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In this paper, two issues are addressed: (1) the applicability of the delay-coordinate embedding
method to transient chaotic time series analysis, and (2) the Hilbert transform methodology for
chaotic signal processing.

A common practice in chaotic time series analysis has been to reconstruct the phase space
by utilizing the delay-coordinate embedding technique, and then to compute dynamical invariant
quantities of interest such as unstable periodic orbits, the fractal dimension of the underlying
chaotic set, and its Lyapunov spectrum. As a large body of literature exists on applying the
technique to time series from chaotic attractors, a relatively unexplored issue is its applica-
bility to dynamical systems that exhibit transient chaos. Our focus will be on the analysis of
transient chaotic time series. We will argue and provide numerical support that the current
delay-coordinate embedding techniques for extracting unstable periodic orbits, for estimating
the fractal dimension, and for computing the Lyapunov exponents can be readily adapted to
transient chaotic time series.

A technique that is gaining an increasing attention is the Hilbert transform method for
signal processing in nonlinear systems. The general goal of the Hilbert method is to assess the
spectrum of the instantaneous frequency associated with the underlying dynamical process. To
obtain physically meaningful results, it is necessary for the signal to possess a proper rotational
structure in the complex plane of the analytic signal constructed by the original signal and its
Hilbert transform. We will describe a recent decomposition procedure for this task and apply
the technique to chaotic signals. We will also provide an example to demonstrate that the
methodology can be useful for addressing some fundamental problems in chaotic dynamics.

Keywords : Chaotic time series; delay coordinates; embedding; transient chaos; correlation dimen-
sion; Lyapunov exponents; unstable periodic orbits; Hiebert transform; instantaneous frequency.

1. Introduction

Parallel to the rapid development of nonlinear dy-
namics since the late seventies, there has been
a tremendous amount of effort on data analysis.

Suppose an experiment is conducted and some time
series are measured. Such a time series can be, for
instance, a voltage signal from a physical or biologi-
cal experiment, or the concentration of a substance
in a chemical reaction, or the EEG signals from a
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patient with epileptic seizures, or the amount of
instantaneous traffic at a point in the internet, and
so on. The general question is: what can we say
about the underlying dynamical system that gen-
erates the time series, if the equations governing
the time evolution of the system are unknown and
the only available information about the system
is the measured time series?

This paper reviews two approaches in nonlin-
ear data analysis: (1) the delay-coordinate embed-
ding technique [Takens, 1981], and (2) the time-
frequency method based on the Hilbert transform
[Huang et al., 1998]. The embedding method has
been proven useful, particularly for time series from
low-dimensional, deterministic or mostly determin-
istic1 dynamical systems. That is, for situations
where the dynamical invariant set responsible for
the behavior of the measured time series is low-
dimensional and the influence of noise is relatively
small, the delay-coordinate embedding method can
yield reliable information essential for understand-
ing the underlying dynamical system. The method
has been applied to many disciplines of science and
engineering [Abarbanel, 1996; Kantz & Schreiber,
1997], and it is also the key to controlling chaos
[Ott et al., 1990; Garfinkel et al., 1992; Schiff et al.,
1994; Boccaletti et al., 2000], one of the most fruit-
ful areas in applicable chaotic dynamics in the last
decade [Chen, 1999].

The mathematical foundation of the delay-
coordinate embedding technique was laid by Takens
in his seminal paper [Takens, 1981]. He proved that,
under fairly general conditions, the underlying dy-
namical system can be faithfully reconstructed from
time series in the sense that, a one-to-one corre-
spondence can be established between the recon-
structed and the true but unknown dynamical sys-
tems. Based on the reconstruction, quantities of
importance for understanding the system can be es-
timated, such as the relative weights of determinis-
ticity and stochasticity embedded in the time series,
the dimensionality of the underlying dynamical sys-
tem, the degree of sensitivity on initial conditions
as characterized by the Lyapunov exponents, and
unstable periodic orbits that constitute the skele-
ton of the invariant set responsible for the observed
dynamics.

There exists a large body of literature on
the application of the delay-coordinate embedding

technique to dynamical systems with chaotic attrac-
tors [Abarbanel, 1996; Kantz & Schreiber, 1997].
Time series obtained from such a system can in
principle be as long as one wishes. Another common
situation of interest is where the dynamical system
exhibits only transient chaos [Grebogi et al., 1982,
1983; Grassberger & Kantz, 1985; Tél, 1990, 1996].
For such a system, a measured signal exhibits a ran-
dom behavior during an initial time interval before
finally settling into a nonchaotic state. The con-
ventional wisdom may be simply to disregard the
transient portion of the data and to concentrate on
the final state. By doing this, however, information
about the system may be lost, because the irregu-
lar part of the data may contain important hints
about the system dynamics. Transient chaos is in
fact ubiquitous in dynamical systems. In view of
this, analyzing transient chaotic time series is as
important as analyzing sustained chaotic data, yet
to our knowledge, the problem has begun to be ad-
dressed only recently [Janosi & Tél, 1994; Dhamala
et al., 2000, 2001].

It has been known that the dynamical invari-
ant sets responsible for transient chaos are nonat-
tracting chaotic saddles [Grebogi et al., 1982, 1983;
Grassberger & Kantz, 1985; Tél, 1990, 1996]. Here,
“nonattracting” means that a trajectory starting
from a typical initial condition in a phase-space
region containing the saddle stays near the sad-
dle for a finite amount of time exhibiting chaotic
behavior, exits the region, and approaches asymp-
totically to a final state. Chaotic saddles are com-
mon in nonlinear dynamical systems. For instance,
a chaotic saddle can arise after a chaotic attractor
is destroyed at crisis [Grebogi et al., 1982, 1983].
Or, a saddle can be found in every periodic win-
dow where it coexists with a periodic attractor.
Physically, chaotic saddles lead to observable
phenomena such as chaotic scattering [Tél & Ott,
1993], fractal basin boundaries [McDonald et al.,
1985], fractal concentrations of passive particles
advected in open hydrodynamical flows [Jones &
Aref, 1988; Jones et al., 1989; Young & Jones,
1991; Jung & Ziemniak, 1992; Jung et al., 1993;
Ziemniak et al., 1994; Péntek et al., 1995;
Stolovitzky et al., 1995; Karolyi & Tél, 1997], and
fractal distribution of chemicals in environmental
flows [Toroczkai et al., 1998; Károlyi et al., 1999;
Nishikawa et al., 2002]. Mathematically, chaotic

1In realistic situations environmental noise is inevitable. Here “mostly deterministic” means that the system evolves according
to a set of determinsitic rules, under the influence of small noise.
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saddles are closed, bounded, and invariant sets with
dense orbits. They are the “soul” of chaotic dynam-
ics [Smale, 1967].

One focus of this paper will then be on ana-
lyzing time series from transient chaotic systems.
The following problems will be addressed: (1) de-
tecting unstable periodic orbits, (2) estimating
the correlation dimension, and (3) computing the
Lyapunov exponents. The main point is that, de-
spite the difficulty in dealing with a transient
chaotic system for which the chaotic phases con-
taining the essential information about the system
are short, many of the standard algorithms that are
used to estimate dynamical quantities from time se-
ries of sustained chaotic processes can be applied to
ensembles of transient chaotic time series. It is not
necessary to construct a single long time series from
a set of shorter ones. All that is required is a collec-
tion of transient time series, starting from different
initial conditions. Section 2 is devoted to the es-
sential features of the delay-coordinate embedding
technique and various methods for computing the
dynamical invariants from transient chaotic time
series.

The Hilbert-transform based time-frequency
method [Huang et al., 1998] can be applied to non-
linear and/or nonstationary time series. The tech-
nique can in principle be applied to random and
nonstationary time series, and it can be useful if one
is interested in analyzing the system in terms of the
distribution of the instantaneous, physical frequen-
cies.2 In certain circumstances the time-frequency
method can be powerful for identifying the phys-
ical mechanisms responsible for the characteristics
of the instantaneous-frequency spectrum of the data
[Huang et al., 1998].

The time-frequency method to be described in
this paper aims to extract the fundamental phys-
ical frequencies from chaotic time series. Roughly,
a random but bounded time series implies recur-
rence in time of the measured physical quantity. The
recurrence can be regarded, conceptually, as being
composed of rotations in a physical or mathemat-
ical space. The questions are: how many principal
rotations exist and what are the frequency char-
acteristics of these rotations? The recent ground-
breaking idea by Huang et al. [1998] leads to a
powerful technique that provides answers to these
questions. It should be stressed here that the fre-

quency components here correspond to rotations
and, hence, they are different from these in the
traditional Fourier analysis or in the wavelet anal-
ysis. In many situations the instantaneous fre-
quencies of the rotations contain much more in-
formation than the Fourier or wavelet frequency
components that are associated with simple mathe-
matical functions such as the harmonics. The in-
stantaneous frequencies of rotations can thus be
physically more meaningful. While Fourier and
wavelet analyses are well developed methods for sig-
nal processing in linear systems, Huang et al. argue
that the Hilbert analysis is fundamentally superior
to both the Fourier and wavelet analyses for non-
stationary and nonlinear time series [Huang et al.,
1998]. Section 3 will detail concepts such as rota-
tions and instantaneous frequencies, analytic sig-
nals, and the Hilbert transform, describe the cor-
responding decomposition technique developed by
Huang et al. [1998], and illustrate that the method-
ology can be applied to chaotic systems. For com-
pleteness, at the beginning of Sec. 3, we briefly re-
view the Fourier spectral and wavelet methods.

2. Embedding Method for Chaotic
Time Series Analysis

2.1. Reconstruction of phase space

Let ui(t) (i = 1, . . . , l) be a set of l measurements.
In principle, the measured time series come from
an underlying dynamical system that evolves the
state variable in time according to a set of deter-
ministic rules, which are generally represented by
a set of differential equations, with or without the
influence of noise. Mathematically, any such set of
differential equations can be easily converted to a
set of first-order, autonomous equations. The dy-
namical variables from all the first-order equations
constitute the phase space, and the number of such
variables is the dimension of the phase space, which
we denote by M . The phase-space dimension can
in general be quite large. For instance, in a fluid
experiment, the governing equation is the Navier–
Stokes equation which is a nonlinear partial dif-
ferential equation. In order to represent the sys-
tem by first-order ordinary differential equations
via, say, the procedure of spatial discretization,
the number of required equations is infinite. The
phase-space-dimension in this case is thus infinite.

2These are not the traditional Fourier frequencies.
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However, it often occurs that the asymptotic evo-
lution of the system lives on a dynamical invariant
set of only finite dimension. The assumption here is
that the details of the system equations in the phase
space and of the asymptotic invariant set that deter-
mines what can be observed through experimental
probes, are unknown. The task is to estimate, based

solely on one or few time series, practically use-
ful statistical quantities characterizing the invariant
set, such as its dimension, its dynamical skeleton,
and its degree of sensitivity on initial conditions.
The delay-coordinate embedding technique estab-
lished by Takens [1981] provides a practical solu-
tion to this task [Packard et al., 1980]. In particular,
Takens’ embedding theorem guarantees that a topo-
logical equivalence of the phase space of the intrinsic
unknown dynamical system can be reconstructed
from time series, based on which characteristics of
the dynamical invariant set can be estimated.

Takens’ delay-coordinate embedding method
goes, as follows. From each measured time series
ui(t) (i = 1, . . . , l), the following vector quantity of
q components is constructed,

ui(t) = {ui(t), ui(t+ τ), . . . , ui[t+ (q − 1)τ ]} ,

where τ is the delay time. Since there are l time
series, a vector with m ≡ ql components can be
constructed, as follows:

x(t) = {u1(t), u2(t), . . . , ul(t)}
= {u1(t), u1(t+ τ), . . . , u1[t+ (q − 1)τ ] ,

u2(t), u2(t+ τ), . . . , u2[t+ (q − 1)τ ], . . . ,

ul(t), ul(t+ τ), . . . , ul[t+ (q − 1)τ ]} , (1)

where m is the embedding dimension. Clearly, the
delay time τ and the embedding dimension m
are the two fundamental parameters in the delay-
coordinate embedding method.

1. Delay time τ . In order for the time-delayed com-
ponents ui(t + jτ) (j = 1, . . . , q − 1) to serve as
independent variables, the delay time τ needs to be
chosen carefully. Roughly, if τ is too small, then
adjacent components ui(t) and ui(t + τ) will be
too correlated for them to serve as independent
coordinates. If, on the other hand, τ is too large,
then neighboring components are too uncorrelated
for the purpose. Empirically, one can examine
the autocorrelation function of ui(t) and decide a
proper delay time [Theiler, 1986]. In particular, one

computes

c(T ) ≡ 〈ui(t)ui(t+ T )〉
〈u2

i (t)〉
,

where 〈·〉 stands for time average. The delay time
τ can be chosen to be the value of T such that
c(T )/c(0) ≈ e−1.

There exist various alternative empirical meth-
ods for choosing a proper delay time [Liebert
& Schuster, 1989; Liebert et al., 1991; Buzug &
Pfister, 1992; Kember & Fowler, 1993; Rosenstein
et al., 1994], which all yield similar results. A firmer
theoretical foundation may be possible by explor-
ing the statistics for testing continuity and differ-
entiability from chaotic time series proposed by
Pecora et al. [Pecora et al., 1995; Pecora & Carroll,
1996; Pecora et al., 1997; Pecora & Carroll, 2000;
Goodridge et al., 2001].

