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We propose a method to detect nodes of relative importance, e.g. hubs, in an unknown network
based on a set of measured time series. The idea is to construct a matrix characterizing the
synchronization probabilities between various pairs of time series and examine the components
of the principal eigenvector. We provide a heuristic argument indicating the existence of an
approximate one-to-one correspondence between the components and the degrees of the nodes
from which measurements are obtained. The striking finding is that such a correspondence
appears to be quite robust, which holds regardless of the detailed node dynamics and of the
network topology. Our computationally efficient method thus provides a general means to address
the important problem of network detection, with potential applications in a number of fields.
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1. Introduction

The ubiquity of complex networks in nature and in
technological systems, and the studies of dynamical
processes on networks have motivated the “inverse”
problem of network detection. That is, given that
some information about the network dynamics is
available, can the intrinsic structure of the network
be inferred? This “inverse” problem of network
detection is somewhat opposite to the current trend
in research on complex networks, where the focus
has been on what kinds of interesting dynamics
can occur on networks whose topologies and node-
to-node interactions are fully known. Comparing

with such “direct” network-dynamics problem, the
inverse problem, in spite of its importance, has
received relatively little attention. In particular,
novel approaches have been proposed recently [Yu
et al., 2006; Timme, 2007; Napoletani & Sauer,
2008; Wang et al., 2009; Ren et al., 2010]. Depend-
ing on the objective, the extent of the structural
information needed can be quite different, leading to
a diverse range of dynamical information required
for solving the inverse problem. For example, in [Yu
et al., 2006], the detailed dynamical processes on
each node of a network are assumed to be known.
A replica of this network, or a computational model
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model of this “target” network, can then be con-
structed, with the exception that the interaction
strengths among the nodes are chosen randomly.
It has been demonstrated that in situations where
a Lyapunov function for the network dynamics
exists, the connectivity of the model network con-
verges to that of the target network [Yu et al.,
2006]. In [Timme, 2007], a Kuramoto-type of phase
dynamics [Kuramoto, 1984] on a network to be
detected is assumed, where a steady-state solu-
tion exists. For this system, by linearizing the net-
work dynamics about the steady-state solution,
the associated Jacobian matrix can be obtained,
which reflects the network topology and connectiv-
ity under proper perturbations [Timme, 2007]. In
both approaches, complete information about the
dynamical processes, i.e. equations governing the
evolution of all nodes, is required. Another feature
of these approaches is that the amount of compu-
tations required tends to increase significantly with
the size of the network. For example, suppose the
node dynamics is described by a set of differential
equations. For a network of size N , in order for its
structure to be detected, the number of differential
equations to be solved typically increases with N as
N2. For small sparse networks which are typical in
metabolic and genomic pathways, Napoletani and
Sauer [2008] found that constrained optimization
techniques based on the L1 vector norm is supe-
rior for inference of the network connections. For
dynamical systems in a noisy environment, the cor-
relation of the noisy output can be employed to
unveil the noise pathways which reveal the connec-
tion topologies [Wang et al., 2009; Ren et al., 2010].
In most cases of previous works, the objective is to
detect every link in the network, then one would
need all the dynamical details, i.e. the parameters
of the oscillator at each node, and to measure the
dynamical signals from all the oscillators. Conse-
quently, the computation is demanding, rendering
the method applicable only to small networks. How-
ever, in many cases, such complete structural infor-
mation is not needed, e.g. knowing which nodes are
the hubs in many cases is sufficient to protect the
network. Thus a pressing issue is then to develop
a computationally efficient methodology to detect
only certain important characteristics of the net-
work based solely on a limited number of measured
time series. The aim of this paper is to address this
issue. In this paper, we propose a method employing
synchronization probability between the nodes to

detect the hubs in the network. The dynamical sig-
nals required to construct the synchronization prob-
abilities can have broad forms. When the signal can
only be extracted from a subset of the nodes, the
method can detect the hub nodes in the subset.

