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Abstract
A challenging and outstanding problem in applications that involve or rely on GPS signals is to mitigate jamming. We develop 
a machine learning-based antijamming framework for GPS signals. Three types of jamming signals are considered: continu-
ous wave interference, chirp and pulse jamming. In addition, white Gaussian noise is assumed to be present. From the point 
of view of communication, information is encoded in the coarse/acquisition (C/A) code. Multiplying the jammed signal by 
a sinusoidal wave and integrating over one C/A code period leads to a jammed C/A code signal. To mitigate jamming, we 
study three types of machine learning methods: reservoir computing (echo state network), multi-layer perceptron, and long 
short-term memory networks (RNNs). A machine can be trained to learn and predict the signal directly or learn and predict 
jamming where the real signal can be obtained by removing the jammed component from the total received signal. For a 
high-frequency carrier (e.g., the standard 1575.42 MHz L1 carrier), learning and prediction can be made computationally 
efficiently on the C/A code signal. The main result is that machine learning can be effective for predicting and extracting 
weak GPS signals even in a strongly jammed/noisy environment where the jamming amplitude is three orders of magnitude 
stronger than the GPS signal. We find that the reservoir computing scheme is stable and performs well for all three types 
of jamming. The multi-layer perceptron is better for predicting the jamming signal than the GPS signal itself, and the long 
short-term memory networks work well but only for certain jamming types. In particular, with the direct signal prediction 
method, the bit error rate (BER) associated with reservoir computing (RC) remains at near-zero values (less than 1%) even 
for jamming signal ratio (JSR) up to 60 dB for the three types of jamming. The multi-layer perceptron (MLP) method breaks 
down when the JSR is larger than 20 dB for continuous wave interference (CWI) and pulse jamming, 45 dB for chirp jam-
ming. The long short-term memory (LSTM) can perform very well for the chirp jamming with a near zero error rate and give 
BER larger than 10% when the JSR is around 40 dB for the CWI and pulse jamming. For the jamming prediction method 
(indirect method), these three machine learning methods perform well, with near-zero BER (less than 1%). Overall, the RC 
scheme is stable and performs well for three types of jamming. Besides, RC is fast compared to LSTM method, with much 
less running time.
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Abbreviations
BER  Bit error rate
C/A  Code coarse/acquisition code
JSR  Jamming-to-signal ratio
LSTM  Long short-term memory
MLP  Multi-layer perceptron

PSD  Power spectral density
RC  Reservoir computing

Introduction

The global positioning system (GPS) has become an indis-
pensable part of modern society with a large variety of civil 
and defense applications. The accuracy of navigation and 
tracking systems depends on the accuracy of received GPS 
signals which, due to their weak power, are vulnerable to 
external interference such as jamming and spoofing (Ioan-
nides et al. 2016). Various methods have been proposed 
to mitigate GPS jamming (Ioannides et al. 2016), which 
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include the adaptive filtering method (Borio et al. 2008; Mao 
et al. 2011; Chien et al. 2013), wavelet packet transform 
(Pardo et al. 2006; Mosavi et al. 2017), combined wavelet 
transform and filtering (Chen et al. 2016), wavelet-based 
correction (Mosavi et al. 2011), and artificial neural net-
works for interference rejection/suppression (Mao 2008; 
Mosavi and Shafiee 2016).

Previous works focused on the use of different filters 
or combining neural networks with filters for narrow band 
jamming. Here, we exploit machine learning to develop 
potential solutions to the GPS antijamming problem with 
narrow band and wide band jamming, especially reservoir 
computing, which is highly efficient and simple to construct. 
Recent years have witnessed an explosive growth of interest 
in machine learning because of its demonstrated superior 
capability in accomplishing complex tasks ranging from 
speech recognition (Hinton 2012) to playing Go (Silver et al. 
2016). The basic principle underlying our study is that GPS 
antijamming can be viewed as a nonlinear signal predic-
tion and classification problem that can be effectively solved 
using machine learning. Naturally, a jammed GPS signal is 
a mixture of jamming and GPS signal and, hence, if either 
the GPS signal or the jamming signal can be accurately 
predicted, the two can be separated from each other. The 
difficulty is that, often, jamming significantly overpowers 
the GPS signal, so it is critical to assess whether machine 
learning can be effective at predicting and separating two 
mixed signals of vastly different amplitudes. With this chal-
lenge in mind, we investigate the antijamming capability 
of three machine learning frameworks: reservoir computing 
(RC), multi-layer perceptrons (MLPs), and long short-term 
memory (LSTM) networks.

Reservoir computing

In chaotic time series and signal prediction, reservoir com-
puting, a class of recurrent neural networks (RNNs), has 
stood out as a powerful paradigm, which is first proposed 
by Jaeger (2001) and subsequently used to predict non-
linear time series by Jaeger and Haas (2004) and even to 
predict large spatial temporally chaotic systems by Pathak 
et al. (2018). And recently, the role of the spectral radius is 
investigated by Jiang and Lai (2019), and even long time 
predictions of chaotic time series by feeding real data (Fan 
et al. 2020) and long-time prediction of phase information 
(Zhang et al. 2020). Reservoir computing has also been 
demonstrated to be effective at distinguishing and separat-
ing characteristically different chaotic signals (Carroll 2018; 
Krishnagopal et al. 2019).