2. Embedding dimension m. In order to have a faith-
ful representation of the true dynamical system, the
embedding dimensionm should be sufficiently large.
Takens’ theorem [Takens, 1981] provides a lower
bound for m. In particular, suppose the dynami-
cal invariant set lies in a d-dimensional manifold
(or subspace) in the phase space. Then, if m > 2d,
the m-dimensional reconstructed vectors x(t) have
a one-to-one correspondence to the vectors of the
true dynamical system. This result can be under-
stood by the following simple mathematical argu-
ment. Consider two smooth surfaces of dimensions
d1 and d2 in an M -dimensional space and exam-
ine the set of their intersections. The question is
whether they intersect generically in the sense that
the intersections cannot be removed by small per-
turbations to either surface. The natural approach
is then to look at the dimension dI of the intersect-
ing set, which is

dI = d1 + d2 −M .

If dI ≥ 0, the intersection is generic. For exam-
ple, consider the intersection of two one-dimensional
curves in a two-dimensional plane: d1 = d2 = 1 and
M = 2. We obtain: dI = 0, which means that the
intersecting set consists of points, and the intersec-
tions are generic because small perturbations can-
not remove them. If, however, M = 3, then dI <
0, which means that two one-dimensional curves
do not intersect generically in a three-dimensional
space. These two cases, together with an additional
one (d1 = 1, d2 = 2, and M = 3), are illustrated
in Fig. 1. For the case of embedding, we can ask
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Fig. 1. Illustration of generic and nongeneric intersections
of simple geometric sets: (a) d1 = d2 = 1 and M = 2 (generic
intersection), (b) d1 = d2 = 1 and M = 3 (nongeneric in-
tersection), and (c) d1 = 1, d2 = 2, and M = 3 (generic
intersection).

whether the dynamical invariant set would inter-
sect itself in the reconstructed phase space. In or-
der to obtain a one-to-one correspondence between
points on the invariant sets in the actual and re-
constructed phase spaces, self-intersection must not
occur. Thus, taking d1 = d2 = d and M = m, no
self-intersection requires dI < 0, which means that
m > 2d.

While Takens’ theorem assumes that the rele-
vant dimension d of the set is that of the manifold in
which the set lies, this dimension can be quite dif-
ferent from the dimension of the set itself, which is

physically more relevant. The work by Sauer, Yorke,
and Casdagli [Sauer et al., 1991] extends Takens’s
theorem to relax the dimension requirement: the
dimension d can in fact be the box-counting di-
mension D0 [Farmer et al., 1983] of the invariant
set.

2.2. Detection of unstable periodic

orbits

A fundamental feature that differs a deterministic
chaotic system from a stochastic one is the exis-
tence of an infinite number of unstable periodic
orbits which constitute the skeleton of the chaotic
invariant set [Auerbach et al., 1987; Gunaratne &
Procaccia, 1987; Morita et al., 1987; Grebogi et al.,
1988; Biham & Wenzel, 1989; Lai et al., 1997;
Lai, 1997; Zoldi & Greenside, 1998; Davidchack
et al., 2000]. Computation of unstable periodic or-
bits from system equations [Biham & Wenzel, 1989;
Schmelcher & Diakonos, 1997, 1998; Schmelcher
et al., 1998; Davidchack & Lai, 1999; Davidchack
et al., 2001; Pingel et al., 2001] and their detec-
tion from experimental time series have been an ac-
tive area of research [Lathrop & Kostelich, 1989;
Mindlin et al., 1990; Pawelzik & Schuster, 1991;
Badii et al., 1994; Pierson & Moss, 1995; Christini
& Collins, 1995; Pei & Moss, 1996a, 1996b; So et al.,
1996, 1997; Allie & Mees, 1997; Dhamala et al.,
2000, 2001]. At a fundamental level, unstable pe-
riodic orbits embedded in a chaotic invariant set
are related to its natural measure [Grebogi et al.,
1988; Lai et al., 1997; Lai, 1997], which is the base
for defining physically important quantities such as
the fractal dimensions and Lyapunov exponents. At
a practical level, successful detection of unstable pe-
riodic orbits indicates the deterministic origin of the
underlying dynamical process. In what follows, we
will review the basic concepts of the natural mea-
sure and unstable periodic orbits, describe an algo-
rithm for their detection from chaotic time series,
and provide numerical examples.

2.2.1. The natural measure: why are

unstable periodic orbits important?

One of the most important problems in dealing with
a chaotic system is to compute long term statistics
such as averages of physical quantities, Lyapunov
exponents, dimensions, and other invariants of the
probability density or the measure. The interest in
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the statistics roots in the fact that trajectories of de-
terministic chaotic systems are apparently random
and ergodic. These statistical quantities, however,
are physically meaningful only when the measure
being considered is the one generated by a typi-
cal trajectory in the phase space. This measure is
called the natural measure and it is invariant under
the evolution of the dynamics [Grebogi et al., 1988].

The importance of the natural measure can be
assessed by examining how trajectories behave in
a chaotic system. Due to ergodicity, trajectories on
a chaotic set exhibit sensitive dependence on ini-
tial conditions. Moreover, the long-time probabil-
ity distribution generated by a typical trajectory
on the chaotic set is generally highly singular.3 For
a chaotic attractor, a trajectory originated from a
random initial condition in the basin of attraction
visits different parts of the attractor with drasti-
cally different probabilities. Call regions with high
probabilities “hot” spots and regions with low prob-
abilities “cold” spots. Such hot and cold spots in the
attractor can in general be interwoven on arbitrarily
fine scales. In this sense, chaotic attractors are said
to possess a multifractal structure. Due to this sin-
gular behavior, one utilizes the concept of the natu-
ral measure to characterize chaotic attractors [Ott,
1993]. To obtain the natural measure, one covers
the chaotic attractor with a grid of cells and exam-
ine the frequencies with which a typical trajectory
visits these cells in the limit that both the length
of the trajectory goes to infinity and the size of the
grid goes to zero [Farmer et al., 1983]. Except for an
initial condition set of Lebesgue measure zero in the
basin of attraction, these frequencies in the cells are
the natural measure. Specifically, let f(x0, T, εi) be
the amount of time that a trajectory from a random
initial condition x0 in the basin of attraction spends
in the ith covering cell Ci of edge length εi in a time
T . The probability measure of the attractor in the
cell Ci is

µi = lim
εi→0

lim
T→∞

f(x0, T, εi)

T
. (2)

The measure is called natural if it is the same for
all randomly chosen initial conditions, that is, for
all initial conditions in the basin of attraction ex-
cept for a set of Lebesgue measure zero. The spec-
trum of an infinite number of fractal dimensions

quantifies the behavior of the natural measure
for multifractal chaotic attractors [Grassberger &
Procaccia, 1983a].

The above description can be seen by con-
sidering a physical example, the forced damped
pendulum

dx

dt
= y ,

dy

dt
= −0.05y − sin x+ 2.5 sin t .

(3)

Figure 2(a) plots [Lai, 1997], on the stroboscopic
surface of section defined at discrete times tn =
2πn, n = 1, . . . , a trajectory of 1.5 × 105 points on
the chaotic attractor, where the abscissa and the
ordinate are the angle x(tn) and the angular veloc-
ity y(tn) ≡ dx/dt|tn of the pendulum, respectively.
Figure 2(b) shows the one-dimensional probability
distribution on the attractor at y = −2. To obtain
Fig. 2(b), a one-dimensional array of 1000 rectangu-
lar cells is defined in the x-direction at y = −2. The
frequency of visits to each cell is then computed by
utilizing a trajectory of 107 points on the surface
of section. In fact, probability distributions on any
line intersecting the chaotic attractor exhibit simi-
lar behavior. These results suggest a highly singular
probability distribution on the chaotic attractor.

Because of the physical importance of the nat-
ural measure, it is desirable be able to understand
and characterize it in terms of the fundamental dy-
namical quantities of the chaotic set. There is noth-
ing more fundamental than to express the natural
measure in terms of the periodic orbits embedded
in a chaotic attractor.

A chaotic set has embedded within itself an
infinite number of unstable periodic orbits. These
periodic orbits are atypical in the sense that they
form a Lebesgue measure zero set. With probability
one, randomly chosen initial conditions do not yield
trajectories which live on unstable periodic orbits.
Invariant measures produced by unstable periodic
orbits are thus atypical, and there is an infinite
number of such atypical invariant measures embed-
ded in a chaotic attractor. The “hot” and “cold”
spots are a reflection of these atypical measures.
The natural measure, on the other hand, is typical
in the sense that it is generated by a trajectory orig-
inated from any one of the randomly chosen initial

3Take, for example, the logistic map xn+1 = 3.8xn(1 − xn) that exhibits a chaotic attractor. A simple argument [Ott, 1993]
based on mapping of the probability in a small interval suggests that singularities in the probability distribution occurs at all
forward images of the critical point xc = 1/2 under the map, which are dense in the attractor.
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(a) (b)

Fig. 2. For the forced damped pendulum system Eq. (3), (a) a trajectory of 1.5 × 105 points on the chaotic attractor on the
stroboscopic surface of section, and (b) the distribution of the natural measure in a one-dimensional array of 1000 rectangular
cells in the x-direction at y = 2. The size of each cell is 2π/1000 × 0.06. Numerically, the total measure contained in the
attractor is normalized to unity. Apparently, the natural measure is singular.

conditions in the basin of attraction. A typical tra-
jectory visits a fixed neighborhood of any one of the
periodic orbits from time to time. Thus, chaos can
be considered as being organized with respect to
the unstable periodic orbits [Auerbach et al., 1987;
Gunaratne & Procaccia, 1987].

Grebogi, Ott, and Yorke derived [Grebogi et al.,
1988], for the special case of hyperbolic chaotic sys-
tems,4 a formula relating the natural measure of
the chaotic set in the phase space to the expand-
ing eigenvalues of all the periodic orbits embedded
in the set. Specifically, consider an N -dimensional
map M(x). Let xip be the ith fixed point of the p-
times iterated map, i.e. Mp(xip) = xip. Thus each
xip is on a periodic orbit whose period is either p
or a factor of p. The natural measure of a chaotic
attractor in a phase-space region S is given by

µ(S) = lim
p→∞

∑

xip∈S

1

L1(xip, p)
, (4)

where L1(xip, p) is the magnitude of the expand-
ing eigenvalue of the Jacobian matrix DMp(xip),

and the summation is taken over all fixed points
of Mp(x) in S. This formula can be derived under
the assumption that the phase space can be divided
into cells via a Markov partition, a condition that
is generally satisfied by hyperbolic chaotic systems.
Explicit verification of this formula was done for
several analyzable hyperbolic maps [Grebogi et al.,
1988]. Equation (4) is theoretically significant and
interesting because it provides a fundamental link
between the natural measure and various atypical
invariant measures embedded in a chaotic attrac-
tor. The applicability of Eq. (4) to nonhyperbolic
chaotic systems has also been addressed recently
[Lai et al., 1997; Lai, 1997].

2.2.2. Extracting unstable periodic orbits

from transient chaotic time series

A powerful algorithm for detecting unstable pe-
riodic orbits from chaotic time series is due to
Lathrop and Kostelich (LK) [Lathrop & Kostelich,
1989]. The method is based on identifying sets of

4The dynamics is hyperbolic on a chaotic set if at each point of the trajectory the phase space can be split into an expanding
and a contracting subspaces and the angle between them is bounded away from zero. Furthermore, the expanding subspace
evolves into the expanding one along the trajectory and the same is true for the contracting subspace. Otherwise the set is
nonhyperbolic. In general, nonhyperbolicity is a complicating feature because it can cause fundamental difficulties in the study
of the chaotic systems, such as the shadowability of numerical trajectories by true trajectories [Hammel et al., 1987, 1988;
Grebogi et al., 1990; Dawson et al., 1994; Lai et al., 1999a; Lai & Grebogi, 1999; Lai et al., 1999b].
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recurrent points in the reconstructed phase space.
To do this, one first reconstructs a phase-space
trajectory x(t) from a measured scalar time se-
ries {u(t)} by using the delay-coordinate embedding
method described in Sec. 2.1. To identify unstable
periodic orbits, one follows the images of x(t) un-
der the dynamics until a value t1 > t is found such
that ‖x(t1) − x(t)‖ < ε, where ε is a prespecified
small number that defines the size of the recurrent
neighborhood at x(t). In this case, x(t) is called an
(T, ε) recurrent point, and T = t1 − t is the re-

currence time. A recurrent point is not necessarily
a component of a periodic orbit of period T . How-
ever, if a particular recurrence time T appears fre-
quently in the reconstructed phase space, it is likely
that the corresponding recurrent points are close
to periodic orbits of period T . The idea is then to
construct a histogram of the recurrence times and
identify peaks in the histogram. Points that occur
frequently are taken to be, approximately, compo-
nents of the periodic orbits. The LK-algorithm has
been used to detect unstable periodic orbits, for in-
stance, from measurements of a chaotic chemical
reaction [Lathrop & Kostelich, 1989].