The basic hypotheses of our approach are the
following: (1) detailed node dynamics are unknown
and only a set of measured signals (time series) is
available, (2) the network to be probed can be large
but the set of accessible “probing points” might be
much smaller than the network size. Since the net-
work, except for this set of points, is assumed to be
completely inaccessible, we shall regard these points
effectively as “nodes,” and our goal is to estimate
their relative degrees (number of links). This would
allow a set of importance nodes, i.e. nodes with rel-
atively large numbers of connections, to be detected
among these accessible probing points. We shall first
show that, if the underlying network is large (larger
than only a few nodes), the largest eigenvalue of
the network connection matrix (e.g. the adjacency
matrix) is often isolated and its associated eigen-
vector typically possesses the interesting property
that its components have an approximately one-
to-one correspondence with the node degrees. The
issue then becomes that of obtaining an approxi-
mate connection matrix from the set of measured
time series. We find that a matrix based on the
degrees of synchronization among the time series
can serve the purpose effectively which, as we will
see, is extremely computationally efficient. The sur-
prising finding is that the methodology turns out
to be quite general, as it is effective regardless
of the nature of the node dynamics. We envision,
among others, the following outstanding problems
for which our method can find potential use. In
neurobiology, a set of electrodes placed at various
probing points of a brain region yields a set of elec-
trical signals. It is of interest to know which point
is the most important one in terms of the particu-
lar brain activity, e.g. epileptic seizures, so as to
guide treatment including surgical operations. In
social science applications, one can obtain infor-
mation about the appearance of certain individu-
als from a set of cameras placed in public areas,
and it is of interest to know which individuals are
the most important ones in terms of their connec-
tions with other individuals. In a communication
network, it is important to be able to identify points
where the traffic is likely to get bottlenecked. Accu-
rate detection of these bottleneck points in advance
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can result in strategies to effectively prevent traffic
congestions on the network.

2. Methods

2.1. One-to-one correspondence
between principal components
of adjacency matrix and node
degrees

To gain insight, we consider a large complex net-
work with adjacency matrix A, where Aij = 1 if
there is a connection between nodes i and j, Aij = 0
otherwise, and Aii = 0. The degree ki of node i
is given by ki =

∑N
j=1 Aij. Since A is symmet-

ric, it has a set of real eigenvalues, thus it can be
decomposed as [Wall et al., 2003]: A =

∑
i λieieT

i ,
where |λ1| ≥ |λ2| . . . |λN | are the eigenvalues and
ei’s (i = 1, . . . , N) are the corresponding eigenvec-
tors. Note that for asymmetric matrix, or even rect-
angular matrix, such a decomposition also exists,
known as the singular value decomposition, with
now the eigenvalues being called singular values
[Wall et al., 2003]. For a large matrix, the largest

eigenvalue is typically much greater in magnitude
than the remaining eigenvalues [Farkas et al., 2001].
We thus have

A ≈ λ1e1eT
1 .

Summing over the rows on both sides gives

kj ≈ Cλ1e1,j ∼ e1,j , (1)

where C =
∑

l e1,l is a constant. Our simple rea-
soning thus suggests a direct, proportional relation
between the node degree and the component of the
eigenvector associated with the largest eigenvalue
of the adjacency matrix. For complex networks
occurring in nature and technological systems,
such as random networks [Erdős & Rényi, 1959],
small-world networks [Watts & Strogatz, 1998],
and scale-free networks [Barabási & Albert, 1999],
they are typically large. Thus we expect Eq. (1)
to hold for complex networks arising in applica-
tions. Numerical verification of Eq. (1) for two dif-
ferent types of networks, random and scale-free
networks, is provided in Figs. 1(a)–1(d). The ran-
dom network is the classical Erdős–Rényi net-
work [Erdős & Rényi, 1959] where any pair of
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Fig. 1. Components e1,j of the principal eigenvector e1 of the adjacency matrix versus node degree for (a) a random network
and (b) a scale-free network, where the corresponding behaviors of the degree-averaged components 〈e1,j〉 are shown in (c)
and (d), respectively. Both networks have the size N = 1000. The average degree is 〈k〉 = 30 for the random network and
〈k〉 = 6 for the scale-free network.
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nodes are connected with probability p. The scale-
free network is constructed by using the standard
preferential-attachment rule with the degree distri-
bution P (k) ∼ k−3 [Barabási & Albert, 1999].