Multi‑layer perceptrons

Multi-layer perceptrons are classical, backpropagation-
based artificial neural networks (Hertz et al. 1991). They 
represent the fundamental network architecture during the 
second wave of machine learning at the end of the last 
century. Due to the limitation of computational capabil-
ity at that time, the number of hidden layers was typi-
cally quite small, e.g., one or two. In the current (third 
wave) of machine learning, the neural networks become 
“deep” in the sense that the number of hidden layers has 
increased dramatically, making sophisticated tasks such as 
recognition of images, handwritten characters and speech 
possible. The training of these deep neural networks is 
typically done with highly efficient, readily programmable, 
fast graphics processing units (GPUs) (LeCun et al. 2015).

Long short‑term memory networks

LSTM networks are a class of unique RNNs, first intro-
duced in 1997 to solve the gradient exploding and van-
ishing problem (Hochreiter and Schmidhuber 1997). The 
training of LSTM networks is typically accomplished with 
the conventional backpropagation through time. LSTM 
networks have been exploited to recognize the temporal 
order of separated events in noisy time series (Schmidhu-
ber 2015), such as speech recognition (Graves 2013) and 
translation from one language to others (Sutskever et al. 
2014).

We test the three types of neural machines to extract 
the information encoded into weak GPS signals through 
suppression or removal of jamming. The performance of 
antijamming is measured by the accuracy of recovering 
the information-carrying binary sequence (GPS C/A code) 
from severely jamming signals. The main conclusion of 
this study is that machine learning is generally capable of 
extracting the information encoded in the GPS signals for 
both narrow- and wide-band jamming types. In particular, 
the performance of RC can sustain jamming-to-signal ratio 
up to 60 dB, i.e., the jamming amplitude is three orders 
of magnitude higher than the GPS signal amplitude. RC 
thus stands out as the best choice among the three types 
of neural machines for GPS antijamming. There are three 
achievements in this research. First, we utilize the three 
different machine learning methods to mitigate jamming 
and find that reservoir computing is accurate and saves 
time. Second, our methods are applicable to both narrow- 
and wide-band jamming types and can be effective in situ-
ations where the jamming signal ratio is up to 60 dB along 
with Gaussian noise. Third, we can predict binary C/A 
code based on noise C/A code without down converting 
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the high-frequency jamming signals (the prediction of 
intermediate frequency signal after down converting 
using reservoir computing is presented in Supplementary 
materials).

In the following, we first give the basic equation for 
GPS signal generation and its power spectral density. We 
then briefly describe reservoir computing and articulate a 
machine learning framework to mitigate jamming. We con-
sider three different types of jamming and use three differ-
ent machine learning methods to mitigate jamming. The bit 
error rate (BER) is used to characterize antijamming per-
formance. Finally, we present conclusions and discussions.

GPS signal simulation

The C/A code and navigation message modulated GPS sig-
nal can be written as

where D(t) = ±1 is the binary navigation data sent out from 
the satellite with frequency of 50 Hz, CA(t) = ±1 represents 
the binary C/A code with frequency of 1.023 MHz, fL1 is 
the L1 carrier frequency (1575.42 MHz), and � is the phase 
delay which is set to be 0. In the simultaneous presence of 
jamming and noise, the signal received at the antenna, r(t) , 
can be written as

where j(t) is the jamming signal and n(t) denotes the additive 
white Gaussian noise. To be concrete, we fix the power of 
Gaussian noise to be 30 dB and vary the jamming-to-signal 
ratio up to 60 dB.

We generate C/A code bits from GPS PRN 1–37, e.g., the 
7th PRN (Tsui 2005). In particular, we keep the � ’s in the 
PRN number unchanged while changing the � ’s to −�’s. We 
modulate the C/A code repeatedly on the carrier. We also 
generate a sequence of 5 random numbers ( ±1 ) as navigation 
data to modulate the 102300 bits of C/A code. A schematic 
illustration of the GPS modulation process is shown on the 
left side of Fig. 1. To simulate a jammed and noisy environ-
ment, we add jamming and Gaussian noise into the GPS 
signal. At the receiving end, the signal is demodulated and 
then integrated as

for k = 1, 2,… , where the demodulation sinusoidal signal 
in (3) has the same frequency and phase as the GPS carrier 

(1)s(t) = [D(t) ⋅ CA(t)] sin(2�fL1t + �)

(2)r(t) = s(t) + j(t) + n(t)

(3)r̃(t) = 2r(t) sin(2𝜋fL1t + 𝜃)

(4)r(k) =
1

TCA ∫
kTCA

(k−1)TCA

r̃(t)dt

signal. The integration is carried out over one C/A code 
period TCA (containing 1500 periods of the sinusoidal carrier 
wave) consecutively for the C/A binary code to be recov-
ered. This procedure is schematically shown in Fig. 1. In 
the absence of jamming and Gaussian noise, the C/A code 
can be perfectly recovered via the integration. When both 
jamming and noise are present, direct integration of the 
contaminated signal will not give the correct C/A code, as 
illustrated on the right side of Fig. 1. We note that the carrier 
wave and the noise in Fig. 1 are schematic illustrations, not 
the real signals we study in this work.