More recently, the LK algorithm has been
adapted to detecting unstable periodic orbits from
short, transiently chaotic series [Dhamala et al.,
2000]. The reason that the LK-algorithm is appli-
cable to transient time series lies in the statisti-
cal nature of this method, as a histogram of re-
currence times can be obtained even with short
time series. Provided that there is a large num-
ber of such time series so that a good statistics
of the recurrence times can be obtained, unstable
periodic orbits embedded in the underlying chaotic
set can be identified. It is not necessary to concate-
nate many short time series to form a single long
one (such concatenations are invariably problematic
[Janosi & Tél, 1994]). Intuitively, since the time se-
ries are short, periodic orbits of short periods can be
detected.

To demonstrate the LK-algorithm, here we take
the numerical examples reported in [Dhamala et al.,
2000] with the following chaotic Rössler system
[Rössler, 1976]:

dx

dt
= −y − z ,

dy

dt
= x+ ay ,

(5)

dz

dt
= b+ (x− c)z ,

where a, b, and c are parameters. There is tran-
sient chaos when the set of parameter values yields
a periodic window in which a stable periodic at-
tractor and a chaotic saddle coexist. For instance,
for a = b = 0.2 and c = 5.3, the system falls in a
periodic window of period 3. Typical measurement
of a dynamical variable, say x(t), exhibits chaotic
behavior for a finite amount of time before settling
in the period-3 attractor. In [Dhamala et al., 2000],
10 such time series are generated by integrating the
Rössler system from different initial conditions, and
the corresponding time series x(t) for 0 ≤ t ≤ 4 are
recorded. The lifetime of the chaotic transient is
about 4. These time series are assumed to be the
only available information about the system. For
each time series, a seven-dimensional vector space
is reconstructed by using the delay time τ = 0.02.
To obtain recurrence times, it is necessary to deter-
mine ε, the size of the recurrent neighborhood. The
value of ε must not be large to avoid too many false
positives, but ε must not be so small that genuine
recurrences are missed. Typically, it is found in nu-
merical experiments that the number of recurrences
N(ε) increases with the length and the number of
the individual transient trajectories, and with ε. It
tends to saturate when ε is too large. The value of
ε at which N(ε) saturates is taken to be an appro-
priate size of the recurrent neighborhood. For the
Rössler system, ε = 2% of the root-mean-square
(rms) value of the chaotic signal is used [Dhamala
et al., 2000]. Figure 3(a) shows the histogram of
the recurrence times for the 10 transient chaotic
time series from the period-3 window. Figures 3(b)–
3(d) show, in the plane of x(t) versus x(t + τ),
three recurrent orbits. The orbit in Fig. 3(b) has
the shortest recurrence time, so it is a “period-1”
orbit. Figures 3(c) and 3(d) show a period-3 and a
period-8 orbits, respectively. The orbits are selected
from the set of recurrent points comprising the cor-
responding peak in the histogram. In general, it is
found [Dhamala et al., 2000] that the LK-algorithm
is capable of yielding many periodic orbits of low
periods.

In an experimental setting, time series are
contaminated by dynamical and/or observational
noise. A question is whether periodic orbits can
still be extracted from noisy transient chaotic time
series. Qualitatively, under the influence of noise,
the effective volume of recurrent region in the
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Fig. 3. For the Rössler system: (a) histogram of the recurrence time T , (b–d) a period-1, a period-3, and a period-8 recurrent
orbits extracted from the histogram in (a), respectively.

phase space decreases and, hence, a decrease in the
number of recurrences is expected. Figures 4(a)–
4(d) show the number of recurrent points (a) and
three periodic orbits extracted from 10 transient
chaotic time series with additive noise of the form
G(0, 0.01), a normal (Gaussian) distribution cen-
tered at 0 with variance 0.01. This noise level rep-
resents a rms value that is approximately 0.5% of
that of the chaotic signal. It can be seen that at this
low noise level, periodic orbits can still be reliably
detected. It is found, however, that for the Rössler
system at ε = 2% of the rms value of the chaotic
signal with noise beyond 1%, no periodic orbits can

be extracted from the histogram of recurrences. One
way to assess the influence of noise is to compute, at
several fixed values of ε, how the number of recur-
rent points decreases as the noise amplitude (η) is
increased. Figures 5(a) and 5(b) show the result of
such computations for (a) ε = 2% and (b) ε = 6% of
the rms value of the signal. It can be seen that the
number of recurrent points goes to zero at η ≈ ε/2,
which can be understood, as follows. Under noise of
amplitude η, both the center and the boundary of
the recurrent region are uncertain within η. Thus,
the effective phase-space volume in d dimensions
in which two points can still be considered within
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Fig. 4. For a noisy Rössler system: (a) histogram of the recurrence time T , (b–d) a period-1, a period-2, and a period-4
recurrent orbits extracted from the histogram in (a), respectively, where ε = 6% and the rms value of the noise is at about
0.5% of that of the chaotic signal.

distance ε (recurrent) is proportional to (ε−η)d−ηd,
which vanishes at η = ε/2. Since ε should be small
to guarantee recurrence, we see that the tolerable
noise level is also small.

2.2.3. Detectability of unstable periodic

orbits from transient chaotic time

series

An issue of interest concerns the detectability of
unstable periodic orbits from chaotic time series
[Pei et al., 1998]. This is particularly relevant for

transient chaos because trajectories on a chaotic

saddle have an average lifetime time τ staying near

the saddle and, hence, it is difficult for a typical tra-

jectory to contain periodic orbits of period larger

than τ . Effort may then be devoted to connect

short time series so that the resulting long time se-

ries would contain periodic orbits of larger period

[Janosi & Tél, 1994]. Such a task may be difficult.

If one fails to detect periodic orbits of high peri-

ods, the question is whether one should attempt

to increase the number of measurements so that

more time series are available. Or, one may attempt
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Fig. 5. For the noisy Rössler system, the relative number (N/N0) of recurrent points versus the amplitude of noise for two
values of the size of the recurrent neighborhood: (a) ε = 2% and (b) ε = 6% of the rms value of the signal, where N0 is the
number of recurrent points at zero amplitude of noise. The vertical line in (b) denotes the noise level at which periodic orbits
in Fig. 4 are extracted.

to improve techniques to link these time series, a
computationally demanding task because it is es-
sentially a problem of optimizing many time series
and the computation required in any optimization
problem typically increases greatly as the number
of elements involved is increased. The main point
is that in detecting unstable periodic orbits from
transient chaos, the probability of detecting orbits
of higher periods is typically exponentially small
[Dhamala et al., 2000, 2001]. This is an intrinsic dy-
namical property of the underlying chaotic saddle
and, hence, increasing the number of measurements
or improving techniques of detection will not help
enhance the chance to detect these orbits.

Let Φ(p) be the probability to detect any
period-p orbit. A scaling relation for Φ(p) can be
derived [Dhamala et al., 2000, 2001] by noting
that Φ(p) is actually the probability for a trajec-
tory to stay in a small neighborhood of any pe-
riodic orbit of period p. For a trajectory to stay

in an ν-neighborhood of all p points of the ith or-
bit of period p, the trajectory must come within
δ = νe−λi(p)p of any of the p points when it first
encounters with the periodic orbit, where λi(p) > 0
is the Lyapunov exponent of this orbit. The proba-
bility for this event is φi(p) ∼ δDi , where Di is the
pointwise dimension of any one of the p points of
this periodic orbit. The exponential factor e−λi(p)p

is proportional to the natural measure associated
with this periodic orbit [Grebogi, et al., 1988]. The
probability Φ(p) is the accumulative probability of
all φi(p),

Φ(p) =

K(p)
∑

i=1

φi(p) ∼
K(p)
∑

i=1

νDi exp [−λi(p)Dip] , (6)

where K(p) is the total number of periodic points
of period p. Since λi(p) and Di are the local posi-
tive Lyapunov exponent and pointwise dimension
of periodic orbits of period p, for large p, we
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expect them to obey distributions centered at λ1

and D1, respectively, where λ1 and D1 are the
positive Lyapunov exponent and the information
dimension of the chaotic saddle. Thus, the main de-
pendence of Φ(p) on p is

Φ(p) ∼ e−λ1D1pK(p) ∼ e(−λ1D1+hT )p = e−γp , (7)

where γ is the exponential scaling exponent and hT

is the topological entropy. The Kaplan–Yorke for-
mula can be used for chaotic saddles [Hsu et al.,
1988; Hunt et al., 1996] to expressD1 in terms of the
Lyapunov exponents λ2 < 0 < λ1 and the lifetime τ ,

D1 = (λ1 − 1/τ)(1/λ1 + 1/|λ2|) ,
which yields the following scaling exponent:

γ = λ1 − hT +
λ2

1

|λ2|
− 1

τ

(

1 +
λ1

|λ2|

)

. (8)

Equations (7) and (8) are applicable to chaotic
saddles in two-dimensional invertible maps or in
three-dimensional flows. Note that for chaotic at-
tractors (τ → ∞), we have for the scaling exponent:
γ ≈ λ1 − hT + λ2

1/|λ2|.
To test Eqs. (7) and (8) numerically, Dhamala

et al. use the Hénon map [Hénon, 1976]

xn+1 = a− x2
n + byn ,

yn+1 = xn ,
(9)

where a and b are parameters, as unstable periodic
orbits in the chaotic saddles of the map can be com-
puted systematically [Biham & Wenzel, 1989]. For
the following set of three parameter values: a = 1.6,
1.8, and 2.0, there is transient chaos [Lai et al.,
1993]. Representative chaotic saddles for a = 1.6
and a = 1.8 are shown in Figs. 6(a) and 6(b), re-
spectively, which are obtained by the procedure in
[Nusse & Yorke, 1989]. For each value of a, 106 ini-
tial conditions are chosen in the region [−2, 2] ×
[−2, 2] containing the chaotic saddle, which yield
106 transient time series [Dhamala et al., 2000]. For
a given period p, the fractions of times that these
106 time series get close to every periodic orbit of
period p can be computed. These fractions are used
to yield an estimated value for the probability Φ(p),
which increases with the number of transient time
series and also with the length of the individual tra-
jectories. Figures 7(a)–7(d) show ln Φ(p) versus p
for a = 1.6, 1.8, and 2.0, respectively. These plots
indicate behavior of exponential decay, and the de-
cay exponents are given by the slopes of the plots.
To compute the theoretical scaling exponents in
Eq. (8), it is necessary to compute the Lyapunov
exponents, the topological entropy, and the lifetime
of the chaotic saddles. The following techniques are
used in the computation [Dhamala et al., 2000,

(a) a = 1.6 (b) a = 1.8

Fig. 6. Chaotic saddles of the Hénon map for (a) a = 1.6 and (b) a = 1.8.
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Fig. 7. (a–c) For the Hénon map at a = 1.6, 1.8, and 2.0, ln Φ(p) versus p. The dotted lines indicate the theoretically
predicted slopes of ln Φ(p) versus p.

2001]: (1) the procedure to obtain a long trajec-
tory on the chaotic saddle [Nusse & Yorke, 1989;
Jacobs et al., 1997] from which the Lyapunov expo-
nents can be computed; (2) the method by Chen
et al. [1991] to compute the topological entropy;
and (3) the sprinkler method to compute τ [Hsu
et al., 1988]. The slopes of the dashed straight lines
in Figs. 7(a)–7(d) are the theoretical slopes for the
corresponding chaotic saddles. The numerical slopes
appear to agree reasonably well with the theoretical
ones, as shown further in Table 1, where the numer-
ical and theoretical slopes, together with the values
of other quantities involved in Eq. (8), are listed.

2.3. Computation of dimension

2.3.1. Basics

An often computed dimension in nonlinear time se-
ries analysis is the correlation dimension D2, which
is a good approximation of the box-counting di-
mension D0: D2 ≤ D0. Grassberger and Procaccia
show in their seminal contribution [Grassberger &
Procaccia, 1983b] thatD2 can be evaluated by using
the correlation integral C(ε), which is the probabil-
ity that a pair of points, chosen randomly in the re-
constructed phase space, is separated by a distance
less than ε. Let N be the number of points in the
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Table 1. Theoretical and numerical values of the scal-
ing exponent γ at four different parameters for the Hénon
map.

a λ1 λ2 hT τ γ(theoretical) γ(numerical)

1.6 0.58 −1.78 0.53 11.2 0.12 0.13 ± 0.04
1.8 0.81 −2.01 0.54 4.7 0.31 0.32 ± 0.03
2.0 0.87 −2.07 0.53 5.4 0.44 0.47 ± 0.04

reconstructed vector time series x(t). The correla-
tion integral can be approximated by the following
sum,

CN (ε) =
2

N(N − 1)

N
∑

j=1

N
∑

i=j+1

Θ(ε−|xi−xj|), (10)

where Θ(·) is the Heaviside function: Θ(x) = 1 for
x ≥ 0 and 0 otherwise, and |xi − xj | stands for
the distance between points xi and xj. Grassberger
and Procaccia argue that the correlation dimension
is given by [Grassberger & Procaccia, 1983b]

D2 = lim
ε→0

lim
N→∞

log CN (ε)

log ε
. (11)

In practice, for a time series of finite length,
the sum in Eq. (10) also depends on the embedding
dimension m. Due to such dependencies, the corre-
lation dimension D2 is usually estimated by exam-
ining the slope of the linear portion of the plot of
log CN (ε) versus log ε for a series of increasing val-
ues of m. For m < D2, the dimension of the recon-
structed phase space is not high enough to resolve
the structure of the dynamical state and, hence, the
slope approximates the embedding dimension. Asm
increases, the resolution of the dynamical state in
the reconstructed phase space is improved. Typi-
cally, the slope in the plot of log CN (ε) versus log ε
increases with m until it reaches a plateau; its value
at the plateau is then taken as the estimate of
D2 [Grassberger & Procaccia, 1983b; Ding et al.,
1993]. For an infinite and noiseless time series, the
value of m at which this plateau begins to satisfy is
m = Ceil(D2), where Ceil(D2) is the smallest inte-
ger greater than or equal to D2 [Ding et al., 1993].
In a realistic situation, short data sets and observa-
tional noise can cause the plateau onset to occur at a
value of m which can be larger than Ceil(D2). Even
so, the embedding dimension at which the plateau
is reached still provides a reasonably sharp upper
bound for the true correlation dimension D2. De-
pendencies of the length of the linear scaling re-
gion on fundamental parameters such as m, τ , and

mτ have been analyzed systematically in [Lai et al.,
1996; Lai & Lerner, 1998].