2.2. General synchronization
probability matrix

The problem of interest is to probe network struc-
ture based on a limited set of measurements. The
nature of this problem stipulates that the adjacency
matrix is not known a priori. A key issue is thus
to search for some proper matrix that exhibits a
similar behavior to that given by Eq. (1). A crite-
rion is that such a matrix can be constructed based
on measured time series only. There can be many
choices for the matrix. Here, we choose the gen-
eral synchronization matrix as proposed in [Zhao
et al., 2005] and demonstrate that it exhibits char-
acteristics of the adjacency matrix in the sense of
Eq. (1). In particular, say N points of the network
to be probed are externally accessible and N time
series {xi(t)} (i = 1, . . . , N), one from each accessi-
ble point, have been measured. For any pair of time
series xi(t) and xj(t), and a long time interval T0,
the synchronization-probability Φij is defined to be
the fraction of time during which |xi(t)−xj(t)| < δ,
where δ is a small threshold comparing with the
range of the time series [Marwan et al., 2007]. By
definition, Φ is symmetric and the computation
of Φij is efficient. The general synchronization-
probability matrix Φ can be obtained after the syn-
chronization probabilities from all distinct pairs of
time series are calculated. In order for the matrix Φ
to reflect the connectivity of the network, a require-
ment is that there should be some coherence among
the node dynamics. If there is no correlation among
the node dynamics, the time series will be random
with respect to each other. In this case, the vari-
ous synchronizabilities will assume small values that
are approximately identical for different pairs of
nodes. As a result, the matrix Φ can be badly condi-
tioned, preventing the node degrees to be detected.
In the opposite case where there is a complete syn-
chronization among the nodes, the synchronization
probabilities will be close to unity and the matrix
Φ will be singular. Thus, our method is expected to
work in the “weakly-coherent” regime where node
dynamics are somewhat correlated but not com-
pletely synchronized. Also note that, when the sig-
nals are contaminated with noise, the threshold

needs to be adapted accordingly [Marwan et al.,
2007].

Note that, the proportional relation Eq. (1)
holds only for the adjacency matrix A. For the
general synchronization-probability matrix, it can
be regarded as a randomized adjacency matrix:
Φ = c1A + c2∆, where c1 and c2 are positive coef-
ficients that c1 + c2 is in the order of 1, ∆ is a sym-
metric random matrix whose elements are bounded
in [0, 1] with mean value µ and standard deviation
σ, and diag(∆) = 0. Approximating Φ by its first
eigenvalue and eigenvector, we have

λ1e1eT
1 ≈ c1A + c2∆.

Summing over the rows on both sides yields

e1,j ≈ 1
Cλ1

(c1kj + c2µN), (2)

where C =
∑

l e1,l. The coefficients c1 and c2

depend on both topological and dynamical param-
eters and can be quite different for different sys-
tems. Therefore, the component of the eigenvector
associated with the largest eigenvalue of the gen-
eral synchronization-probability matrix has a linear
dependence on the node degree, which is superim-
posed on a plateau (the second term). Since the
eigenvector is normalized,

∑
j e2

1,j = 1, the larger
the value of the plateau, the smaller the span in
the variation of e1,j [i.e. c1(kmax−kmin)/Cλ1]. Thus
when the noise term c2∆ contributes equally to
each component e1,j, it only reduces the span of the
value of the principal eigenvector components while
keeping the linear relation untouched (although the
slope could be different). In general, due to fluctua-
tion, such an ideal linear relation between principal
eigenvector component and node degree cannot be
expected. However, insofar as there is an approxi-
mate one-to-one correspondence between the eigen-
vector components and the degrees, the goal of
detecting hub nodes — those with large e1,js —
can be achieved. Since the range of e1,j can be
quite different for different networks or even differ-
ent dynamical systems, the absolute value of e1,j for
one case cannot be used to judge other cases. Due
to the approximate nature of the method and other
random factors such as noise, such a one-to-one
correspondence should be interpreted statistically:
a relatively large value of the principal eigenvec-
tor component only means a higher probability for
the corresponding node to have a large degree. In a
practical sense, in order to detect, say, a small set of
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m hub nodes, it is necessary to use n � m observa-
tional points to obtain an n× n matrix of synchro-
nization probability. Independent measurements are
also necessary so that an ensemble of matrices can
be obtained, enabling meaningful average values of
the principal-eigenvector components to be calcu-
lated so as to make the detection of node degrees
reliable.

3. Results

To demonstrate the generality of our method,
we have carried out extensive computations using
continuous-time and discrete-time, regular and
chaotic dynamics on random and scale-free net-
works. Our computations reveal that the base of
our method, an approximate one-to-one correspon-
dence apparently holds, regardless of the specific
node dynamics and network topology. Here, we shall
present five representative examples.