We study three different types of jamming: continu-
ous wave interference (CWI), chirp jamming signal with a 
sweeping frequency wave, and pulse jamming in the form of 
a discontinuous sinusoidal wave. Figure 2 shows the power 
spectral density (PSD) of the three types of jamming signals. 
We focus on the realistic case where jamming overpowers 
the GPS signal. For the case of CWI jamming, whose PSD 
consists of a pronounced narrow peak and a broad but weak 
spectral background, the peak value is much larger than that 
of the GPS signal, as shown in Fig. 2a. For chirp and pulse 
jamming signals that have a broad band power spectrum, the 
PSD of the GPS signal is “buried” completely inside that of 
the jamming, as shown in Figs. 2b, c, respectively.

Machine learning

To recover the C/A code from a jammed GPS signal, we 
apply machine learning to the integrated noisy data to pre-
dict the real binary C/A code. A convenient quantity to char-
acterize the performance of antijamming is the bit error rate 
(BER) defined from the C/A code, where we set the code 
value to +1 ( −1 ) if it is positive (negative). As an illustrative 
example, we use 102300 C/A noisy code bits (corresponding 
to five navigation bits) in total as input to the neural network. 
We use the first 40000 noisy C/A code bits along with the 
true C/A code to train the neural network, while the remain-
ing C/A code bits are for testing the machine prediction.

A detailed description of the three machine learning 
methods is in the Supplementary Materials. Below, we 
give a simple description of reservoir computing. A sche-
matic illustration of RC is shown in Fig. 3, where the neural 
machine consists of three components: (1) a linear input 
layer converting a low-dimensional (say M) input signal into 
a high (N) dimensional vector, (2) the reservoir network with 
N dynamical nodes driven by both the input and the interac-
tion or coupling with the other reservoir nodes, and (3) a 
linear output layer that maps the high-dimensional reservoir 
network state vector into an L-dimensional vector signal.

There are two methods of training and prediction with the 
target signal to be the actual GPS or jamming signal, respec-
tively. In the first method, we train the neural network with 
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Fig. 1  Schematic illustration of GPS signal modulation, demodula-
tion and machine learning-based antijamming. The left and right 
sides show the modulation and demodulation processes, respectively. 
In the modulation process, the L1 carrier is modulated by the binary 
C/A code CA(t) which itself is modulated by the binary navigation 
data D(t) , giving the “pure” GPS signal s(t) . In the simultaneous pres-
ence of jamming j(t) and Gaussian noise n(t) , at the receiving end, 
the signal is r(t) , and the jammed GPS signal is demodulated by the 

same carrier waveform and integrated to generate a deformed C/A 
code that provides the input to the neural machine for learning and 
prediction. Training of the neural network is accomplished with the 
deformed C/A code as input and the original, “clean” C/A code as the 
target. With a segment of actual deformed C/A code as input, a prop-
erly trained neural network generates the predicted C/A code, where 
the effects of jamming and noise are suppressed or even removed

Fig. 2  Power spectral density (PSD) of modulated GPS carriers (red), 
additive white Gaussian noise (black), and three different types of 
jamming (blue): a CWI jamming; b chirp jamming; c pulse jamming. 
For weak GPS signals in general, the maximum value of its PSD is 

much smaller than that of jamming, as for CWI jamming in (a). For 
chirp and pulse jamming, the PSD of the GPS signal is “buried” com-
pletely inside that of jamming (b, c). The frequency axes are in units 
of the GPS carrier frequency fL1
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jammed and noisy GPS signal as inputs but with the actual 
GPS signal as the reference. In this case, what the network 
predicts is the actual GPS signal. For convenience, we name 
it the GPS signal prediction or direct method. In the second 
method, the reference signal is the jamming, so the neural 
network predicts the actual jamming, henceforth the term 
jamming prediction or indirect method. In this case, the GPS 
signal can be extracted by removing the predicted jamming 
signal from the original signal. Depending on the type of 
jamming, the performance of the two alternative methods 
can differ.

Machine learning‑based antijamming 
scheme for GPS signals of high carrier 
frequency

For a high-frequency carrier such as L1, each bit of the C/A 
code contains 1540 cycles of carrier oscillation. Thus, it 
is computationally infeasible to use machine learning to 
directly predict the GPS waveform, as many sampled data 
points are needed for each bit of the C/A code. As explained 
in Fig. 1, for high-frequency GPS signals, machine learning 
is exploited to predict the C/A code. We test the antijamming 
capability of the three types of neural networks with three 
types of jamming and demonstrate that RC has the consist-
ently best performance, rendering it desired as the choice for 
machine learning-based GPS antijamming.