These points can be seen by utilizing the Hénon
map Eq. (9) at the standard parameter values a =
1.4 and b = 0.3. The map is believed to possess a
chaotic attractor, as shown in Fig. 8(a) in the two-
dimensional phase space (x, y). A typical time series
{xn} is shown in Fig. 8(b). The theoretical value of
the correlation dimension of the chaotic attractor is
D2 ≈ 1.2 [Lai et al., 1996; Lai & Lerner, 1998].

The GP-algorithm can be applied to estimating
the correlation dimension from the time series {xn}.
To select the delay time τ , note that any discrete-
time map can be regarded as arising from a Poincaré
surface of section of a continuous-time flow [Ott,
1993]. Thus, one iteration of the map corresponds to
roughly one period of oscillation of the continuous-
time signal x(t), which, for chaotic systems, is ap-
proximately the decay time of the autocorrelation
of x(t). As an empirical rule, the delay time can
be chosen to be τ = 1 for chaotic time series from
discrete-time maps. Equivalently, for chaotic signal
x(t) from a continuous-time flow, the delay time
should be chosen approximately as the average pe-
riod of oscillation.

After the delay time τ is chosen, the next step
is to compute the correlation integral CN (ε) for a
set of systematically increasing values of the embed-
ding dimension m. Figure 9 shows, for N = 2×104,
the plots of CN (ε) versus ε on the base-2 logarith-
mic scale for m = 1, . . . , 8. The lines are approx-
imately linear, and they are parallel for m ≥ 2.
Least-squares fits give D2 ≈ 1.2 for m ≥ 2, indi-
cating that the correlation dimension can be esti-
mated reliably from a time series by utilizing the
GP-algorithm. The saturation of the slope occurs
at m = 2, which is the smallest integer above
the value of D2. Recall that the embedding the-
orem requires a minimum embedding dimension
of 2D0 + 1, which is 4 for the Hénon chaotic at-
tractor. This is because the task here is to es-
timate the dimension only, while the embedding
theorem guarantees a one-to-one correspondence
between the reconstructed and the true chaotic
attractors. A dimension estimate does not neces-
sarily require such a one-to-one correspondence.
For instance, consider a two-dimensional surface in
a three-dimensional space. The projection of this
surface onto a two-dimensional plane is still a two-
dimensional region. Thus, its dimension can be es-
timated even in a two-dimensional subspace.
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(a)

(b)

Fig. 8. (a) The Hénon chaotic attractor and (b) a typical chaotic time series.

2.3.2. Applicability of GP algorithm to

transient chaotic time series

An important question is whether the GP paradigm
[Eqs. (10) and (11)] is applicable to transient time
series from chaotic saddles. Recently, an argument
is provided which appears to give an affirmative
answer to this question [Dhamala et al., 2001].

To derive the GP-algorithm for transient
chaotic time series, it is necessary to define the natu-
ral measure associated with a nonattracting chaotic
saddle. Imagine a phase-space region S that con-
tains such a saddle. If a large number N0 of ran-
dom initial conditions is distributed in S, the corre-
sponding trajectories will leave S eventually as time
progresses. They do so by being attracted along the

stable manifold, wandering near the chaotic saddle,
and then exiting along the unstable manifold. Let
N(n) be the number of trajectories that still remain
in S at time n. For large n,N(n) decreases exponen-
tially due to the chaotic but nonattracting nature
of the saddle5

N(n) = N0e
−n/τ , (12)

where τ is the average lifetime of the trajectories on
the chaotic saddle.

The nonattracting nature of the chaotic saddle
renders more complicated the definition of its nat-
ural measure as compared with that for a chaotic
attractor. Because of the invariance of the natural
measure under the dynamics, it is necessary in the
definition to compensate for the escape of chaotic

5Exponential decay of the number of trajectories near the chaotic saddle is characteristic of transient chaos in dissipative
dynamical systems. In particular, say we sprinkle a large number N0 of initial conditions in a phase-space region containing
the chaotic saddle and compute N(t), the number of trajectories still remaining in the region at time t. Then one typically
finds that N(t) decays exponentially with time [Grebogi et al., 1983; Grassberger & Kantz, 1985; Tél, 1990]. For simple
one-dimensional maps such as the following piecewise linear one on the unit interval: xn+1 = 2ηxn if 0 ≤ xn < 1/2 and
xn+1 = 2η(xn − 1) + 1 if 1/2 < x ≤ 1, where η > 1, it can be argued easily that there is a chaotic saddle in the unit
interval with the following exponential decay law: N(n) ∼ exp (−n/τ ), where τ = {ln [η/(η − 1)]}−1 is the average lifetime of
trajectories on the chaotic saddle [Ott, 1993].
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Fig. 9. Plots of the correlation integral on a logarithmic
scale for m = 1, . . . , 8. Least-squares fits give D2 ≈ 1.2 for
m ≥ 2.

trajectories. The standard approach is to choose an
ensemble of initial conditions and ask where the re-
sulting trajectories can be at different times. In par-
ticular, since trajectories escape from the chaotic
saddle along the unstable manifold, at large posi-
tive time n, the N(n) trajectory points will be in the
vicinity of the unstable manifold. In order for the
points to stay near the unstable manifold at time
n, initially these points have to be in the vicinity
of the stable manifold. In an intermediate time, the
points are then concentrated near the chaotic sad-
dle itself. These considerations lead to the formal
definitions of the natural measures of the unstable
manifold, the stable manifold, and the chaotic sad-
dle [Grebogi et al., 1988; Hsu et al., 1988; Hunt
et al., 1996], as follows.

Let C be a small box within S that contains
part of the unstable manifold. The natural measure
associated with the unstable manifold in C is

µu(C) = lim
n→+∞

lim
N0→∞

Nu(n, C)

N(n)
, (13)

where Nu(n, C) is the number of the N(n) orbits in
C at time n. Similarly, the natural measure of the
stable manifold in a box C in S can be defined as

µs(C) = lim
n→+∞

lim
N0→∞

Ns(n, C)

N(n)
, (14)

where Ns(n, C) is the number of initial conditions

in C whose trajectories do not leave S before time
n. The definitions (13) and (14) mean that the nat-
ural measures associated with the stable and the

unstable manifolds in C are determined by the num-
bers of trajectory points in C at time zero and
time n, respectively. The natural measure of the
chaotic saddle, µ, can then be obtained by consid-
ering Nm(ρ, n, C), the number of trajectory points
in C at a time ρn in between zero and n,

µ(C) = lim
n→+∞

lim
N0→∞

Nm(ρ, n, C)

N(n)
, (15)

where 0 < ρ < 1, Nm(0, n, C) = Ns(n, C), and
Nm(1, n, C) = Nu(n, C). For large N0 and n, tra-
jectories that remain in S stay near the chaotic sad-
dle for most of the time between 0 and n, except at
the beginning when they are attracted toward the
saddle along the stable manifold, and at the end
when they are exiting along the unstable manifold.
Thus, the measure defined in Eq. (15) is indepen-
dent of ρ, insofar as 0 < ρ < 1.

Based on Eq. (15), the following dimension
spectrum can be defined for nonattracting chaotic
saddles [Tél, 1990], in analogy to that of the chaotic
attractor [Grassberger & Procaccia, 1983b; Farmer
et al., 1983],

Dq =
1

(q − 1)
lim
ε→0

ln I(q, ε)

ln ε
, (16)

where q is a continuous index, I(q, ε) =
∑N(ε)

i=1 µq
i ,

µi is the natural measure of the chaotic saddle con-
tained in the ith box, and the sum is over all the
N(ε) boxes in a grid of size ε needed to cover the
whole chaotic saddle. Setting q = 2 gives,

D2 = lim
ε→0

ln

N(ε)
∑

i=1

µ2
i

ln ε
= lim

ε→0

ln 〈µi〉
ln ε

, (17)

where 〈·〉 denotes the phase-space average over the
chaotic saddle. For an ergodic trajectory on the
chaotic saddle, 〈µi〉 is approximately the probabil-
ity that the trajectory comes in the ε-neighborhood
of a point xi on the chaotic saddle in the ith box,
which is given by the correlation sum in Eq. (10).
From measurements, one does not have a long, er-
godic trajectory on the chaotic saddle. Instead, K
transient chaotic time series are available, each of
length L. The probability pi that the reconstructed
trajectory comes to the neighborhood of xi is then

pi ≈
1

K

1

L(L− 1)

K
∑

m=1

L
∑

j=1

Θ(ε− ‖xm
j − xi‖) ,
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where xm
j is the jth trajectory point reconstructed

from the mth transient time series. Since K is in
fact the number N0 of initial conditions in the def-
inition (15), the natural measure µi is

µi ≈
Kpi

Ke−L/τ

≈ eL/τ

KL(L− 1)

K
∑

m=1

L
∑

j=1

Θ(ε− ‖xm
j − xi‖) .

Averaging over all points xi in the reconstructed
phase space gives

〈µi〉 ≈ eL/τCK,L(ε, d) , (18)

where

CK,L(ε, d)

≡ 1

KL(L− 1)

K
∑

m=1

L
∑

i=1

L
∑

j=1,j 6=i

Θ(ε− ‖xm
j − xm

i ‖)

(19)

is the correlation integral associated with K ob-
servations of transient chaos, each consisting of L
points in the reconstructed phase space. The corre-
lation dimension is then given by

D2 = lim
ε→0,K→∞

ln CK,L(ε, d)

ln ε
. (20)

Equation (20) indicates that, if one computes the
correlation integral as defined in (19), the GP for-
mulation is valid for transient chaotic time series as
well.

To provide numerical support, transient chaotic
time series from the Hénon map are used [Dhamala
et al., 2001] for which the correlation dimension can
be obtained both from the GP formulation Eq. (20)
and from a straightforward implementation of the
box-counting definition (16) by utilizing a long tra-
jectory on the chaotic saddle [Nusse & Yorke, 1989].
For a = 1.5 and b = 0.3, there is a chaotic sad-
dle in the phase-space region: [−2, 2]× [−2, 2] with
lifetime τ ≈ 30. The box-counting approach gives
D2 ≈ 1.2. To apply the GP algorithm, K = 5000
transient chaotic time series are used [Dhamala
et al., 2001]. To guarantee that each time series
reflects, approximately, the natural measure of the
chaotic saddle, both the initial and the final phases
are disregarded, and only 20 points from the middle
of the time series are kept. For a given embedding
dimension d, the number of trajectory points cor-
responding to each time series is then L < 20. The

delay time is chosen to be T = 1, each time series
is normalized to the unit interval, and the correla-
tion sum CK,L(ε, d) is computed for 100 values of ε
for −30 < log2 ε < 0 using embedding dimensions
ranging from d = 1 to d = 8, as shown in Fig. 10(a).
For d > 3, the local slopes of the plots appear to
converge to a plateau value, as shown in Fig. 10(b),
which yields D2 ≈ 1.2. This agrees well with the
value of D2 obtained from the box-counting algo-
rithm. Note that due to the availability of only short
time series, the embedding dimension needs to be
much larger than the value of D2 itself to yield the
correct plateau value for D2, in contrast to the case
of long time series from chaotic attractors where
m ≈ D2 usually suffices [Ding et al., 1993].

2.4. Computing Lyapunov

exponents from time series

The Lyapunov exponents characterize how a set
of orthonormal, infinitesimal distances evolve un-
der the dynamics. For a chaotic system, there is at
least one positive Lyapunov exponent — let λ1 > 0
be the largest exponent. The defining property of
chaos is sensitive dependence on initial conditions,
in the following sense. Given an initial infinitesimal
distance ∆x(0), its evolution obeys

∆x(t) = ∆x(0)eλ1t .

For a M -dimensional dynamical system, there are
M Lyapunov exponents. Here we describe a pro-
cedure for computing all the exponents from time
series [Eckmann et al., 1986].

