
OFFPRINT

Impact of link deletions on public cooperation
in scale-free networks
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Abstract – Working together in groups may be beneficial if compared to isolated efforts. Yet
this is true only if all group members contribute to the success. If not, group efforts may act
detrimentally on the fitness of their members. Here we study the evolution of cooperation in
public-goods games on scale-free networks that are subject to deletion of links connected to the
highest-degree individuals, i.e., on network that are under attack. We focus on the case where all
groups a player belongs to are considered for the determination of payoffs; the so-called multi-
group public-goods games. We find that the effect of link deletions on the evolution of cooperation
is predominantly detrimental, although there exist regions of the multiplication factor where the
existence of an “optimal” number of removed links for the deterioration of cooperation can also
be demonstrated. The findings are explained by means of wealth distributions and analytical
approximations, confirming that socially diverse states are crucial for the successful evolution of
cooperation.

Copyright c© EPLA, 2011

Introduction. – Understanding the evolution of coop-
eration is a fundamental problem in social and biolog-
ical sciences [1,2]. As a common theoretical framework,
the prisoner’s dilemma game [3] has received ample atten-
tion in the study of cooperation between selfish individ-
uals via pairwise interactions. However, cooperation is
observed not only in pairwise interactions, but indeed
even more so in groups involving more than two indi-
viduals. Examples are many, including public transporta-
tion [4] and attempts to avert global warming [5]. Public-
goods games (PGGs) are established, both theoretically
as well as experimentally, to capture the essence of the
dilemma that underlies such cooperative behavior. In a
typical PGG experiment, n players are asked to invest
into a common pool. They all know that the accumulated
contributions will be multiplied by a factor r > 1, and then

(a)E-mail: jiangluoluo@gmail.com

equally divided among all participants irrespective of their
investment. If all players cooperate they increase their
initial input by (r− 1)c, where c is the invested contribu-
tion, i.e., the cost of cooperation. However, every player
is faced with the temptation to defect by exploiting the
contributions of other players and withholding its own.
In particular, if a player chooses to defect while others
cooperate it will get a higher net payoff. It is thus more
likely that this strategy will spread in an environment
governed by natural selection due to the higher fitness
of defectors. The conflict escalates as more and more
players adopt the defecting strategy. In doing so, they
neglect collective interests, which ultimately leads to social
downfall and poverty, known also as the “tragedy of the
commons” [6]. Human experiments reveal, however, that
the level of cooperation is surprisingly high in one round
games, but deceases fast from round to round if a game is
played repeatedly [7].
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Thus, in PGGs individuals face the temptation to reap
benefits on the expense of others, and in doing so likely
induce further defecting actions which harm collective
well-being. In contrast, cooperators are able to resist
these temptations with the aim of facilitating group bene-
fits and social welfare. Defectors therefore bear no costs
when collecting identical benefits as cooperators, which
ultimately leads to widespread defection. This theoreti-
cal prediction, however, disagrees with experimental find-
ings [8]. To resolve this disagreement between observations
and theory, several mechanisms have been proposed that
promote cooperation. Hauert et al. [9] introduced volun-
tary participation in PGGs and found that it supports
cooperation in a Red-Queen–like manner. Szabó et al. [10]
also studied the impact of voluntary participation in PGGs
on a square lattice, reporting that the introduction of
loners leads to a cyclic dominance of the three strate-
gies. Punishment too has been identified as a viable route
to cooperative behavior [11–13], although its effective-
ness depends on whether the participation in the PGG
is optional [14], and on whether the interactions amongst
players are structured [15]. The reward as a means to
cooperation in spatial public-goods games has also been
considered [16]. Recently, social diversity introduced via
heterogeneous interaction networks and participation of
players in multiple groups [17,18] was identified as a viable
route to cooperative behavior in PGGs, as was the relax-
ation of strategy adoption criteria to account for mutation
and random exploration of available strategies [19]. Effects
of different temporal and spatial scales in evolutionary
games have also been revealed as being potentially impor-
tant [20–22]. Fowler and Christakis observed experimen-
tally that cooperative behavior can spread among people
with personal ties [23]. However, quantitative research on
the effects of altering the social ties in multi-group PGGs
is more difficult to come by [24].
In this paper, we study the evolution of cooperation in