Continuous wave interference (CWI) jamming

CWI jamming can be written as (Mosavi and Shafiee 2016; 
Morales et al. 2019):

(5)j(t) =

K
∑

k=1

√

2PJk
cos[2�(fc ± fΔk

)t + �k]

where PJk
 , fc , fΔk

 , and �k stand for the power, central fre-
quency (same as the L1 frequency), frequency offset, and 
random phase of the k th tone, respectively. For convenience, 
we normalize the frequencies by setting fc = 1 . We choose 
the frequency offset to be fΔ = (0,±0.1,±0.2)fCA with fCA 
being the frequency of the C/A code. The PSD plots for the 
signal, CWI jamming and Gaussian noise are shown in 
Fig. 2a, where the jamming to signal ratio (JSR) is 50 dB. 
Us ing  t he  de f in i t ion  o f  dec ibe l  (dB) ,  we 
have10 log10

(

2PJk

1

)

dB = 50 dB , with the carrier amplitude 
set to one. In this way, we can obtain the CWI amplitude as 
√

2PJk
≈ 316 . The Gaussian noise-to-signal ratio (NSR) is 

fixed to be 30 dB in all cases. As can be seen from Fig. 2a, 
about the central frequency, the jamming power is signifi-
cantly larger than that of the GPS signal.

Figure 4a shows, for JSR = 50 dB , 20 bits of the values 
of the jammed, noisy C/A code, which fall in the range of 
[−100, 100] and deviates significantly from the actual GPS 
C/A code. Without jamming mitigation, the information car-
ried by the GPS signal is completely lost. Figures 4b–d pre-
sent results with RC, MLP, and LSTM, respectively, where 
20 bits of the machine learning predicted C/A code and the 
jammed C/A code with the three types of artificial neural 
networks are shown. For RC and LSTM, the direct, GPS 
prediction method is used. For MLP, the indirect jamming 
prediction method is adopted where the neural network is 
trained with the actual jamming signal as the target and is 
a self-evolving nonlinear dynamical system. With a short 
segment of the jammed and noisy GPS signal as the initial 
condition, the network generates continuous prediction of 
the jamming signal. Removing the predicted from the origi-
nal jamming signal recovers the GPS signal. In all cases, 
the output state of the neural network agrees with the true 
C/A code remarkably well, effectively eliminating jamming 
and noise.

The prediction accuracy of the neural networks can 
be quantified by the BER associated with the C/A code. 

Fig. 3  Schematic illustration of 
reservoir computing for GPS 
antijamming
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Representative results are shown in Fig. 5, where BER is 
plotted versus JSR. In particular, Fig. 5a shows, with the 
GPS prediction method (direct method), the C/A BER ver-
sus JSR for the three types of neural networks: RC, MLP, 
and LSTM. For comparison, the significant BER with the 
jammed GPS signal for almost all values of JSR is also 
shown (the brown trace). It can be seen that the performance 
of MLP and LSTM breaks at JSR ≈ 20 dB and JSR ≈ 40 dB , 

respectively, where the BER starts to increase dramatically 
from near-zero values. However, the BER associated with 
RC remains at near-zero values (less than 0.3% ) even for JSR 
up to 60 dB, suggesting the relatively strong antijamming 
capability of RC neural networks. The corresponding results 
with the jamming prediction method (indirect method) are 
shown in Fig. 5b, where the BER with RC and MLP remains 
at near-zero values for JSR up to 60 dB. Figures 5c and 4d 

Fig. 4  Examples of jamming 
mitigation with three types of 
neural networks. The jamming 
type is CWI with JSR = 50 dB . 
a Twenty bits of jammed C/A 
code at the receiver end, in 
which the true GPS C/A code is 
deeply “buried” and the infor-
mation with the communication 
is completely lost. b–d For RC, 
MLP, and LSTM, respectively, 
the predicted C/A code (dashed 
traces). The solid trace in each 
panel represents the true GPS 
C/A code. The direct, GPS sig-
nal prediction method is applied 
to RC (b) and LSTM (d), while 
the indirect, jamming prediction 
method is used for MLP (c), 
and the same convention holds 
for subsequent figures: Figs. 5 
and 7

Fig. 5  Error rate with machine learning-based antijamming for CWI. 
a With the direct prediction method, the C/A code BER versus JSR 
for RC, MLP, and LSTM neural networks. Also shown is the BER 
associated with the jammed GPS signal without invoking machine 
learning. For JSR up to 60 dB, the BER with the RC neural network 

remains at near zero values. However, MLP and LSTM break at JSR 
about 20  dB and 40  dB, respectively. b The corresponding results 
with the indirect, jamming prediction method. In this case, the BER 
is near zero for RC and MLP for JSR up to 60  dB, indicating the 
effectiveness of machine learning-based GPS jamming mitigation
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show magnification of the BER values near zero in Figs. 5a, 
b, respectively. We see that, for the direct prediction case, 
RC has the lowest error rate (less than 0.3% ) and, for the 
indirect situation, the error rate of  the three machine learn-
ing methods is less than 0.2% , with MLP performing slightly 
better than RC. For  RC, MLP and LSTM, the indirect pre-
diction method has smaller errors due both to the sinusoidal 
nature of the jamming and its large signal magnitude, which 
facilitate machine learning-based prediction.