Consider a dynamical system described by the
following equation:

dx

dt
= F(x) , (21)

where x ∈ RM is a M -dimensional vector. Tak-
ing variation of both sides of Eq. (21) yields the
following equation governing the evolution of the
infinitesimal vector δx in the tangent space at x(t):

dδx

dt
=
∂F

∂x
· δx . (22)

Solving for Eq. (22) gives

δx(t) = Atδx(0) , (23)

where At is a linear operator that evolves an in-
finitesimal vector at time 0 to time t. The mean
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Fig. 10. For Hénon map, (a) log2 C(ε, d) versus log2 ε, and (b) log2 C(ε, d)/ log2 ε versus log2 ε at a = 1.5, b = 0.3. The
curves with comparatively higher slopes correspond to higher embedding dimensions.

exponential rate of divergence of the tangent vector
is then given by

λ[x(0), δx(0)] = lim
t→∞

1

t
ln

‖δx(t)‖
‖δx(0)‖ , (24)

where ‖ · ‖ denotes length of the vector inside with
respect to a Riemannian metric. In typical situa-
tions there exists a d-dimensional basis vector {ei},
in the following sense:

λi ≡ λ[x(0), ei] . (25)

These λi’s define the Lyapunov spectrum, which can
be ordered, as follows:

λ1 ≥ λ2 ≥ · · · ≥ λd . (26)

For chaotic systems, values of λi do not depend on
the choice of the initial condition x(0), insofar as x0

is chosen randomly.
If the system equation (21) is known, then λi’s

can be computed using the standard procedure de-
veloped by Benettin et al. [1980]. For chaotic time
series, there exist several methods for computing

the Lyapunov spectrum [Wolf et al., 1985; Sano &
Sawada, 1985; Eckmann & Ruelle, 1985; Eckmann
et al., 1986; Brown et al., 1991]. While details of
these methods are different, they share the same
basic principle. Here we describe the one developed
by Eckmann et al. [1986]. The algorithm consists of
three steps: (1) to reconstruct the dynamics using
delay-coordinate embedding and search for neigh-
bors for each point in the embedding space, (2) to
compute the tangent maps at each point by least-
squares fit, and (3) to deduce the Lyapunov expo-
nents from the tangent maps.

2.4.1. Searching for neighbors in the

embedding space

Given an m-dimensional reconstructed vector time
series, in order to determine tangent maps, it is nec-
essary to search for neighbors, i.e. search for xj such
that:

‖xj − xi‖ ≤ r , (27)
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where, r is a small number, and ‖ · ‖ is defined as:

‖xj − xi‖ = max
0≤α≤m−1

|xj+α − xi+α| . (28)

Such a definition of the distance is only for the con-
sideration of computational speed. If m = 1, the
time series can be sorted to yield:

xΠ(1) ≤ xΠ(2) ≤ · · · ≤ xΠ(N) , (29)

where Π is the permutation which, together with
its inverse Π−1, are stored. The neighbors of xi can
then be obtained by looking at k = Π−1(i) and
scanning the sorted time series xΠ(s) for s = k ± 1,
k± 2, . . . until |xΠ(s) −xi| > r. When m > 1, values
of s are first selected for which

|xΠ(s) − xi| ≤ r , (30)

as for the case where m = 1. The following condi-
tions are further imposed:

|xΠ(s)+α − xi+α| ≤ r , α = 1, 2, . . . , m− 1 , (31)

resulting in a complete set of neighbors of xi within
distance r.

2.4.2. Computing the tangent maps

The task is to determine the m × m matrix Ti

which describes how the dynamics send small vec-
tors around xi to small vectors around xi+1,

Ti(xj − xi) ≈ xj+1 − xi+1 . (32)

A serious problem is that Ti may not span Rm

because m is usually much larger than the actual
phase-space dimension of the system to guarantee a
proper embedding. Eckmann et al. proposed a strat-
egy that allows Ti to be a dM × dM matrix, where
dM ≤ m. In such a case, Ti corresponds to the time
evolution from xi to xi+m, and

m = (dM − 1)l + 1 , l ≥ 1 . (33)

A new set of embedding vectors can then be
constructed:

yi = (xi, xi+l, . . . , xi+(dM−1)l) . (34)

The new vector yi is obtained by taking every mth
element in the time series and, hence, Ti is defined
in the new embedding space, as follows:

Ti(yj − yi) ≈ yj+l − yi+l . (35)

Or,

Ti















xj − xi

xj+l − xi+l

. . .
xj+(dM−2)l − xi+(dM−2)l

xj+(dM−1)l − xi+(dM−1)l















=















xj+l − xi+l

xj+2l − xi+2l

. . .
xj+(dM−1)l − xi+(dM−1)l

xj+dM l − xi+dM l















(36)

Therefore, Ti can be expressed as:

Ti =















0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 0

a1 a2 a3 · · · adM















(37)

The task of finding Ti then reduces to that of finding
the set of dM matrix elements ai (i = 1, 2, . . . , dM ).
This can be accomplished by using a least-squares
fit. Let SE

i (r) be the set of indices j of neighbors xj

of xi within distance r. The procedure is to mini-
mize the quantity

∑

j∈SE
i

(r)

[

dM−1
∑

k=0

ak+1(xj+kl − xi+kl)

− (xj+dM l − xi+dM l)

]2

. (38)

A critical quantity is SE
i (r). If SE

i (r) is large, the
computation required is intensive. On the other
hand, if SE

i (r) is too small, the least-squares fit
may fail. Generally, it is necessary to choose r suffi-
ciently large so that SE

i (r) contains at least dM ele-
ments. But r also needs to be small so that the lin-
ear dynamics approximation about every xi is valid.
Eckmann et al. suggest the following empirical rule
for choosing r: Count the number of neighbors of xi

corresponding to increasing values of r from a pre-
selected sequence of possible values, and stop when
the number of neighbors exceeds min(2dM , dM+4)
for the first time. Increase r further if Ti is
singular.
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2.4.3. Computing the exponents

To compute the Lyapunov exponents from the tan-
gent maps is relatively straightforward. Eckmann
and Ruelle [1985] suggest the following procedure.
Starting from an identity matrix Q(0) ≡ I, the fol-
lowing matrix decomposition (QR-decomposition)
can be done:

T1Q(0) = Q(1)R(1) ,

T1+mQ(1) = Q(2)R(2) ,

... ,

T1+jmQ(j) = Q(j+1)R(j+1) ,

... ,

(39)

where Q(j)’s are orthogonal matrices, and R(j)’s are
upper triangular matrices with positive diagonal el-
ements. The above decomposition is robust, an al-
gorithm of which can be found in [Press et al., 1986].
The Lyapunov exponents are then given by

λk =
1

lτk

K−1
∑

j=0

ln R(j)kk , (40)

where R(j)kk is the kth diagonal elements of the ma-
trix R(j), and K ≤ (N − dM l − 1)/l is the number
of available matrices.

2.4.4. Remarks

The algorithm described above is robust. In par-
ticular, it can compute all the positive Lyapunov
exponents reliably [Eckmann et al., 1986], although
the correct identification of the negative exponents
remains a challenging issue [Sauer et al., 1998; Sauer
& Yorke, 1999]. Three points need to be stressed.
Firstly, dM cannot be too large, otherwise spuri-
ous exponents may arise. Generally, dM should be
larger than the number of positive exponents. Sec-
ondly, the choice of r is critical, as discussed above.
In the presence of noise, it may be good to re-
place the ball {xj : ‖xj − xi‖ ≤ r} by a shell
{xj : rmin < ‖xj − xi‖ ≤ r} when searching for
neighbors. Thirdly, increasing the number of points
in the time series at fixed recording time is use-
less. In order to improve the computation, the total
recording time should be increased.

In brief summary, when computing the
Lyapunov exponents from time series, the follow-
ing rules should be followed:

1. Use long recording time, but not very small sam-
pling time step τ ;

2. Use large embedding dimension m;
3. Use a matrix dimension dM somewhat larger

than the expected number of positive Lyapunov
exponents;

4. Choose r such that the number of neighbors is
greater than the smaller of 2dM and dM+4;

5. Otherwise keep r as small as possible;
6. Take a product of as many matrices as possible

to determine the Lyapunov exponents.

2.4.5. A numerical example

Here we discuss the computation of the Lyapunov
exponents from an ensemble of transient chaotic
time series using the procedure described above.
Again, consider the Hénon map in a parameter re-
gion where the map generates transient chaos. In
[Dhamala et al., 2001], an ensemble of chaotic tran-
sients is generated from the Hénon map for the
parameter pairs (a, b) = (1.46, 0.3) and (a, b) =
(1.50, 0.3), and 21,000 points near each chaotic sad-
dle are accumulated by using 300 random initial
conditions in [−2, 2]× [−2, 2] for the case a = 1.46
and 700 random initial conditions for a = 1.50. (The
average lifetime of the chaotic transients is about 70
iterates for a = 1.46 and 30 iterates for a = 1.50.)
A two-dimensional embedding with a time delay of
1 is constructed from each collection of time series.
Local linear maps are computed using least squares
for each neighborhood.

In the case a = 1.46, each transient time se-
ries consists of about 70 iterates. Thus, the Lya-
punov exponents computed are actually finite-time
approximations, where a suitable product of the
70 or so linear maps associated with points on
the individual transient time series is considered.
Similarly, when a = 1.50, it is necessary to con-
sider products of 30 or so linear maps. Figure 11(a)
shows the distribution of the largest Lyapunov ex-
ponent, λ1, computed from the ensembles of time
series for a = 1.46, and Fig. 11(b) shows the dis-
tribution of the values of λ2. It can be seen that
λ1 = 0.44 ± 0.05 and λ2 = −1.72 ± 0.06. Similarly,
for a = 1.50, the exponents are: λ1 = 0.54±0.06 and
λ2 = −1.77 ± 0.08. The estimated values of the ex-
ponents agree reasonably well with the theoretical
ones [Dhamala et al., 2001].

3. Time-Frequency Analysis of
Chaotic Time Series

The method of chaotic time series analysis de-
scribed in Sec. 2 is applicable to low-dimensional,
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Fig. 11. (a–d) The distributions of Lyapunov exponents of the Hénon map for chaotic transients at the two parameter values
of a = 1.46 and 1.50, respectively.

low-noise deterministic dynamical systems. For
more general and more complicated signals, time-
frequency analyses are still commonly used. An
excellent discussion and comparison of various
time-frequency methods can be found in [Huang
et al., 1998]. These are: (1) the traditional Fourier
method, (2) the wavelet method, and (3) the Hilbert
transform method. In what follows we briefly dis-
cuss the Fourier and wavelet methods, following
mainly the discussion in [Huang et al., 1998]. We

will then focus on the Hilbert transform and give
examples to illustrate its usefulness for chaotic
signal processing.

Fourier spectral analysis is traditionally the
time series analysis method, which can be found
in many standard textbooks. A necessary con-
dition for the Fourier analysis to be meaning-
ful is that the time series should be piecewise
stationary. Even then, there are common situa-
tions where the Fourier analysis cannot yield much
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information, such as deterministic chaotic time se-
ries with broad-band power spectra for which the
Fourier spectrum gives absolutely no indication
about the deterministic origin, let alone the funda-
mental invariants of the underlying dynamical sys-
tem. There exist other technical difficulties associ-
ated with the Fourier analysis. For instance, when
a set of windows is chosen from a piecewise station-
ary time series for Fourier analysis, how can one
guarantee that the window width coincides with the
stationary time scale? In order to detect events lo-
calized in time, the window width must be small,
which usually results in poor resolution in the fre-
quency domain. Therefore, in general, the Fourier
method is useful for stationary time series. It is
particularly powerful if the underlying system gen-
erating the time series is linear.

In recent years, the wavelet analysis has be-
come more popular for the analysis of nonstationary
time series, which is essentially an adjustable win-
dow Fourier spectral analysis. In general, for a time
series x(t), the wavelet transform is

W (a, b) =
1

√

|a|

∫ ∞

−∞

x(t)ψ∗

(

t− b

a

)

dt , (41)

where ψ∗(·) is the basic wavelet function that satis-
fies certain general conditions, a is the dilation fac-
tor and b is the translation parameter. While time
and frequency do not appear explicitly in W (a, b),
the variable 1/a gives the frequency scale and b indi-
cates the temporal location of an event. Physically,
W (a, b) is the energy of x(t) in scale a about t = b.
For different problems, the choices of the wavelet
function ψ∗(·) are usually different. For instance,
a commonly used function is the Morlet wavelet,
which is essentially Gaussian enveloped sine and
cosine waves [Chan, 1995]. The wavelet analysis is
fundamentally a linear method. While it provides a
uniform energy resolution for all the scales, the res-
olution is generally poor because the size of the ba-
sic wavelet function is limited [Huang et al., 1998].
In the past decade or so, there has been a tremen-
dous amount of work on wavelet analysis, particu-
larly in the applied mathematics literature. Success-
ful applications include edge detection and image
compression [Chan, 1995].

Recently, a method based on the Hilbert trans-
form has been proposed, which can be suitable for
nonstationary, nonlinear and/or random time se-
ries. The method, pioneered by Huang et al. [1998],
has been demonstrated to be useful for a number of
applications.

3.1. Analytic signals and the

Hilbert transform

3.1.1. Analytic signals

Signals in the physical world are real. Nevertheless,
in a variety of applications such as optics, it is con-
venient to represent real signals by complex ones.
The concept of analytic signals, first proposed by
Gabor [1946] in his study of optical holograph, is a
natural way to define a complex signal with a clear
physical meaning. In particular, given a real signal
x(t), one performs a mathematical transform to ob-
tain the corresponding imaginary part x̃(t), yielding
a complex signal ψ(t):

ψ(t) = x(t) + ix̃(t) = A(t)eiφ(t) .