3.1. Example 1 — Networks of
coupled phase oscillators

This is the classical Kuramoto model [Kuramoto,
1984], where the individual node dynamics is that
of a regular phase oscillator:

dθi

dt
= ωi − ε

N∑
j=1

Aij sin (θi − θj),

where θ is a phase variable, the frequency ωi of
unconstrained oscillation at node i is random and
uniformly distributed in [−1, 1], and Aij is the ele-
ment of the adjacency matrix. Assume that all these
are unknown, and only a set of time series xi(t) =
sin θi(t) (i = 1, . . . , N) can be measured. To calcu-
late the general synchronization-probability matrix,
we set T0 = 3000 and δ = 0.2 (somewhat arbitrarily,
and the result does not depend sensitively on the
choice of these parameters). Note that in general,
people use a small δ value (e.g. 0.001) to reveal com-
plete synchronization. However, for a less coherent
system, a larger value is desirable to mitigate the
possible decoherent effects and, in the meanwhile,
to characterize certain amount of synchronization.
Thus for each pair (i, j), we calculate the time Tij

where |xi(t) − xj(t)| < δ = 0.2 during the time
interval T0. Then the synchronization probability
for pair (i, j) is given by Φij = Tij/T0, from which
the general synchronization probability matrix Φ
is constructed. The eigenvector e1 associated with

the largest eigenvalue of matrix Φ can then be
obtained. Note that there is a one-to-one correspon-
dence between the component, say, e1,j , of the eigen-
vector e1 and the index j of the measured time
series. Also, index j means that the time series is
measured from node j, thus it has a one-to-one cor-
respondence with kj , the degree of node j. Suppose
the mth component of e1 has the largest value,
among all components. If the relation Eq. (1) holds,
the mth node would then have the largest possi-
ble degree among N accessible nodes. There can,
of course, be more than one node with the same
degree, thus it is useful to compute the average 〈e1,j〉
of the eigenvector components over the nodes with
the same degrees. Figures 2(a) and 2(b) show the
results for the two types of complex networks. We
observe an approximate one-to-one correspondence
between 〈e1,j〉 and the node degree, as in Eq. (2).

3.2. Example 2 — Networks of
chaotic Rössler oscillators

We now consider the coupled nonidentical chaotic
Rössler oscillators. The system equations are:

dxi

dt
= −(yi + zi) + ε

N∑
j=1

Gijxj,

dyi

dt
= xi + aiyi,

dzi

dt
= 0.2 + zi(xi − 9),

where ε is the coupling constant, G is the cou-
pling matrix such that Gii = 1 and Gij = −Aij/ki

for j �= i. The parameter ai is random but node-
specific and it is assumed to distribute uniformly
in the interval (0.16, 0.24). After a short transient,
we measure the dynamical variable xi and calculate
the synchronization-probability between the nodes.
The first eigenvector of the general synchronization-
probability matrix is calculated subsequently. The
one-to-one relation between the components and
the degrees of their corresponding nodes is shown
in Fig. 3.

3.3. Example 3 — Networks of
double-scroll Lorenz oscillators

The above two types of oscillators are bounded and
a tiny coupling will lead to nonzero synchronization-
probability [Zhao et al., 2005]. Here we study
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Fig. 2. For the classical Kuramoto model, 〈e1,j〉 versus the node degree for (a) a random network and (b) a scale-free network
obtained by using the general synchronization-probability matrix. Both networks have the size N = 100. The average degree
is 〈k〉 = 10 for the random network and 〈k〉 = 6 for the scale-free network. The coupling parameter is (a) ε = 0.25 and
(b) ε = 0.3. Each data point is the average of results from 1000 measurements.

Lorenz oscillator, which has a double-scroll geom-
etry. This geometry requires the coupling to be
strong enough to induce certain synchronization.
The system equation is given by:

dxi

dt
= −σi(yi − xi) + ε

N∑
j=1

Gijxj ,

dyi

dt
= xi(28 − zi) − yi,

dzi

dt
= xiyi − 8

3
zi,

where ε is the coupling constant, Gii = 1 and
Gij = −Aij/ki for j �= i, σi is the Prandtl num-
ber and usually takes a value of 10. Here, since
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Fig. 3. For the coupled chaotic Rössler model, 〈e1,j〉 versus the node degree for (a) a random network and (b) a scale-free
network obtained from the general synchronization-probability matrix. The network parameters are the same as in Fig. 2. The
coupling parameter is (a) ε = 0.5 and (b) ε = 0.05. T0 = 3000 and δ = 1. Each data point is the average of results from 1000
independent measurements.
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Fig. 4. For the coupled Lorenz oscillators, 〈e1,j〉 versus node degree k for (a) random network with ε = 10, and (b) scale-free
network with ε = 10. Other parameters are the same as for Fig. 3.