Chirp jamming

Chirp jamming is generated by sweeping the signal fre-
quency linearly over a certain range for a certain time period, 
after which the process restarts at the initial frequency. The 
chirp jamming signal in the time interval 0 ≤ t < Tswp(the 
first sweeping period) can be written as (Morales et al. 2019; 
Chen et al. 2016)

where PJ is the jamming power, fc is the starting frequency 
of the sweep (same as the carrier frequency), fmin and fmax 
are the minimum and maximum frequencies of a single 
sweep, and Tswp is the sweep period, i.e., the time it takes for 
the jammer to sweep from fmin to (fmax + fmin)∕2 . The signal 
repeats itself in subsequent sweeping periods. In our simu-
lation, we set fc = 0.8 , Tswp = 9TCA with TCA being the C/A 
code period, fmin = fc , and fmax = 1.6fc . The corresponding 
PSD profiles for the signal, chirp jamming and Gaussian 
noise are shown in Fig. 2b for JSR = 50 dB . The PSD of the 
jamming exhibits a plateau in the approximate frequency 

(6)j(t) =
√

2PJ sin

�

2�fct + �
fmax − fmin

Tswp
t2 + �J

�

range [0.8, 1.25] . In the entire frequency range, jamming 
completely overpowers the GPS signal.

Figure 6 shows representative output C/A code without 
and with machine learning. In particular, Fig. 6a shows 20 
bits of the jammed C/A code without applying machine 
learning-based antijamming for JSR = 50 dB . This output 
C/A code does not agree with the true code, signifying 
complete loss of information carried by the GPS signal. In 
contrast, when machine learning is activated to mitigate jam-
ming, the output C/A code agrees well with the true one, as 
shown in Figs. 6b–d for the three types of neural networks: 
RC, MLP, and LSTM, respectively. For the results with RC 
and LSTM [Figs. 6b, d, respectively], the neural network 
predicts the GPS signal, while the jamming signal is pre-
dicted for MLP and the GPS signal is obtained by taking 
away the predicted jamming signal from the original jammed 
GPS signal [Fig. 6c].

Figures 7a, b show BER versus JSR for the two jamming 
mitigating cases of predicting directly the GPS signal and 
predicting the jamming signal, respectively. Results for the 
case without applying machine learning are also included, 
where the C/A code BER increases from near zero values 
when JSR exceeds about 20 dB. For the direct prediction 
approach, MLP can resist jamming up JSR = 40 dB , but 
both RC and LSTM have practically zero errors for JSR up 
to 60 dB, as shown in Fig. 7a. For indirect prediction, both 
RC and MLP are effective at removing jamming, as shown 
in Fig. 7b. Figure 7c, d is magnification of the BER values 
near zero in Fig. 7a, b, respectively. It can be seen that, for 
the direct prediction case, the maximum error rate for RC 
is less than 2% , and the errors with LSTM are essentially 
zero. For the indirect case, the errors associated with  the 

Fig. 6  Mitigation of chirp 
jamming with three types of 
neural networks. The value of 
JSR is 50dB and the jamming 
completely overpowers the GPS 
signal because the PSD of the 
latter is significantly lower than 
that of jamming in the entire 
frequency range. a Twenty bits 
of jammed C/A code (dashed 
trace) at the receiver end, which 
does not match the true C/A 
code (solid trace). b–d For RC, 
MLP, and LSTM, respectively, 
the predicted C/A code (dashed 
traces) versus the true C/A code 
(the solid traces), with a reason-
able agreement between them 
for the three types of neural 
networks
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three machine learning methods are near zero in the range 
of jamming level tested.

Pulse jamming

For pulse jamming, the signal is active during the duty cycles, 
which can be expressed as (Morales et al. 2019; Elezi et al. 
2019a, 2019b):

(7)j(t) =

�√

2PJ sin(2𝜋fct), for nT ≤ t < (n + 1∕2)T

0, otherwise

for n = 0, 1,… , where T  is the repetition period, the duty 
cycle is 50% , PJ and fc are the power and frequency of the 
jamming signal with fc being the carrier frequency. We set 
T = 0.8TCA , where TCA is the period of the C/A code. The 
PSD profiles for the signal, pulse jamming and Gaussian 
noise are displayed in Fig. 2c for JSR = 50dB(corresponding 
to 
√

2PJ = 316 and unity carrier amplitude). The PSD of the 
pulse jamming is wide and covers that of the GPS signal.

For pulse jamming, the performance of the three types 
of neural networks is exemplified in Fig.  8, with the 
behavior of BER versus JSR shown in Fig. 9. As for the 
case of CWI and chirp jamming, among the three types 
of machines, overall, RC exhibits the lowest error rate 

Fig. 7  Error rate with machine 
learning-based anti-chirp jam-
ming. a C/A code BER versus 
JSR for direct prediction of 
GPS signal using RC, MLP, and 
LSTM. The case without invok-
ing machine learning (original 
jammed signal) is also included. 
b C/A code BER versus JSR 
with the indirect method of 
predicting the jamming signal. 
(c, d) Magnification of near-
zero BER values for (a, b), 
respectively. For both direct 
and indirect methods, among 
the three types of networks, RC 
stands out as the best neural 
machine with low BER

Fig. 8  Mitigation of pulse jam-
ming with three types of neural 
networks. As shown in Fig. 2, 
for JSR = 50dB , jamming 
completely overpowers the GPS 
signal in the entire frequency 
range. a Twenty bits of jammed 
C/A code (dashed trace), which 
deviate significantly from those 
of the actual C/A code (solid 
trace). b–d For RC, MLP, and 
LSTM, respectively, the pre-
dicted C/A code (dashed traces) 
versus the true C/A code (the 
solid traces), where the binary 
codes associated with them 
agree with each other
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for both direct and indirect prediction methods. RC thus 
stands out as the best choice for mitigating pulse jamming 
at the high carrier frequency.