Suppose that the imaginary part can be obtained
uniquely through the mathematical transform in
the sense that the analytic signal ψ(t) corresponds
geometrically to a rotation, its amplitude and phase
can then be defined, as follows:

A(t) =
√

x(t)2 + x̃(t)2 , φ(t) = arctan

[

x̃(t)

x(t)

]

.

The phase variable φ(t) gives the instantaneous fre-

quency ω(t):

ω(t) =
dφ(t)

dt
=
x(t) ˙̃x(t) − ẋ(t)x̃(t)

A2(t)
. (42)

Note that the instantaneous frequency ω(t) is fun-
damentally different from the concept of frequency
in the Fourier transform defined in the base of sim-
ple harmonic functions. Here, the base is the physi-
cally meaningful concept of rotations. The instanta-
neous frequency ω(t) measures the rate of rotation
in the complex plane of the corresponding analytic
signal.

The main issue is then how to define the imag-
inary part of complex signal. Interest in the proper
definition of the imaginary part first arose with the
advent of frequency modulation for radio transmis-
sion in the 1920s. The necessity for the notion of
instantaneous frequency, which quantifies the rate
of change of phase angle, was clearly identified and
a general scheme was proposed, but a good defini-
tion of phase angle was missing at the time. It was
Gabor [1946] who proposed a solution to the prob-
lem by inventing the analytic signal.

Gabor’s approach is as follows. Observe that if
the real signal x(t) has a Fourier transform S(ω),
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then the complex signal, ψ(t), whose spectrum is
composed of positive frequencies of S(ω) only, is
given by the inverse transform of S(ω), where the
integration goes only over the positive frequencies:

ψ(t) =
2√
2π

∫ ∞

0
S(ω)eiωtdω

The factor 2 is inserted so that the real part of the
analytical signal is x(t), not one half of that. The
explicit form of ψ(t) can then be obtained in terms
of the real signal x(t). Since

S(ω) =
1√
2π

∫ ∞

−∞

x(t)e−iωtdt ,

the complex signal can be written as

ψ(t) = 2
1

2π

∫ ∞

0

∫ ∞

−∞

x(t′)e−iωt′eiωtdt′dω

=
1

π

∫ ∞

0

∫ ∞

−∞

x(t′)e−iω(t−t′)dt′dω . (43)

The mathematical identity [Arfken & Weber, 1995]
∫ ∞

0
eiωτdω = πδ(τ) +

i

τ

gives

ψ(t) =
1

π

∫ ∞

−∞

x(t′)

[

πδ(t − t′) +
i

t− t′

]

dt′ ,

which yields [Hahn, 1996]

ψ(t) = x(t) + i
1

π

∫ ∞

−∞

x(t′)

t− t′
dt′ , (44)

the analytic signal corresponding to the real signal
x(t). The imaginary part of Eq. (44) is nothing but
the Hilbert transform x̃(t) of the real signal x(t),

x̃(t) = P.V.

[

1

π

∫ ∞

−∞

x(t′)

t− t′
dt′

]

, (45)

where P.V. stands for the Cauchy principal value for
the integral. In principle, there are many ways to de-
fine a complex function from x(t), but the Hilbert
transform provides a unique way to define x̃(t) (also
known as the quadrature signal [Okunev, 1997]) so
that ψ(t) has an analytic continuation over the com-
plex upper half-plane. From a physical standpoint,
x(t) represents some physical measurement and also
serves as a boundary condition for defining some
analytic function.

3.1.2. The Hilbert transform

To better understand the meaning of the Hilbert
transform, we examine some mathematical issues.
Consider the following one-dimensional integral-
transform pair:

u(t) ⇔ U(s)

where a time function u(t) is transformed into a
complex function of a real variable s. This notation
may also be written in the form of the following pair
of integrals [Hahn, 1996]:

U(s) =
1

π

∫ ∞

−∞

u(t)

s− t
dt

u(t) =
1

π

∫ ∞

−∞

U(s)

t− s
ds .

A look at these integrals reveals that the Hilbert
transforms are defined using the kernel 1/π(s − t)
and the conjugate kernel 1/π(t− s). In general, the
Hilbert transforms are written in a more explicit
form:

ũ(t) = P.V.

[−1

π

∫ ∞

−∞

u(τ)

τ − t
dτ

]

, (46)

u(t) = P.V.

[

1

π

∫ ∞

−∞

ũ(τ)

τ − t
dτ

]

. (47)

The integrals in these equations are improper inte-
grals in the sense of the Cauchy principal value. For
Eq. (47), the integral is defined by the limit [Hahn,
1996]:

u(t)= lim
ε→0;L→∞

1

π

{∫ t−ε

−L

ũ(τ)

τ−t dτ+

∫ L

t+ε

ũ(τ)

τ−t dτ
}

.

Essentially, Eqs. (46) and (47) define convolu-
tion, which can be seen by applying the change of
variable (τ → t− τ) to the Hilbert transform given
in Eq. (46). This yields

ũ(t) =

∫ ∞

−∞

u(t− τ)

πτ
dτ , (48)

where the integral again is to be taken as the
Cauchy principal value. This form of Hilbert trans-
form clearly shows that ũ(t) is the convolution of
u(t) with 1/πt, i.e.

ũ(t) =
1

πt
∗ u(t) ,

u(t) =
−1

πt
∗ ũ(t) ,

(49)

where ∗ denotes the convolution operation.
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3.1.3. Numerical computation of the

analytical signal

The key to numerically computing the analytic sig-

nal is the relation between the Hilbert and the

Fourier transforms. In particular, the Hilbert trans-

form of x(t) is the positive part of the Fourier trans-

form of x(t), multiplied by two [Frenking, 1994].

This can be seen by examining the convolution

given in Eq. (49). Recall that the convolution g ∗ h
is one member of a simple transformation pair:

g ∗ h⇔ FT (g)FT (h) ,

where FT denotes the Fourier transformation,

which is the the convolution theorem. We thus have

[Shenoi, 1995]

1

πt
∗ u(t) ⇔ FT

(

1

πt

)

FT (u(t))

⇔ −i sgn(ω)U(ω) , (50)

where U(ω) is the complex Fourier transform of u(t)

and the signum function is [Hahn, 1996] defined as

sgn(ω) =







+1 for ω > 0

0 for ω = 0

−1 for ω < 0

.

Since u(t) is a real function of time, we have

U(−ω) = U ∗(ω). Then, the analytical signal can

be written as

ψ(t) = u(t)+ iũ(t) = 2
1√
2π

∫ ∞

0
U(ω)eiωtdω . (51)

This simple result is important because it says that,

if the signal can be expressed in the Fourier fre-

quency domain, then the analytic signal can be

obtained by dropping negative-frequency terms,

multiplying the positive-frequency terms by two,

and transforming back to time domain.

3.1.4. Instantaneous frequency

Instantaneous frequency, together with phase, is an

intuitive concept. The exact mathematical descrip-

tion of the frequency modulation is quite intrigu-

ing, but the following simple argument suggests the

physical meaning of the definition of the instan-

taneous frequency as the derivative of the phase

variable.

Assume ψ(t) has the spectrum S(ω), then the
mean frequency is given by [Boashash et al., 1995]

〈ω〉 =

∫

ω|S(ω)|2dω

=
1

2π

∫∫∫

ωψ∗(t)ψ(t′)eiω(t−t′)dωdt′dt

=
1

2πi

∫∫∫

ψ∗(t)ψ(t′)

(

∂

∂t
eiω(t−t′)

)

dωdt′dt

=
1

i

∫∫

ψ∗(t)

(

∂

∂t
δ(t− t′)

)

ψ(t′)dωdt′dt

=

∫

ψ∗(t)
1

i

(

d

dt
ψ(t)

)

dt ,

which can also be written as

〈ω〉 =

∫ [

d

dt
φ(t) − i

A(t)

(

d

dt
A(t)

)]

A2(t)dt .

The second term is zero since that term is purely
imaginary; it must be zero for 〈ω〉 to be real, which
gives [Huang et al., 1998]

〈ω〉 =

∫ (

d

dt
φ(t)

)

|S(ω)|2dω

=

∫ (

d

dt
φ(t)

)

A2(t)dt .

This is an interesting and important result because
it says that the average frequency may be obtained
by integrating the instantaneous frequency with the
density over all time:

ω(t) =
d

dt
φ(t) . (52)

As an example, Fig. 12(a) shows the plot of
x(t) of a simple harmonic oscillator, versus x̃(t),
the Hilbert transform of x(t). For x(t) = A sin(ωt),
where ω is a constant, the Hilbert transform is triv-
ial and can be performed by shifting all frequency
components of x(t) by π/2, i.e. x̃(t) = −A cos(ωt).
The unwrapped phase function corresponding to
Fig. 12(a) is a monotonically increasing straight line
as shown in Fig. 12(b), and the instantaneous fre-
quency shown in Fig. 12(c) is constant, as expected.

With these notations, the bandwidth associated
with the spectrum of the instantaneous frequency
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(a)

(b)

(c)

Fig. 12. Illustration of the Hilbert transform and instanta-
neous frequency associated with a simple harmonic oscillator:
(a) the real signal x(t), (b) its Hilbert transform, and (3) the
constant frequency.

can be defined as [Huang et al., 1998]

B2 = σ2
ω =

∫

(ω − 〈ω〉)2|S(ω)|2dω

=

∫

ψ∗(t)

(

1

i

d

dt
− 〈ω〉

)2

ψ(t)dt

=

∫
∣

∣

∣

∣

(

1

i

d

dt
− 〈ω〉

)

ψ(t)

∣

∣

∣

∣

2

dt

=

∫
∣

∣

∣

∣

−i
A(t)

(

d

dt
A(t)

)

+
d

dt
φ(t) − 〈ω〉

∣

∣

∣

∣

2

A2(t)dt ,

or

B2 =

∫ (

d

dt
A(t)

)2

dt+

∫ [

d

dt
φ(t) − 〈ω〉

]2

A2(t)dt .

For a narrow band signal, B2 must be a small,
i.e. both the amplitude A(t) and the phase φ(t) are
slowly varying functions of time.

Even with the definition given in Eq. (52) as
the derivative of phase, there still is a consider-
able controversy over the meaning of instantaneous
frequency, especially if the signal is not mono-

component, a term which was introduced to ensure
ω(t) has a narrow band spectrum. Suppose φ(t) gen-
erated by Eq. (44) can be represented by

φi(t) =

∫ t

0
ωi(τ)dτ .

Here, i indicates the different components having
different oscillatory frequencies. Assume the origi-
nal signal x(t) can be expressed as [Boashash, 1992]

x(t) =

N
∑

i=1

Ci(t) + η(t) , (53)

where η(t) represents a residue term with negligi-
ble amplitude and N is some finite number. By
construction, each Ci is an intrinsic mode of x(t)
with a simple oscillatory waveform described by the
envelopes Ai(t) and the instantaneous frequencies
ωi(t) such that the analytic signal ψi(t) associated
with Ci(t) is

ψi(t) = Ai(t)e
φi(t) i.e. Ci(t) = Ai(t) cos(φi(t))

If i = 1, the signal is said to be a mono-component
signal; if, however, i ≥ 2, then the signal is referred
to as a multicomponent signal [Boashash, 1992].

Figure 13(a) shows an example of a multi-
component signal. The real part of the signal is
x(t) = A1 sin(ω1t)+A2 sin(ω2t) with ω1 = 1, ω2 = 3
and A1 = 1, A2 = 0.9. The spectrum of this signal
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(a)

(b)

(c)

Fig. 13. (a) The plot of x(t) = sin(t)+0.9 sin(3t) in its com-
plex plane of analytic signal. The Hilbert transform of the
signal is x̃(t) = − cos(t) − 0.9 cos(3t). Clearly the rotation is
not a proper one. The trajectory needs to change the direc-
tion of rotation with respect to the origin to pass through
the points denoted by 1, 2 and 3. (b) Unwrapped phase func-
tion φ(t) obtained from (a). (c) Time derivative of the phase
function in (a) has intervals with negative frequencies which
are unphysical.

consists of two delta functions at ω1 and ω2:

S(ω) = A1δ(ω − ω1) +A2δ(ω − ω2) .

Since ω1 and ω2 are taken to be positive, the signal
is analytic. Solving for the phase and amplitude:

φ(t) = arctan
A1 sin(ω1t) +A2 sin(ω2t)

A1 cos(ω1t) +A2 cos(ω2t)
,

A2(t) = A2
1 +A2

2 + 2A1A2 cos(ω2 − ω1)t

and taking the derivative of the phase yield the in-
stantaneous frequency:

ω(t) =
d

dt
φ(t) =

1

2
(ω2 + ω1) +

1

2
(ω2 −ω1)

A2
1 −A2

2

A2(t)
.

Notice that due to the last term in the above equa-
tion, the trajectory in Fig. 13(a) traces out a rota-
tion with two separate centers. This is also apparent
in Fig. 13(b), where the unwrapped phase function
is no longer a monotonically increasing function of
time. The result of this behavior is evident in the
instantaneous frequency plot shown in Fig. 13(c).
Clearly, the negative values assumed by the instan-
taneous frequency are unphysical. This example il-
lustrates that even for a simple signal, a meaning-
ful instantaneous frequency can only be obtained
if some restrictive conditions are imposed on the
data. However, almost all of the conditions dis-
cussed in several references [Gabor, 1946; Boashash,
1992; Bedrosian, 1963] are global and do not pro-
vide a scheme as to how to obtain the decompo-
sition given in Eq. (53). Recently, Huang et al.