PGGs on scale-free networks [25–27] where players can
contribute and receive payoffs from all the groups with
which they are affiliated. More precisely, in a multi-group
PGG, every individual participates also in the groups
centered around its direct neighbors, as was proposed
recently in [17]. The topology of the interaction network
also plays an important role in the evolution of coop-
eration (for a comprehensive review see [28]). In partic-
ular, it is well known that heterogeneous interaction
networks promote cooperation if the interactions are pair-
wise [29,30]. Since, in a scale-free network, there exists a
small set of nodes with many more links attached to them
than to other nodes, it is important to assess the role of
the highly connected nodes by the evolution of coopera-
tion. We are thus led to consider multi-group PGGs on
scale-free networks that are subject to deletion of links
connected to the highest-degree individuals.
We shall examine quantitatively the effects of network

heterogeneity on cooperation in multi-group PGGs. In
particular, we generate scale-free networks according to

the method in [31] and then remove a number of links
connected to the highest-degree nodes. The deletion
of such links is traditionally referred to as network
attack [32], and it was shown that the resilience to such
actions is crucial for situations such as fast information
transfer within the world-wide web [33], uninterrupted
supply of electricity [34], fast spread of epidemics
and viral infections [35–38], and cascade failure in
networks [39,40]. Several studies elaborated analytically
on the resilience of complex networks via the usage of
percolation theory [41–44]. Interestingly, we find that the
deletions mainly impair the evolution of cooperation in
multi-group PGGs. However, the effect is monotonously
negative only within a rather narrow region of the
multiplication factor, whereas outside this region there
exists an “optimal” number of deleted links at which the
fraction of cooperators on the network is minimal. We
examine the resulting distributions of wealth in terms
of the dependence on the number of removed links in
order to shed light on the reported results. We confirm
that socially diverse states are crucial for the successful
evolution of cooperation, as was argued recently in [17].
The remainder of this paper is organized as follows. In

the next section we describe the employed multi-group
PGG, and in the third section we present numeri-
cal results. The fourth section features an analytical
treatment that provides further insights and explains
our findings. Lastly, we summarize the main results and
outline their potential implications.

Multi-group public-goods games on scale-free

networks. – In reality, interactions among individuals
can often be described by complex networks. Here we focus
on scale-free networks whereby each vertex corresponds
to a particular player x. The generation of the network
starts with two connected players, and subsequently every
new player is attached to two old players already present
in the network, whereby the probability Π that a new
player will be connected to an old player x depends on
its degree kx according to Π= kx/

∑

ky. This growth and
preferential attachment scheme yields a network with an
average degree κ= (1/N)

∑

kx of four, and a power-law
degree distribution with the degree exponent of 3 [31].
Before the PGG starts, we delete a total of mL links that
are connected to the highest-degree nodes. According to
Albert et al. [32], this corresponds to an attack, and we
are interested in how different values of mL affect the
evolution of cooperation in multi-group PGGs. As shown
in fig. 1, with increase of mL there exists a transition from
an integrated network (there exists a path between any
pair of nodes) to a fragmented network, where some groups
of nodes become isolated and cannot be reached from
the largest network component. The fraction f = S/N can
then be defined, where S is the size of the largest connected
component and N is the size of the original network (here
we have N = 5000). Note that for mL < 4000, S ≈N so
that the original network remains essentially intact. For
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Fig. 1: Fraction of the largest connected component f vs. the
number of deleted linksmL. The original network size here was
N = 5000, and the results were obtained as averages over 1000
different initial network configurations.

mL > 6000, however, S≪N . At the transition point the
value of mL is about 5000 if the size of the network is
N = 5000, as was the case in fig. 1.
Initially each player on site x is designated either as a

cooperator (sx =C) or as a defector (sx =D) with equal
probability. Cooperators contribute c (cost of cooperation)
to each public-goods game, while defectors contribute
nothing. Subsequently, the total contribution that accu-
mulates within a group is multiplied by the multiplication
factor r > 1 that reflects synergistic effects of cooperation,
and the resulting amount is divided equally among all
the players irrespective of their strategies (and initial
contributions).
Since players participate in multiple groups, each player
x acquires its total payoff Px not only by participating
in the group consisting of its direct neighbors, but also
in all the groups that are centered around its direct
neighbors (see fig. 2) [17]. Figure 2 demonstrates such
a setup schematically, where player x is a member of
five groups, having five members each. One is the group
centered around player x (marked with a dark gray circle),
but there are also four other groups centered around its
neighboring players in which player x is also member. An
example of such a group is marked with a light gray circle
and is centered around player y. The payoff of player x
with strategy sx that is associated with the group centered
around player y is then