A comparison of the BER for different machine learn-
ing methods for direct signal prediction and jamming 
prediction (indirect method) at JSR = 60 dB is shown in 
Table 1.

Parameter setting

Reservoir computing

In our simulations, we fix the number of network nodes to 
be 200. In the case of chirp jamming, we use the embed-
ding with input data dimension being 21 and the delay 
between each input being the length of one C/A code. We 

employ the Bayesian optimization method (Snoek et al. 
2012) to set the hyperparameters.

Multi‑layer perceptrons

In our study, we use three hidden layers with the number 
of nodes being 165, 20, 7 respectively. The batch size is 8, 
the input dimension is 45, and the training epoch is 35. The 
activation functions of all the hidden layers are the sigmoid 
function in Keras and the activation function of the output 
layer is the hyperbolic tangent function.

Long short‑term memory networks

We construct and train the LSTM RNN using the Pytorch 
(Paszke et al. 2019) package in Python. The RNN has 200 
artificial neurons and training is accomplished with 39000 
short signal sequences, where n = 1000 for each short 

Fig. 9  Error rate with machine learning for mitigating pulse jamming. 
a C/A code BER versus JSR for direct prediction of GPS signal with 
RC, MLP, and LSTM. The case without invoking machine learning 
(original jammed signal) is also included. The error with MLP is 
large for JSR larger than about 20 dB. The maximum level of jam-
ming with which LSTM can cope is about 40 dB. For RC, the BER is 

near zero for JSR up to 60 dB. b C/A code BER versus JSR with the 
indirect method of predicting the jamming signal. In this case, both 
RC and MLP perform well. (c, d) Magnification of near-zero BER 
values in (a, b), respectively. As for CWI and chirp jamming, RC 
exhibits the best antijamming performance among the three types of 
neural networks

Table 1  Bit error rate for different machine learning methods at JSR = 60 dB

Jammed (%) RC direct (%) MLP direct (%) LSTM 
direct (%)

RC indirect (%) MLP indirect (%) LSTM 
indirect 
(%)

BER CWI 50 0.003 50 40 0.002 0.003 0.003
BER chirp 22.7 0.0003 50.1 0 0 0.002 0
BER pulse 50 0.02 50 32.5 0.06 0.003 0.005
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sequence. The detailed description of the three different 
machine learning models is in the Supplementary Materials.

Conclusion

Intentional jamming on GPS signals represents a serious 
threat to many applications that rely on GPS for commu-
nication. To mitigate jamming is thus of interest, but there 
are two outstanding challenges: (a) the GPS signals are 
typically weak while the jamming power may be orders of 
magnitude higher and (b) the frequency band of jamming 
may completely overlap with that of the GPS signal. In the 
field of signal processing, extracting a weak signal “bur-
ied” deeply inside the jamming in both time and frequency 
domains is an unsolved problem.

We have developed a machine learning framework for 
GPS antijamming. The basic idea is to train an artificial 
neural network so that it can recognize and learn the “cli-
mate” of the GPS signals through training. Especially, 
assuming that sufficient samples of “clean” GPS signals 
are available, we input the jammed GPS signal into the 
neural network with the output target as the correspond-
ing clean GPS signal. During the learning phase, the neu-
ral network adjusts its parameters until convergence is 
reached. A well-trained neural network should be able to 
predict or pick out the original GPS signal embedded in 
jamming, thereby achieving the goal of separating GPS 
signal from jamming and consequently removing it. Alter-
natively, a neural network can be trained with the jamming 
signal as the target. In this case, the predicted signal is 
jamming, which, when being subtracted from the jammed 
signal, gives the GPS signal. This alternative approach 
is meaningful only when a certain amount of the actual 
jamming signal is known. We have tested three types of 
neural machines: RC, MLP, and LSTM with both signal 
extraction approaches. The general finding is that, among 
the three types of machines, RC stands out as the best can-
didate for GPS antijamming, where the information car-
rying GPS signal can be reliably and accurately retrieved 
from a jammed signal even when the jamming-to-signal 
ratio is 60 dB, i.e., when the jamming amplitude is three 
orders of magnitude stronger than the GPS signal.

We have studied machine learning-based antijamming 
for high GPS carrier frequencies. For high carrier fre-
quency, machine learning is incorporated into the stage of 
binary C/A code obtained by integrating the jammed GPS 
waveform. This is necessary because predicting the actual 
GPS waveform, in this case, is computationally prohibi-
tive. We have demonstrated that machine learning can be 
effective even in the presence of strong white Gaussian 
noise. That is, in this high-frequency case, even when the 
received jammed GPS signal is noisy, at the level of binary 

C/A code, the influence of noise can be filtered out by 
machine learning, providing another reason for advocating 
the use of machine learning in GPS antijamming.