[1998] introduced the Empirical Mode Decomposi-
tion (EMD) method for generating intrinsic modes
that are mono-components.

3.2. Method of empirical mode

decomposition

In order to define physically meaningful instanta-
neous frequencies, it is necessary that the analytic
signal possess a proper structure of rotation. For in-
stance, there should be a unique center of rotation.
More precisely, the analytic signal ψ(t) should sat-
isfy the following two conditions in its own complex
plane: (1) there is a preferred direction of rotation
(e.g. either clockwise or counterclockwise), and (2)
the rotation can be defined with respect to a unique
center.
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The first condition is self-explanatory, and the
second condition is a one ensuring that the in-
stantaneous frequency does not have any undesir-
able fluctuations induced by asymmetric waveforms
[Huang et al., 1998]. Physically, these two require-
ments amount to having a well-behaved rotation-
like motion as shown in Fig. 12(a). It is natural to
call a rotation satisfying these two conditions in the
complex plane of analytic signal a proper rota-

tion. For a complicated signal that does not satisfy
the above conditions, it is necessary to express it by
a sum of proper rotations (if possible). The empiri-
cal mode decomposition (EMD) method developed
by Huang et al. [1998] is such a method. The heart
of the decomposition method is to identify the in-
nate undulations belonging to different time scales
and sift them out to obtain one intrinsic mode at
a time. This can be achieved by making use of the
envelopes defined by the local maxima and minima
to discern waves riding on top of the others. Once
the extrema of the data set are identified, all the
local maxima and local minima are connected by a
cubic spline to form an upper envelope smax(t) and
a lower envelope smin(t). Their mean is denoted by

m(t) =
smax(t) + smin(t)

2
(54)

and it is subtracted (sifted out) from the original
data x(t) to yield r(t)

r(t) = x(t) −m(t) .

Ideally, r(t) should be an intrinsic mode. How-
ever, due to the imperfections in the construction
of the envelopes, overshoots and undershoots can
generate new extrema or modify the existing ones.
Therefore r(t) must be checked to see if it satisfies
the two conditions specifying a proper rotation. If
the conditions are not satisfied, the sifting proce-
dure is carried out again by forming smax(t) and
smin(t) but this time from r(t). The mean m(t) is
calculated by Eq. (54). That is, in the second sift-
ing, r(t) is regarded as the data to be analyzed:

r(t) → r(t) −m(t) .

By sifting out the local mean m(t) from r(t), some
riding waves can be eliminated, yielding wave pro-
files that are more symmetric. This process of sifting
continues until r(t) corresponds to a proper rota-
tion. Then, it is designated as

C1(t) = r(t) ,

which is the first intrinsic mode. In general, C1(t)
contains the highest-frequency oscillations of the
original signal since the envelopes are formed using
maxima of the fastest riding waves. This shortest
time-scale component can be subtracted from the
data:

x(t) → x(t) −C1(t) .

The remainder can be treated as the new data sub-
jected to the same sifting process described above.
This procedure can be applied repeatedly to yield
subsequent intrinsic modes Ci(t) belonging to differ-
ent time scales. The sifting process is stopped when
r(t) shows no apparent variations (i.e. it has fewer
than two local extrema) or the amplitude of the
oscillations in the time domain becomes negligibly
small compared with the amplitude of the original
signal x(t). The last component is denoted by ε(t)
which is roughly a quadratic or a linear function of
time with relatively small amplitude. Summarizing
these steps, it can be seen that the original signal
x(t) is decomposed in the following manner:

x(t) =

M
∑

i=1

Ci(t) + ε(t) ,

as given in Eq. (53).

3.3. Application to chaotic systems

(I): The Lorenz chaotic signals

To illustrate the decomposition procedure, we use
the data collected from the chaotic attractor of the
Lorenz system [Lorenz, 1963]:

dx

dt
= 16(x− y) ,

dy

dt
= −xz + 45.92x − y ,

dz

dt
= xy − 4z .

(55)

Figure 14(a) shows the time series obtained from
y(t) for σ = 16, ρ = 45.92 and β = 4. The data
appear to be quite complicated. Despite many local
extrema, there are relatively fewer zero crossings.
The corresponding trajectory in the complex plane
of ψ(t) is shown in Fig. 14(b), where it is apparent
that the rotation is not proper as it has two centers
and, hence, in this case, no proper phase function
φ(t) can be defined. Figure 14(c) shows the trajec-
tory in the complex plane of the first intrinsic mode
C1(t) from the Lorenz system. Now there is a unique
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(a)

(b)

(c)

Fig. 14. (a) A trajectory from y-component of the Lorenz
equation. (b) The same trajectory in the complex plane of
the analytic signal. The motion exhibits multiple centers of
rotation so that a proper phase cannot be defined. (c) A simi-
lar trajectory from the first intrinsic mode C1(t) of y(t) of the
Lorenz system. In this case, the phase φ1(t) can be properly
defined.

center for which the phase of C1(t) can be defined
properly.

The first component C1(t) shown in Fig. 14(c)
is obtained as follows: we first identify the local ex-
trema and obtain upper and lower envelopes. In

practice, serious problems can occur near the end
points of the original signal x(t) during the spline
fitting process. If the edges of the data are left un-
treated, the spline fittings will introduce large per-
turbations into the data which can propagate and
eventually corrupt the signal. An example of the
edge effects is shown in Fig. 15(a). Here, the thin
line is the data to be sifted and the thick solid line
is the upper envelope constructed by connecting all
the local maxima by cubic splines. The original sig-
nal has about 64, 000 data points and lasts for 640
time units. However, the figure shows only the first
six time units of the signal. At the beginning of the
signal, one would expect to see an envelope func-
tion with zero slope. However, due to the way the
cubic splines are constructed, the envelope function
exhibits a large swing at the edge of the data. Com-
bined with the similar behavior from the lower en-
velope, some artificial extrema with relatively large
amplitudes are generated. As the sifting procedure
is continued, the undesired edge effects can propa-
gate toward the middle of the signal, and eventually
corrupt it. Here, a procedure similar to the one in
[Huang et al., 1998] is utilized [Yalcinkaya & Lai,
1997; Talcinkaya, 1998] to eliminate the edge effects.
Specifically, a number of extra data points is intro-
duced at both the beginning and the end of the data
by repeating the local extrema of the typical waves.
In order to preserve the original data length, they
are located outside the given data interval. As a re-
sult, more pairs of additional maxima and minima
are to be used by the splines. Figure 15(b) shows
the reduction in the artificial swing in the upper
envelope function using six extra points at both the
beginning and the end of the data.

The edge effects are not the only problems
with spline fittings. An ideal envelope should en-
close the data and should not interfere with the
general flow of it. In reality, however, undershoots
and overshoots are present even with very simple
data. The example shown in Fig. 15 contains sev-
eral locations where the envelope crosses the signal
and exhibits uncharacteristic swings. It may seem
that such imperfections in the envelope construc-
tion would have drastic effects in the final form
of the intrinsic modes. This turns out not to be
the case. In general, the artificial oscillations in-
troduced by the envelopes belong to different time
scales, and hence they are eliminated by the sifting
procedure.
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(a)

(b)

Fig. 15. (a) A time series collected from the chaotic attrac-
tor of the Lorenz system. The upper envelope exhibits a large
swing at the beginning of the signal since the edge is not
treated. (b) Same data with the edges are properly treated.

Figures 16 and 17 summarize the first seven
intrinsic modes from this repeated sifting process
with the edge effects taken care of as illustrated
in Fig. 15(b). Although it appears that the im-
provement in the method of spline fitting is critical
to minimizing unwanted undulations introduced by
the numerical procedure, the choice of which spline
to use does not have substantial influence on the ob-
tained intrinsic modes [Yalcinkaya, 1998]. That is,
qualitatively similar intrinsic modes are obtained,
provided that the splines are smooth functions of
time. Therefore, the intrinsic modes, as exemplified
in Figs. 16 and 17, are robust.

In general, the number of fundamental modes
M required to capture the rotation-like motions
in a chaotic signal is small. Figure 18 shows the

phase functions φj(t) corresponding to the modes
shown in Figs. 16 and 17 for the Lorenz flow. There
appears to be a separation between the average ro-
tation frequencies (the average slopes) of the var-
ious modes, with ω1 being the largest. It can also
be seen that ωj ≈ 0 for j ≥ 7, indicating that the
eighth mode and up are insignificant.

What are the characteristics of the distribu-
tion of the mean instantaneous frequencies? Since
the signal is chaotic and has a broad-band Fourier
spectrum, one may expect an unlocalized distribu-
tion of the average frequencies. Nonetheless, as de-
scribed, the intrinsic modes, by construction, have
narrow bandwidth. Therefore, the EMD method
yields frequency components that are inherently dif-
ferent from those of Fourier transform. Figure 19
shows the histograms of the average instantaneous
frequencies for all three state variables, x(t), y(t)
and z(t), of the Lorenz equations with σ = 16,
ρ = 45.92 and β = 4. Each histogram is obtained
by using 5000 samples with random initial condi-
tions and calculating 〈ωj〉 for (j = 1, . . . , 4). There
is a clear separation among the distributions of the
average frequencies for the intrinsic modes. A quick
look at the average of the frequency distributions
reveals something more interesting. Table 2 shows
the mean of the instantaneous frequency distribu-
tion from the x-component of the Lorenz system,
the associated standard deviation and the relative
ratios. If the mean instantaneous frequency of C1

is regarded as the fundamental frequency, the re-
maining intrinsic modes exhibit roughly rational
harmonics of this fundamental frequency. A similar
relationship can be found in Tables 3 and 4, the
corresponding results for y(t) and z(t). Further-
more, x(t) and y(t) seem to have approximately
the same frequency distribution and same fun-
damental frequencies, i.e. ωx

∼= ωy. This shows
that the phase dynamics of the Lorenz system has
an unexpected simplicity. Roughly speaking, there
are only two fundamental frequencies governing the

phase dynamics of the Lorenz equations and all
the auxiliary frequencies are obtained from these
two.

In principle, an infinitely long chaotic signal can
be decomposed into an infinite number of proper ro-
tations. However, we find that the amplitudes and
the average rotation frequencies decrease rapidly
as higher-order modes are examined. Thus, a few
proper rotations are sufficient to represent the phase
of the chaotic signal, but there is rigorous assurance
of this at the present.
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Fig. 16. A trajectory from the y component of the Lorenz equation and the three intrinsic modes.

It should be mentioned that while the sifting
procedure is necessary for chaotic flows that exhibit
multiple centers of rotation in the complex plane of
its analytic signal, there are systems in which the
flow apparently already has a unique center of rota-
tion. In this case, the sifting procedure is not neces-
sary and one can define the phase associated with
the flow directly from the analytic signal. Flows on
the Rössler attractor appear to belong to this cate-
gory [Rössler, 1976].

3.4. Application to chaotic systems

(II): Transition to chaos in

deterministic flows

A fundamental question in nonlinear science con-
cerns how turbulent or chaotic motions occur as
a system parameter changes. About a half cen-
tury ago, Landau proposed that turbulent motion
was a result of successive addition of a great many
new discrete frequency components as the system
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Fig. 17. Next four intrinsic modes from the data shown
in 16.

parameter approaches the critical point [Landau,
1944] at the onset of the motion.6 This scenario
to turbulence, however, was shown to be incor-
rect by Ruelle, Takens, and Newhouse who proved
mathematical theorems concerning the transition
to chaotic motion from four- and three-frequency
quasiperiodic flows [Ruelle & Takens, 1971; New-
house et al., 1978]. In particular, Ruelle and Tak-
ens considered four-frequency quasiperiodic flows
on the torus T 4. They showed that it is possible to
make arbitrarily small, but carefully chosen, smooth
perturbations to the flow so that the flow becomes

Fig. 18. φj(t) versus t for j = 1, . . . , 8. Note that the phase
variation in φ8(t) is already approximately zero, indicating
that further components are insignificant.

Fig. 19. The histograms obtained from the Lorenz chaotic
system. Each distribution is obtained by using 5000 random
initial conditions, each yielding a time series for 0 ≤ t ≤ 600
(after a sufficiently long transient time). The mean frequen-
cies of the first four intrinsic modes are shown.

chaotic [Ruelle & Takens, 1971]. Newhouse, Ruelle,
and Takens subsequently showed that the same hold
for a three frequency quasiperiodic flow on the torus
T 3 [Newhouse et al., 1978]. The key implication of
these results is that broad-band frequency spectra,
a hallmark of turbulent or chaotic motions, can ap-
pear more abruptly as the result of the onset of a
chaotic attractor. To be more specific, consider a

6Here the word turbulent means random and complicated motions such as a chaotic motion, as used by Landau [1944].
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Table 2. Frequency distribution
of x-component from the Lorenz
chaotic attractor.

x(t) 〈ω〉 σ ratio

C1 16.3 0.68 ωx

C2 7.6 0.43 ≈
ωx

2

C3 4.1 0.32 ≈
ωx

4

C4 1.0 0.24 ≈
ωx

16

Table 3. Frequency distribution
of y-component from the Lorenz
chaotic attractor.

y(t) 〈ω〉 σ ratio

C1 17.4 0.71 ωy

C2 7.6 0.41 ≈
ωy

2

C3 4.2 0.31 ≈
ωy

4

C4 1.9 0.26 ≈
ωy

8

Table 4. Frequency distribution
of z-component from the Lorenz
chaotic attractor.

z(t) 〈ω〉 σ ratio

C1 13.6 0.08 ωz

C2 5.8 0.28 ≈
ωz

2

C3 3.4 0.26 ≈
ωz

4

C4 1.7 0.85 ≈
ωz

8

physical system described by a continuous flow:

dx

dt
= F(x, p) , (56)

where x ∈ RN and p is a system parameter. Assume
at p = p1, the flow is quasiperiodic. In this case,
if one examines the Fourier spectrum of x(t), one
finds only a few incommensurate Fourier frequen-
cies. According to Ruelle, Takens, and Newhouse,
an arbitrarily small change, say in the parameter p
from p1 to p2 = p1 + δp, where δp ∼ 0, can lead
to a chaotic motion characterized by a broad-band

Fourier spectrum. Note that there is in fact an infi-
nite number of incommensurate Fourier frequencies
associated with the chaotic motion at p2, whereas
there are only a very few such frequencies at p1 even
if |p2 − p1| → 0. Thus, an infinite number of funda-
mental Fourier frequencies must have been created
through an arbitrarily small parameter change.