our aim is to study the correlation between non-
synchronized oscillators, we introduce a small dis-
crepancy between different oscillators, by taking
σi as a random number uniformly distributed in
the interval (8, 12), where the mean value is 10.
Assume xi is the measurement signals. The rela-
tion between the averaged components and degree
k for this coupled double-scroll chaotic system is
shown in Fig. 4. The one-to-one relation is clear.
Thus for either phase oscillator, one-scroll chaotic
oscillator, or double-scroll chaotic oscillator, the
measurement based component e1,j of the gen-
eral synchronization-probability matrix can be used
as an indicator of the relative magnitude of the
degree.

3.4. Example 4 — Subnetworks of
coupled phase oscillators

In this case, the node dynamics is the same as
in Example 1. However, we assume the accessible
points are much smaller than the network size N .
In particular, for a network of size N = 1000, we
assume only n = 100 nodes are accessible. Corre-
spondingly, the general synchronization probability
matrix Φ for this subnetwork is constructed and
the one-to-one relation between 〈e1,j〉 and the node
degree is demonstrated in Figs. 5(a) and 5(b). Note
that here the degree is the number of links a node
has in the subnetwork. As the nodes of the sub-
set can be scattered randomly in the original net-
work, then on average, the degree of a node in the

subnetwork k � k0n/N , where k0 is the degree of
the node in the original network. Thus, the hub
nodes in the subnetwork are more likely to be the
hub nodes in the original network. Viewing the sub-
network as a separated system, the rest of the orig-
inal network can be regarded as the environment,
which sends persistent perturbations into the sub-
system (through the couplings). Therefore, the sup-
port for the ability to detect hubs in the subnetwork
also indirectly substantiates the resistance of the
method to external noise.

3.5. Example 5 — Application to
real networks

Here, we consider the actor network where two
actors have a link if they ever performed in a movie
[Barabási & Albert, 1999]. The data consists of
392 340 actors and M = 127 823 movies. For such
a large networked system, it is usually impossible
or unnecessary to probe all the nodes. Thus, we
focus on a small set of access points, i.e. the first
n = 1000 actors, which are chosen rather arbitrar-
ily. Since there are no typical dynamical processes
on the network, we construct the observable “time
series” as follows. First, we assign each movie a
number, m, from 1 to M , as the discrete “time”
step, and xi(m) = 1 if actor i appeared in movie
m, otherwise xi(m) = −i. Then the characteristic
matrix Φ is constructed from the “time series” xi

and the one-to-one relation between 〈e1,j〉 and the
node degree is demonstrated in Fig. 6.
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Fig. 5. For the classical Kuramoto model with N = 1000 oscillators and originally (a) a random network and (b) a scale-free
network, 〈e1,j〉 versus the node degree for a subnetwork of size n = 100. The average degree is (a) 〈k〉 = 100 and (b) 〈k〉 = 6
for the original network. The coupling parameter is (a) ε = 0.1 and (b) ε = 0.3. Other parameters are the same as for Fig. 2.
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Fig. 6. For a subset of (a) n = 1000 and (b) n = 10 000 of the actor network, 〈e1,j〉 versus the node degree k in the subnetwork.
(a) 〈k〉 = 23 and (b) 〈k〉 = 59. δ = 0.1.

To test the ubiquity of the method, we have
additionally carried out simulation on coupled iden-
tical and nonidentical logistic maps, and avalanche
processes for several distinct network topologies,
they all show the one-to-one relation between prin-
cipal component and the node degree. Therefore,
the proposed method to detect hubs can have wide
applications independent of the specific dynamic
models and connecting topologies.