Discussion

It is necessary to determine the jamming type in an appli-
cation, which can be achieved, e.g., by checking the GPS 
signal power or analyzing the frequency spectrum. Once the 
jamming type is known, the corresponding jamming data 
can be used for machine learning and prediction. Another 
issue is that learning needs to be performed at certain jam-
ming strength, whereas in reality, the strength may depend 
on time. A possible solution is to train a series of neural net-
works, each for a particular value of the jamming strength, 
and to choose the one that matches the jamming strength of 
the incoming signal.

A difficulty arises for intermediate carrier frequency 
when one attempts to employ machine learning to predict the 
actual GPS waveform. In this case, without noise, machine 
learning can be quite effective at mitigating strong jamming, 
as we have demonstrated in the Supplementary Materials. 
However, the presence of Gaussian noise can significantly 
degrade the antijamming capability. In nonlinear systems, 
one well studied approach to suppressing white noise is 
through stochastic resonance, a phenomenon in which the 
presence of internal or external noise in a nonlinear system 
can enhance the response of the system output. A potential 
approach to addressing the difficulty with predicting the GPS 
waveform for intermediate carrier frequency in a jammed 
and noisy environment is to combine machine learning with 
a stochastic-resonance-based method—a promising case that 
deserves to be studied systematically.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10291- 021- 01154-7.

Acknowledgements We thank Dr. Arje Nachman from Air Force 
Office of Scientific Research for motivating us to study the problem 
of GPS antijamming. This work was supported by the Vannevar Bush 
Faculty Fellowship program sponsored by the Basic Research Office 
of the Assistant Secretary of Defense for Research and Engineer-
ing and funded by the Office of Naval Research through Grant No. 
N00014-16-1-2828.

Data availability The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on 
reasonable request.

https://doi.org/10.1007/s10291-021-01154-7


GPS Solutions          (2021) 25:115  

1 3

Page 11 of 12   115 

References

Borio D, Camoriano L, Presti LL (2008) Two-pole and multi-pole 
notch filters: a computationally effective solution for GNSS inter-
ference detection and mitigation. IEEE Syst J 2(1):38–47

Carroll TL (2018) Using reservoir computers to distinguish chaotic 
signals. Phys Rev E 98:052209

Chen YE, Chien YR, Tsao HW (2016) Chirp-like jamming mitigation 
for GPS receivers using wavelet- packet-transform-assisted adap-
tive filters. In: 2016 International computer symposium (ICS), 
IEEE, pp 458–461

Chien YR (2013) Design of GPS antijamming systems using adaptive 
notch filters. IEEE Syst J 9(2):451–460

Elezi E, Çankaya G, Boyacı A, Yarkan S (2019) A detection and iden-
tification method based on signal power for different types of 
electronic jamming attacks on GPS signals. In: 2019 IEEE 30th 
annual international symposium on personal, indoor and mobile 
radio communications (PIMRC), IEEE, pp 1–5

Elezi E, Çankaya G, Boyacı A, Yarkan S (2019) The effect of electronic 
jammers on GPS signals. In: 2019 16th international multi-con-
ference on systems, signals & devices (ssd), IEEE, pp 652–656

Fan H, Jiang J, Zhang C, Wang X, Lai YC (2020) Long-term prediction 
of chaotic systems with machine learning. Phys Rev Res 2:012080

Graves A, Mohamed AR, Hinton G (2013) Speech recognition with 
deep recurrent neural networks. In: 2013 IEEE international 
conference on acoustics, speech and signal processing, IEEE, pp 
6645–6649

Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neu-
ral computation. Addison- Wesley Publishing Company, Redwood 
City, California

Hinton G et al (2012) Deep neural networks for acoustic modeling in 
speech recognition. IEEE Sig Proc Mag 29(6):82–97

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural 
Comp 9(8):1735–1780

Ioannides RT, Pany T, Gibbons G (2016) Known vulnerabilities of 
global navigation satellite systems, status, and potential mitigation 
techniques. Proc IEEE 104(6):1174–1194

Jaeger H (2001) The “echo state” approach to analysing and training 
recurrent neural networks-with an erratum note. Bonn Germany 
German National Res Center Info Technol GMD Tech Report 
148(34):13

Jaeger H, Haas H (2004) Harnessing nonlinearity: Predicting chaotic 
systems and saving energy in wireless communication. Science 
304(5667):78–80. https:// doi. org/ 10. 1126/ scien ce. 10912 77

Jiang J, Lai YC (2019) Model-free prediction of spatiotemporal dynam-
ical systems with recurrent neural networks: role of network spec-
tral radius. Phys Rev Res 1:033056

Krishnagopal S, Girvan M, Ott E, Hunt B (2020) Separation of chaotic 
signals by reservoir computing. Chaos 30:023123. https:// doi. org/ 
10. 1063/1. 51327 66