px,y =
r

ky +1

ky
∑

z=0

c

kz +1
sz −

c

kx+1
sx, (1)

where z = 0 stands for y, sz is the strategy of the neighbor
z of y, and kz is its degree. The strategy is sx = 1 if x
cooperates and sx = 0 if it defects. The cost c refers to
the contribution of every cooperator in each group it is
a member. For example, if a cooperator is member in
five groups, then its total cost will be 5c, i.e., one c for

Fig. 2: Schematic presentation of a multi-group public-goods
game. Player x is not only a member of the group in which it
is focal (the group is marked by a dark gray circle), but it is
also a member of four other groups (one such group centered
around its neighbor y is marked by a light gray circle).

each group (or equivalently, one c for each public-goods
game played). Without loss of generality, the cost c is set
equal to 1. The total payoff of player x comes from the
summation over all the groups

Px =
∑

y∈Γx

px,y, (2)

where Γx denotes the groups that are centered around the
neighbors y and the player x itself. The number of groups
in which player x participates is thus kx+1.
At each time step t, each player x acquires its payoff Px

as described above. Subsequently, all players update their
strategy synchronously by selecting at random one of their
direct neighbors y. If Px >Py player x keeps its strategy
sx, but if Px <Py player x adopts the strategy of player y
with the probability

W (sy→ sx) =
Py −Px
ΔPmax

, (3)

where ΔPmax ensures the proper normalization and is
given by the maximal possible payoff difference between
players x and y [17]. Results presented below are obtained
on networks hosting N = 5000 players. Equilibrium frac-
tions of cooperators ρC are determined within 5000 time
steps after sufficiently long transients were discarded.

Simulation results. – First, we investigate the depen-
dence of the fraction of cooperators ρC on the enhance-
ment factor r for different numbers of removed links
attached to the main hubs mL, as shown in fig. 3(a). It
can be observed that the evolution of cooperation due to
link deletions is affected strongly in multi-group PGGs. In
particular, the cooperation at a given value of r as well
as the emergence of complete cooperator dominance both
vary significantly in their dependence on mL. Indeed, if
mL = 4000 links are removed from the network before the
multi-group PGG starts, the evolution of cooperation will
be greatly impaired practically across the whole span of r,
especially if compared to the mL = 0 case. We can thus
conclude that the decrease in network heterogeneity due
to link deletions acts predominantly detrimental on the
evolution of cooperation in multi-group PGGs.
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Fig. 3: (Colour on-line) (a) Fraction of cooperators ρC vs.
the multiplication factor r for different numbers mL
of deleted links connected to the highest-degree players.
(b) Fraction of cooperators ρC vs. mL for different multipli-
cation factors r. Note that for certain values of r there exists
an “optimal” number of deleted links mL =m

opt

L , at which
defection thrives best. This effect, however, is quite subtle
(see main text for details). The vertical axis has a logarithmic
scale.

To examine the impact of link-targeted attack on the
evolution of cooperation in PGGs more precisely, we show
in fig. 3(b) the dependence of ρC on mL for different
values of r. It can be observed that link deletions have a
predominantly negative impact on the evolution of coop-
eration. More specifically, for low values of r the decrease
in cooperation is most severe, which is in agreement with
the fact that low multiplication factors are most challeng-
ing for the evolution of cooperation, and accordingly, the
decrease in the network heterogeneity due to link deletions
is most notable there. It can also be observed that for low
values of r there in fact exists an “optimal” number of
deleted links at which defection thrives best (cooperators
are most decimated). On the other hand, for larger r the
effect of link deletions is monotonously negative, i.e., the
more links are deleted the smaller the level of cooperation
on the network. For r exceeding a threshold (r > 3.74 [45],
which is linked to the survivability of cooperators on the
square lattice), however, the negative impact of link dele-
tions practically vanishes. This is because at such high
values of r the synergetic effects of cooperation suffice to
withstand defector attacks even in the complete absence
of network heterogeneity.
The reported decrease of cooperation upon link-targeted

attack is consistent with previous results in that the

Fig. 4: Existence of the “optimal” number of deleted links
m
opt

L , where defection thrives best, and its dependence on
the multiplication factor r. There exists only a rather narrow
region (hatched gray) where the impact of link deletions is
monotonously negative (moptL does not exist). Outside this
region, however, there always exists moptL at which ρC is
minimal.