4. Remarks

Since the method is rather statistical than deter-
ministic, one may expect to select more nodes in
order to include a small subset of hub nodes. To
be specific, let us consider the actor network as in
Sec. 3.5. Figure 7(a) shows e1,j of the general syn-
chronization probability matrix versus kj without
doing average. The one-to-one relation between e1,j

and kj holds only approximately. As the relation is
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Fig. 7. For a subset of n = 1000 nodes of the actor network as in Sec. 3.5, (a) e1,j versus the node degree kj without doing
average; (b) in order to include eight hubs, the fraction Ef of the eight hubs included in the Ns subset of nodes detected as
hubs by the method (solid line), the dotted line is the result if the nodes are chosen randomly; (c) Ef versus Ns (solid line)
where the number of hubs Nh is the same as the number of nodes Ns in the detected subset, the dotted line is the result if
the nodes are chosen randomly; (d) contour plot of Ef versus Nh and Ns.

not perfect, using e1,j to detect hubs will contain
uncertainties. For example, if we want to determine
Nh hub nodes, we may locate the first Ns nodes
with the largest values of e1,j . To characterize the
efficiency of the method, we introduce Ef as the
fraction of the Nh hub nodes found in the subset
of Ns nodes from e1,j. Figure 7(b) demonstrates an
example of Ef versus Ns with Nh = 8. It can be
seen that five nodes with the largest values of e1,j

contain three of the eight hub nodes. In order to
include all eight hubs, 30 nodes with the largest
e1,j values need to be selected. Although the num-
ber of selected nodes by the method to include all
target hubs is substantially larger than the number
of actual hubs, it still outperforms the random selec-
tion method significantly (picking up Ns nodes ran-
domly, as indicated by the dotted line). Figure 7(c)

shows Ef versus Ns for Nh = Ns. Insofar as the
number of hubs to be detected is more than a few,
Ef can be as high as 0.6. That is, by the method
from the same number of nodes with high e1,j val-
ues, one can locate approximately 60% of the hub
nodes. A typical variation of Ef over Nh and Ns is
shown in Fig. 7(d). Again, while the method can-
not determine all hub nodes precisely, it can predict
60% or even 80% of the target hubs. A potential
application is that when only a limited number of
measured time series are available for a networked
system, our method could provide a list of potential
hubs with high probability.

The synchronization probability defined here
is the same as the recurrence probability that
can be computed, e.g. from cross recurrence plots
[Marwan et al., 2007], which detects complete
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synchronization between two variables. The method
will fail if the two variables have a phase shift, a lag,
or any additional variation of the amplitude. To be
more general and in order to detect lag synchro-
nization, phase synchronization or even general-
ized synchronization, similar but more complicated
approaches, e.g. joint recurrence plot, τ -recurrence
rate etc., can be used [Marwan et al., 2007]. Nev-
ertheless, an appropriate pretreatment, such trans-
ferring the phase angle to oscillation variables and
normalizing the amplitude in case of oscillations,
etc., can broaden the applicability of the method.
There are cases where other measures can work bet-
ter than the synchronization probability, such as
the cross correlation matrix, τ -recurrence etc. How-
ever, there are also cases when the synchronization
probability measure works better. In particular, for
the actor network, the synchronization probabil-
ity is far better for the constructed time series
than, say, the cross correlation. This is because
the variables only take on two values, 1 or −i
for node i. The synchronization probability counts
values 1, which reflects the probabilities for connec-
tions among nodes, and neglects −i, but the corre-
lation focuses on −i since a node is more likely to
assume this value than 1. Therefore, although we
start our procedure from dynamical networks, the
method performs better for networks with variables
taking on discrete values.

The key to our method is that the largest
eigenvalue of the adjacency matrix should be well
separated from all other eigenvalues. This prop-
erty actually holds regardless of whether the net-
work is sparse or dense, insofar as the size of the
network is large. In particular, for a random net-
work of N nodes and connecting probability p,
the average number of links at a node is Np. The
eigenvalues of the adjacency matrix are distributed
according to the Wigner’s semicircle law [Wigner,
1955]: the largest eigenvalue is of the order of
Np, while all other eigenvalues are approximately
bounded by |λi| ≤ 2

√
Np(1 − p). We thus have

|λ2| ∼ 2
√

Np(1 − p) and

∣∣∣∣λ1

λ2

∣∣∣∣ ∼ 0.5

√
Np

(1 − p)
, (3)

which becomes larger and larger as N and/or p are
increased, making more accurate the linear relation
between the components of the largest eigenvec-
tor and the node degree. Similar arguments hold

0 0.2 0.4 0.6 0.8 1
10

0

10
1

〈k〉/N

|λ
1/λ

2|

Fig. 8. The ratio |λ1/λ2| versus normalized average degree
〈k〉/N for random networks (circles) and scale-free networks
[Barabási & Albert, 1999]. Network size N = 100. Symbols
are simulation results from one realization of the network,
curve is the theoretical result Eq. (3).

for scale-free networks, based on the results of, e.g.
[Farkas et al., 2001]. All these have been verified
by numerical computations. For example, we have
examined random networks of 100 nodes with p
ranging from 0.05 to 0.95 and scale-free networks
of the same size with average degree ranging from 4
to 90. The results are shown in Fig. 8. Note that the
networks considered contain both sparse and dense
networks.

