
C are both decreasing function of f . To simulate
PGGs on a network, at t = 0 we distribute coop-
erators and defectors randomly among the popu-
lation with equal probabilities. Figure 2 shows the
cooperator density ρc as a function of the multipli-
cation factor r for different values of C and L. It
can be seen that ρc monotonically increases as r is
increased. For C = 0.6, L = 83.8 and C = 0.59,
L = 22.8, the average network distance L differs

Fig. 1. The cluster coefficient C and the average path length
L, divided by their values for regular networks (C0 and L0,
resp.), as a function of f for the HOSW network.
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Fig. 2. Cooperator density ρc as a function of the multi-
plication factor r for different values of C and L. The net-
work parameters are z = 6 (the number of neighbors in the
initial regular network configuration prior to rewiring) and
N = 1000. Equilibrium cooperator density ρc is obtained by
averaging over 2× 103 steps after a transient time of 2× 105

steps. Each data is obtained by averaging over twenty differ-
ent network realizations with ten runs for each realization.

obviously, but the clustering coefficient C and the
cooperator density ρc are approximately the same.
For C = 0.08, L = 4.3 and C = 0.004, L = 4.2, the
average network distance L is approximately the
same, but the clustering coefficient C and the coop-
erator density ρc differ obviously. The above results
indicate that the degree of cooperation is insensitive
to variations in L whereas the clustering coefficient
plays a dominant role in affecting the cooperative
behavior on the network. In fact, for a fixed value of
the game parameter r, ρc increases as C is increased,
demonstrating that stronger clustering can promote
cooperation on small-world networks.

In order to understand the effect of cluster-
ing coefficient on, cooperation, in the following, we
investigate the cooperator density, the number of
clusters, the average size of clusters and the mean
payoffs along the boundary as the time evolves. A
cooperator (defector) cluster is a connected com-
ponent (subgraph) fully occupied by cooperators
(defectors). Figure 3 shows the time evolution of
the cooperator density ρc for f = 0.1 and f = 0.5.
One can see that ρc decreases rapidly at the early
stage while it increases to a steady value for both
cases. The steady value of ρc is much higher in the
case of f = 0.1 than that of f = 0.5.

It has been known that cooperators tend to
form cluster patterns where cooperators assist each

Fig. 3. Time evolution of cooperator density ρc for f =
0.1 and f = 0.5. The multiplication factor r = 5 and
N = 1000.

other to avoid defectors’ exploitation in spatial
games during the evolutionary process [Guan et al.,
2006; Hauert & Doebeli, 2004; Langer et al., 2008].
Figure 4(a) shows that, in both cases of f = 0.1
and f = 0.5, the number of cooperator clusters Ncc

increases initially and then gradually decreases to a
steady value. For f = 0.1, the number of defector
clusters Ndc first decreases to 1 and then increases

(a)

(b)

Fig. 4. (a) Number of clusters and (b) average size of clus-
ters as a function of time for f = 0.1 and f = 0.5. The
multiplication factor r = 5 and N = 1000.
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to a steady value. For f = 0.5, Ndc decreases mono-
tonically. Figure 4(b) reports the average cluster
size as a function of time. It can be seen that the
average size of cooperator clusters Scc decreases fol-
lowed by an increment, while the average size of
defector clusters Sdc evolves following a somewhat
opposite trend. Figure 4 also shows that for the
fixed multiplication factor r = 5, large cooperator
clusters and many small defector clusters are formed
in the equilibrium state for f = 0.1. In contrast, for
f = 0.5, approximately one large cooperator cluster
and one large defector cluster coexist in the equi-
librium state.

We also study the evolution of the mean payoffs
of cooperators and defectors along the boundary
(P c−bound and P d−bound). We define a coopera-
tor (defector) staying at the boundary if it has
at least a defector (cooperator) neighbor and vice
versa. In Fig. 5, we see that, both P c−bound and
P d−bound decreases initially and then increases to
a steady value, exhibiting the same trend as the
evolution of the cooperator density ρc. During the
decreasing period, P c−bound is less than P d−bound;
while P c−bound exceeds P d−bound gradually after
they begin to increase. In particular, from time
t = 102 to t = 104, the difference between P c−bound

and P d−bound for f = 0.1 is much higher than
that for f = 0.5, e.g. ρc are the same for f =
0.1 and f = 0.5 at t = 104 (see Fig. 3), but
P c−bound − P d−bound ≈ 5.5 for f = 0.1, which is
larger than P c−bound − P d−bound ≈ 2.8 for f = 0.5.

Fig. 5. The mean payoffs of cooperators and defectors along
the boundary as a function of time for f = 0.1 and f = 0.5.
The multiplication factor r = 5 and N = 1000.