LeCun Y, Bengio Y, Hinton G (2015) Deep Learning Nature 
521(7553):436

Mao WL (2008) Novel srekf-based recurrent neural predictor for nar-
rowband/FM interference rejection in GPS. AEU-Inter J Electron 
Commun 62(3):216–222

Mao WL, Ma WJ, Chien YR, Ku CH (2011) New adaptive all-pass 
based notch filter for narrowband/fm antijamming GPS receivers. 
Cir Syst Sig Process 30(3):527–542

Morales Ferre R, de la Fuente A, Lohan ES (2019) Jammer classifica-
tion in GNSS bands via machine learning algorithms. Sensors 
19(22):4841

Mosavi M, Shafiee F (2016) Narrowband interference suppression for 
GPS navigation using neural networks. GPS Solu 20(3):341–351

Mosavi MR (2011) Wavelet neural network for corrections prediction 
in single-frequency GPS users. Neur Proc Lett 33(2):137–150

Mosavi MR, Rezaei MJ, Pashaian M, Moghaddasi MS (2017) A fast 
and accurate antijamming system based on wavelet packet trans-
form for GPS receivers. GPS Solu 21(2):415–426

Pardo E, Rodriguez-Hernandez MA, Perez-Solano JJ (2006) Narrow-
band interference suppression using undecimated wavelet pack-
ets in direct-sequence spread-spectrum receivers. IEEE Trans Sig 
Process 54(9):3648–3653

Paszke A et al (2019) Pytorch: An imperative style, high-performance 
deep learning library. Preprint at arXiv: 1912. 01703

Pathak J, Hunt B, Girvan M, Lu Z, Ott E (2018) Model-free prediction 
of large spatiotemporally chaotic systems from data: a reservoir 
computing approach. Phys Rev Lett 120:024102

Schmidhuber J (2015) Deep learning in neural networks: an overview. 
Neu Net 61:85–117

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche 
G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M 
et al (2016) Mastering the game of Go with deep neural networks 
and tree search. Nature 529(7587):484

Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimiza-
tion of machine learning algorithms. Preprint at arXiv: 1206. 2944

Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence learning 
with neural networks. Preprint at arXiv: 1409. 3215

Tsui JBY (2005) Fundamentals of global positioning system receivers: 
a Software Approach, vol 173. Wiley, Hoboken

Zhang C, Jiang J, Qu SX, Lai YC (2020) Predicting phase and sens-
ing phase coherence in chaotic systems with machine learning. 
Chaos 30:083114

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Cheng‑Zhen Wang is currently a 
Ph.D. candidate in electrical 
engineering at Arizona State 
University, USA. He obtained 
his B.Sc. and master’s degree in 
physics in 2013 and 2016, both 
a t  L a n z h o u  Un i ve r s i t y, 
China.   His current research 
focuses on electronic transport 
and scattering in two-dimen-
sional Dirac materials and 
m a ch i n e  l e a r n i n g - b a s e d 
physics.

Ling‑Wei Kong is currently a 
Ph.D. candidate in the Depart-
ment of Electrical Engineering at 
Arizona State University, USA. 
He obtained his B.Sc. degree at 
the University of Science and 
Technology of China in 2017. 
His current research mainly 
focuses on solving problems in 
nonlinear dynamics and complex 
systems using machine learning 
methods.

https://doi.org/10.1126/science.1091277
https://doi.org/10.1063/1.5132766
https://doi.org/10.1063/1.5132766
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/1409.3215


 GPS Solutions          (2021) 25:115 

1 3

  115  Page 12 of 12

Junjie Jiang is currently a Post-
doctoral Associate at the Center 
for neural science, New York 
University. He obtained his B.Sc. 
degree at Lanzhou University in 
2014. He received his Ph.D. 
degree from the School of Elec-
trical, Computer, and Energy 
Engineering, Arizona State Uni-
versity, in 2020. His current 
research mainly focuses on 
understanding complex systems 
and ar tif icial intelligence 
systems.

Ying‑Cheng Lai is currently ISS 
Endowed Professor of Electrical 
Engineering, Arizona State Uni-
versity. He received a Ph.D. 
degree in Physics from the Uni-
versity of Maryland at College 
Park in 1992. He is a Fellow of 
the American Physical Society, a 
Pentagon Vannevar Bush Faculty 
Fellow, a Foreign Member of the 
National Academy of Sciences 
and Letters of Scotland, a For-
eign Member of the Academy of 
Europe, and a Fellow of the 
American Association for the 
Advancement of Science. His 

current research interests are Nonlinear Dynamics, Complex Net-
works, Machine Learning, Quantum Transport, Graphene Physics, Bio-
logical Physics, and Signal Processing.


	Machine learning-based approach to GPS antijamming
	Abstract
	Introduction
	Reservoir computing
	Multi-layer perceptrons
	Long short-term memory networks

	GPS signal simulation
	Machine learning
	Machine learning-based antijamming scheme for GPS signals of high carrier frequency
	Continuous wave interference (CWI) jamming
	Chirp jamming
	Pulse jamming
	Parameter setting
	Reservoir computing
	Multi-layer perceptrons
	Long short-term memory networks


	Conclusion
	Discussion
	Acknowledgements 
	References