There exist various approaches to infer sys-
tem structures from applying bivariate time series
analysis techniques. Examples include applica-
tions to financial systems [Plerou et al., 1999],
neuronal functional networks [Jia et al., 2004],
brain functional networks [Eguiluz et al., 2005],
human EEG data [Seba, 2003], Internet traffic
[Barthelemy et al., 2002], and atmospheric motion
[Santhanam & Patra, 2001], etc. The treatments
mainly employ correlation matrix and uncover the
structural information of the specific system by
comparing the results with those from random
matrices. For our purpose to detect hub nodes,
we found that using the general synchronization-
probability matrix yields better results and is
practically easier to be implemented. Depending
on the output signal, the synchronization proba-
bility may characterize complete synchronization
of the dynamical systems, or it may describe the
coincidence among the dynamical nodes (can be
human beings) on some specific events. Therefore,
the general synchronization-probability matrix is
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more flexible and can be easily adapted for differ-
ent tasks. And insofar as the recorded data bear
interaction information, the constructed general
synchronization-probability matrix can be used to
locate the hub nodes.

The procedure we employed is similar to
the eigenvector centrality method to assign node
scores [Bonacich, 1972; Newman, 2004; Estrada &
Rodŕıguez-Velázquez, 2005]. The difference is that
for eigenvector centrality, the adjacency matrix is
assumed to be known and the goal is to deter-
mine the relative importance of the nodes. While
in our procedure, the goal is the same but only the
measured time series are accessible and the matrix
employed is the general synchronization-probability
matrix which mimics the role of the adjacency
matrix. The same holds for weighted networks
[Newman, 2004].

There are benefits of using the components
of the principal eigenvector as an indicator of
node importance. First, as previously discussed and
numerically demonstrated in the paper, the com-
ponents have an approximate one-to-one relation
with the node degrees thus they can be used to
identify the hub nodes. Second, the components are
in fact the principal components treating the gen-
eral synchronization-probability matrix of size N
as N time series (channels) [Pearson, 1901; Gor-
ban et al., 2007]. Thus these components give the
relative strength of the channels, and effectively
bypass the noises. The general synchronization-
probability matrix, by construction, is contami-
nated with a huge amount of noise. Particularly,
since the information interested is the degree of
“synchronization,” revealing the interaction thus
possible existence of a link, the useful “signal” is
small compared with the “noise” which is the vari-
ation of the time series observed from the nodes.
Thus from the general synchronization-probability
matrix it is difficult to infer the adjacency matrix
directly. Applying a noise reduction procedure such
as principal component analysis, the calculated
principal components are able to indicate the hub
nodes. Note that principal component analysis may
suffer from nonunicity issues. For our application,
since we use only the first component, e.g. the eigen-
vector of the largest eigenvalue of the constructed
generalized synchronization matrix, insofar as the
largest eigenvalue is not degenerated (as in most
cases), the eigenvector is unique. Thus the unicity
for our case is preserved.

5. Conclusion

We have developed a general and computationally
efficient method to detect selected but important
topological information of an unknown complex
network based only on measured time series. A
heuristic argument suggests that, when the net-
work to be probed is large, the degrees of the nodes
from which measurements are taken can be uniquely
determined from the components of the principal
eigenvectors of the underlying coupling matrix. By
assuming that a set of time series can be measured,
which bear information about the intrinsic node-to-
node interactions in the network, and by defining a
general synchronization-probability matrix that can
be computed straightforwardly from the time series,
we demonstrate the existence of a robust one-to-one
correspondence between the principal-eigenvector
components and the node degrees, regardless of the
details of the node dynamics and the network topol-
ogy. Our method can find broad applications. For
instance, in order to find a small set of nodes of
great importance from an unknown network, one
can simply identify those components of the prin-
cipal eigenvectors with relatively large values, and
this can be done using measured time series only.
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