The point here is that the transition to chaos
in deterministic flows can also be studied from the
perspective of analytic signals [Lai, 1998]. Given a
scalar time series x(t) from a nonlinear system, one
can perform the Hilbert transform to obtain an an-
alytic signal and its instantaneous-frequency spec-
trum. It is found then [Lai, 1998]: (1) the distribu-
tions of the instantaneous frequencies for a chaotic
system are typically well localized and exhibit no
broad-band feature, in contrast to the Fourier spec-
tra of chaotic signals, and (2) there is no substantial
change in the number of analytic signals that con-
stitute a dynamical variable before and after the
onset of chaos. Transition to chaos in nonlinear sys-
tems can then be considered as a rather smooth
process when it is viewed from the perspective of
analytic signals rather than the traditional Fourier
spectra. These results suggest an interesting orga-
nization of chaos in continuous flows, that is, chaos
is supported by only a few distinct rotations in the
complex representations of analytic signals.

These results can be demonstrated [Lai, 1998]
by using a representative model of the two-mode
truncation of the complex coefficient Ginzburg–
Landau equation. The model represents a four-
dimensional autonomous flow [Moon, 1997], as
follows:

da1

dt
= pa1 + (i− p)

(

|a1|2a1 + a1|a2|2 +
1

2
a∗1a

2
2

)

,

da2

dt
= pa2 − q2(i+ p)a2 + (i− p) (57)

×
(

a2
1a

∗
2 + 2|a1|2a2 +

3

4
|a2|2a2

)

,

where a1(t) and a2(t) are complex dynamical vari-
ables, the star denotes complex conjugate, p and
q are parameters. It was argued that Eq. (57) ex-
hibits a transition from two-frequency quasiperiodic
motion to chaos in wide parameter regimes via the
mechanism of heteroclinic crossing of stable and un-
stable manifolds and torus breakup [Moon, 1997].
In fact, a two-frequency quasiperiodic motion can
lose its stability directly and become chaotic. In
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[Lai, 1998], the parameter q is fixed at q = 1.0 and
the following notions are used: U(t) ≡ Re[a1(t)],
V (t) ≡ Im[a1(t)], X(t) ≡ Re[a2(t)], and Y (t) ≡
Im[a2(t)]. Numerical compuation indicates that the
transition from two-frequency quasiperiodicity to
chaos occurs at the critical parameter value 0.24 <
pc < 0.25, where the motion is quasiperiodic for
p > pc and it is chaotic for p < pc. Figure 20(a)
shows, for p = 0.25, the projection of the quasiperi-
odic attractor (after a transient time of t = 50 000)
onto the (U, X) plane, and Fig. 20(b) shows the
Fourier power spectrum of U(t) for 0 ≤ t ≤ 3276.8
at a sampling rate ∆t = 0.05 (so that there are
216 points in the time series for fast Fourier trans-
form). The Fourier spectrum is apparently discrete

and there are two fundamental frequencies [Moon,
1997]. As p decreases, the two-frequency torus in
which the quasiperiodic attractor lies breaks at pc,
and the asymptotic attractor becomes chaotic with
a fractal dimension between 3 and 4 for p < pc

[Moon, 1997]. Figures 20(c) and 20(d) show the
projection of the chaotic attractor in the (U, X)
plane and the Fourier power spectrum of U(t), re-
spectively. Clearly, the Fourier spectrum now has a
broad-band feature, which is a hallmark of chaos.
Comparison between Figs. 20(b) and 20(d) indi-
cates that an infinite number of new Fourier modes
are created at the onset of chaos.

To study the transition to chaos, as demon-
strated in Figs. 20(a)–20(d), from the standpoint of

(a) (b)

(c) (d)

Fig. 20. (a) For p = 0.25 (two-frequency quasiperiodicity), a trajectory in the (U, X) plane. (b) The Fourier spectrum of
U(t) in (a). (c) For p = 0.24 (chaos), a trajectory in the (U, X) plane. (d) The Fourier spectrum of U(t) in (c).
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analytic signals, it is necessary to decompose a time
series into empirical modes with proper rotational
structures. One can then obtain quantitative char-
acteristics of the rotations from the analytic signal
of each component by utilizing the Hilbert trans-
form. This has been done for both the quasiperiodic
and chaotic motions in Eq. (57) by decomposing the
time series U(t) into components with proper ana-

lytic signals: U(t) =
∑M

i=1Ci(t), where M is the
number of modes with nonzero mean frequencies of
rotation. For a time series of 216 points at a sam-
pling rate of ∆t = 0.05, it is found [Lai, 1998] that
M ≈ 6 suffices to capture the time variation of the
original signal U(t). Figures 21(a) and 21(b) show,

for p = 0.25, the first two rotations in the complex
planes of their own analytic signals. The average
frequencies of these two rotations are ω1 ≈ 0.846
and ω2 ≈ 0.314, respectively. The rotations reveal
rather regular patterns, as can be expected for a
quasiperiodic motion. As p decreases through pc so
that the system is in a chaotic regime, these proper
analytic signals still persist. Figures 21(c) and 21(d)
show the corresponding rotations for p = 0.24. Due
to chaos, the rotations no longer exhibit regular
patterns, but the overall behaviors of rotation per-
sist. The average frequencies of rotation are ω1 ≈
0.864 and ω2 ≈ 0.378 for modes 1 and 2, respec-
tively. We see that the mean frequency of the first

(a) (b)

(c) (d)

Fig. 21. The first two proper analytic signals obtained from U(t). (a) p = 0.25 (quasiperiodicity), mode 1; (b) p = 0.25
(quasiperiodicity), mode 2; (c) p = 0.24 (chaos), mode 1; and (d) p = 0.24 (chaos), mode 2.
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analytic signal changes only slightly as p decreases
from 0.25 to 0.24, and the corresponding change in
the second analytic signal is rather large. In general,
it is observed [Lai, 1998] that the onset of chaos usu-
ally has a greater influence on rotations with smaller
frequencies.

The remarkable result is that as the quasiperi-
odic motion is converted into a chaotic one, the
number of proper analytic signals characterizing a
chaotic signal remains essentially the same. For in-
stance, it is found that the chaotic signal U(t) in
Fig. 20(c) can still be represented by six proper
analytic signals [Lai, 1998]. One way to examine
the change in proper analytic signals for quasiperi-
odic and chaotic signals is to study the statistical
behavior of mean frequencies of rotation. Specifi-
cally, in [Lai, 1998], for a fixed parameter value p,
10 000 trajectories (each of 216 points, at a sam-
pling rate ∆t = 0.05) are chosen on the attractor
and for each trajectory, the mean frequencies of the
first six modes of proper rotations are computed.
The histograms of these six frequencies (ω1, . . . , ω6)

are then constructed. Figures 22(a) and 22(b) show
the histograms for p = 0.25 and p = 0.24, respec-
tively. When the motion is quasiperiodic [Fig. 3(a)],
it can be seen that the first few frequencies are
sharply distributed. In fact, some of the frequen-
cies are the linear combinations of others, which
occurs commonly in the Fourier analysis. For in-
stance, it is found that ω3 ≈ (ω2+ω4)/2 [Lai, 1998].
For the chaotic motion [Fig. 3(b)], the frequencies
spread and the frequency distributions shift relative
to those in the quasiperiodic case. However, the first
few frequency distributions in the chaotic case are
still well localized. One important feature distin-
guishing a chaotic rotation from a regular one is
that for a chaotic rotation: ψ(t) = A(t) exp [iφ(t)],
the amplitude A(t) is random and the phase dynam-
ics are similar to a random walk. This is due to the
fact that the phase dynamics can be described by:
dφ(t)/dt = ω+F [A(t)], where F [A(t)] is a function
of A(t) [Rosenblum et al., 1996; Yalcinkaya & Lai,
1997; Andrade et al., 2000; Andrade & Lai, 2001].
The most important feature of Figs. 3(a) and 3(b) is

(a) p = 0.25

(b) p = 0.24

Fig. 22. Histograms of mean frequencies of proper analytic signals associated with the U(t) for (a) the quasiperiodic motion
at p = 0.25 and (b) for the chaotic motion at p = 0.24.
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that the number of proper analytic signals remains
essentially unchanged through the transition from
quasiperiodicity to chaos, and the distributions of
the instantaneous frequencies of the analytic sig-
nals are well localized and exhibit no broad-band
feature. A reason may be that in the rotational rep-
resentation, the chaotic amplitude modulation is fil-
tered out so that the broad-band component in the
Fourier spectrum disappears.7 Thus, although an
infinite number of Fourier modes are created at the
onset of chaos, there is no metamorphosis in the
number of analytic signals that represent a chaotic
time series.

A few remarks are in order. The frequencies ωj

obtained correspond to the mean rotation frequen-
cies of the empirical modes Cj(t) (j = 1, . . . , M) in
the complex planes of their analytic signals. These
frequencies, in fact, characterize the main physi-
cal time scales hidden in the original time series
U(t) from the perspective of rotations. The frequen-
cies ωj can be rationally related and there are
only two incommensurate ones, which are consis-
tent with the fact that the underlying flow is two-
frequency quasiperiodic. The Fourier frequencies,
on the other hand, are harmonic frequencies. When
the motion is regular, the fundamental frequencies
in the analytic-signal representation correspond ap-
proximately to these in the Fourier representation,
or the “real” frequencies of the quasiperiodic mo-
tion [compare Figs. 20(b) and 22(a)]. When the mo-
tion is chaotic, the Fourier spectrum is broad-band,
but the frequency distribution in the analytic-signal
representation is still well localized, due to the fact
that there cannot be abrupt change in the analytic
signals (rotations) that constitute the physical sig-
nal. In this case, there is no direct correspondence
between the rotation frequencies of the analytic sig-
nals and the Fourier frequencies.

4. Discussion

In this paper we have described two recent develop-
ments in chaotic time series analysis: (1) the delay-
coordinate embedding method for analyzing tran-
sient chaotic data and, (2) the Hilbert-transform
method for chaotic signal processing. The first

extends the embedding method, proven to be use-
ful for long time series from low-dimensional chaotic
systems, to systems that exhibit transient chaos and
consequently give only short time series. The second
can be applied to both deterministic and stochastic
systems. In addition, the Hilbert analysis has the
advantage of being suitable for nonstationary time
series to assess the instantaneous-frequency spec-
trum of the system.

When combined with the empirical-mode de-
composition procedure, the Hilbert transform can
yield an understanding of the physical mechanisms
responsible for the observed time series, which
cannot be revealed by the traditional Fourier or
the wavelet transform method. An example is the
record of the time of a day. The exact time of a
day on earth is not precisely 24 hours. Instead,
the time has fluctuations on the order of micro-
seconds. By analyzing the data of fluctuations using
the empirical-mode decomposition and the Hilbert
analysis, Huang et al. were able to identify clearly
the physical origins of the fluctuations such as
the influences from the motions of the sun and
the moon, as these physical motions have distinct
instantaneous-frequency properties [Huang et al.,
1998].

The analytic-signal approach can also be uti-
lized to address fundamental questions in chaotic
dynamics such as the transition to chaos in deter-
ministic flows. For instance, a study of the rota-
tional characteristics of the analytic signals suggests
that there is no significant change in the number of
proper analytic signals through the transition, al-
though the Fourier spectrum becomes broad-band
after the onset of chaos. Thus, although chaotic mo-
tion can be characterized as random and compli-
cated, its fundamental structure in terms of proper
analytic signals may be quite simple.
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7By filtering out the chaotic amplitude modulations, the organization of the phase dynamics, which is characterized by the
rotation frequencies, becomes quite simple in the sense that the distributions of frequencies are well isolated [Fig. 22(b)] even
in chaotic regimes. A somewhat analogous situation occurs in the periodic-orbit representation of chaotic sets. It is believed
that the infinite set of unstable periodic orbits constitutes the skeleton of a chaotic set. In this sense, chaos can be regarded
as being organized on the infinite set of periodic orbits, but apparantly, there is a even larger set of aperiodic orbits embedded
in the set. In our case, by focusing on the rotational characteristics of a chaotic flow, its organization becomes simple.
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