Higher values of P c−bound − P d−bound suggest that
defectors along the boundary are more likely to be
replaced by cooperators, promoting the diffusion of
cooperators.

4. PGGs on Scale-Free Networks

We next consider scale-free networks. Starting from
an initial core of m0 fully connected nodes, at each
time step, a new node i is added to the network
with links to m of the previously existent nodes.
The first link follows a preferential attachment rule
[Barabási & Albert, 1999]. The remaining m − 1
links are attached in two different ways: (i) with
probability A, node i is connected to a randomly
chosen neighbor of node j and (ii) with probability
1 − A, the preferential-attachment rule is applied
again, and node i is connected to another one of
the previously existent nodes. The resulting scale-
free network has the average connectivity z = 2m
and degree distribution P (k) ∼ k−3. The clustering
coefficient can be systematically varied by changing
the value of A. In particular, for A = 0, we obtain
the standard scale-free network [Barabási & Albert,
1999] for which the clustering coefficient C tends to
be zero as the network size N becomes infinite. As
A is increased, C monotonically increases, so does
the average shortest path of the network, as shown
in Fig. 6.

In our simulations, we set m0 = m = 3 and
N = 3000. Figure 7 shows ρc as a function of
the multiplication factor r for different values of
C. We observe that, for networks with higher val-
ues of C, cooperation is enhanced. It has been
known that on scale-free networks, hubs (high-
degree individuals) play a prominent role in main-
taining the cooperation [Santos & Pacheco, 2005;
Santos et al., 2006; Santos et al., 2008]. To show
how hubs influence the evolution of cooperation on
scale-free networks in the presence of dense clus-
tering structures, we divide individuals into three
classes according to their degrees ki on a scale-free
network: (i) low-degree class: ki < z; (ii) medium-
degree class: z ≤ ki < kmax/3 and (iii) high-degree
class: kmax/3 ≤ ki < kmax. Here kmax is the maxi-
mum degree of a scale-free network. Figure 8 shows
the fraction of cooperators for each of the three
classes as a function of time. For A = 0, low-degree
and medium-degree classes rapidly become defec-
tors, while high-degree individuals insist on their
initial strategies for a short period but then turn to
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(a) (b)

Fig. 6. For a scale-free network, (a) the cluster coefficient C and (b) average path length L as a function of A (see text for
details).

defectors [see Fig. 8(a)]. For A = 1, the fractions
of cooperators for low-degree and medium-degree
classes decrease initially but finally increase to 1. In
contrast, individuals of high-degree hold their initial
strategies for a short period and then turn to coop-
erators. The occupation of cooperators on the hubs
promotes the diffusion of cooperators in the whole
population [see Fig. 8(b)]. Figure 9 shows the mean
payoffs of hubs with time. We see that, for A = 1,

Fig. 7. Cooperator density ρc as a function of the multipli-
cation factor r for different values of C.

initially the mean payoff of the cooperator hubs
(C-hubs) is lower than that of the defector hubs
(D-hubs), but after a short period, the payoff of
C-hubs becomes much higher than that of D-hubs.

(a)

(b)

Fig. 8. Time evolution of the fraction of cooperators for each
of three classes. (a) A = 0 and (b) A = 1. The multiplication
factor is r = 3.5.
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Fig. 9. Time evolution of the mean payoffs of C-hubs and
D-hubs for A = 0 and A = 1. The multiplication factor
r = 3.5.

While for A = 0, the mean payoff of C-hubs is
always lower than that of D-hubs, leading to the
extinction of cooperation.

5. Conclusion

We have studied the effects of clustering coefficient
on cooperation in spatial PGGs on two common
types of complex networks: small-world and scale-
free. We have found that high clustering coefficient
can promote the emergence of cooperation for both
types of networks. While this phenomenon seems
intuitive, we note that, in the prisoner’s dilemma
game, high clustering coefficient does not always
tend to enhance cooperation [Santos et al., 2005;
Assenza et al., 2008]. This is because in this case,
individuals play games exclusively with their near-
est neighbors, but in the PGG, each individual par-
ticipates in the neighborhoods that center about
itself and its neighbors, meaning that individu-
als’ payoffs are not only related with their nearest
neighbors, but also with their next-nearest neigh-
bors. Due to the presence of group interactions
in the PGG, highly clustered topologies can pro-
mote cooperation despite the fact that the defec-
tion strategy can usually lead to more payoffs. This
can be a motivation for individuals to build more
connections to form clusters in order to resist the
invasion of defectors. Our finding may help explain
the widely observed clustering structure in the real-
world networks from the viewpoint of evolutionary
games.
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