connections among hubs facilitate cooperation in two-
player networked games, such as the prisoner’s dilemma
or the snowdrift game [29,46], as well as in multi-player
PGGs [17]. In particular, a defector hub is frequently weak
due to the negative feedback effect caused by its defecting
neighborhood. Since there is then nobody left to exploit,
a cooperator linked to such a defecting hub can overtake
it and thus recover cooperation in a notable portion of the
network.
Turning to results presented in fig. 3(b), we elaborate

further on the existence of an optimal number of link
deletions, denoted here by moptL , at which defectors are
most widespread. Results presented in fig. 4 indicate that
there exists only a rather narrow range of r values (hatched
gray), in which the link deletions have a monotonously
negative impact on the evolution of cooperation. Outside
this region, however, there always exists a non-zero value
ofmoptL at which ρC is minimal. We note, nevertheless, that
following what is usually a sharp decrease of ρC (especially
for low values of r; see fig. 3(b)), the subsequent increase
of ρC upon increasing mL past m

opt
L is modest. The

effect is mainly due to the creation of isolated (although
not fully disconnected) groups of cooperators that can
prevail against defectors due to their isolation. This can
be interpreted as group selection, although in our case
the creation of groups is a sole consequence of the sparse
network structure that emerges when mL approaches the
transition point of network disintegration (see also results
in fig. 1).
Finally, to gain further insights, we examine the result-

ing wealth distributions for different values of mL and r,
as presented in fig. 5. It can be observed that multi-group
PGGs induce heterogeneous wealth distributions that are
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Fig. 5: (Colour on-line) Wealth distributions resulting from
multi-group PGGs for different numbers of deleted links mL
connected to the highest-degree players. Values of the multi-
plication factor are: (a) r= 2.5, (b) r= 3.0 and (c) r= 4.0.

characterized by a fat tail. The algebraic wealth distribu-
tion agrees well with previous results [17,18,47]. Notably,
as the number of removed links increases, a cutoff emerges
in the distribution for the largest total wealth. The result-
ing deviation from the scale-free distribution obtained for
mL = 0 induces a downfall of cooperation, especially for
small values of r, as evidenced in fig. 3(b). It is next of
interest to summon our findings reported thus far and
provide an analytical treatment to corroborate them.

Analytical treatment. – In what follows, we predict
the payoffs of agents with respect to their degrees as
well as the corresponding wealth distribution by virtue
of an analytical approach. Assuming that cooperators are
randomly distributed on the network and the fraction of
cooperators is given by ρC , we can express the payoff
pi,j as

pi,j =
rρC
kj +1

(

N
∑

l=1

Ajl
kl+1

+
1

kj +1

)

−
ρC
ki+1

, (4)

where Ajl is the adjacency matrix of the underlying
network. Neglecting the degree-degree correlation, we have

N
∑

l=1

Ajl
kl+1

= kj

kmax
∑

kmin

P̄ (k′|kj)

k′+1
= kj

kmax
∑

kmin

k′P̄ (k′)

〈k〉

1

k′+1
=

ky

〈

k

k+1

〉/

〈k〉, (5)

where 〈·〉 denotes the average of all nodes, P (k′) is the
degree distribution, P̄ (k′|kj) is the joint degree distri-
bution defined by P̄ (k′|kj) = k

′P̄ (k′)/〈k〉, and the iden-

tity
∑kmax
kmin

P (k′)k′/(k′+1) = 〈k/(k+1)〉 has been used.

Substituting eq. (5) in eq. (4), we obtain

pi,j = ρC

[

r

〈k〉

〈

k

k+1

〉

kj
kj +1

+
r

(kj +1)2
−

1

ki+1

]

.

(6)
The total payoff is then given by

Pi =
N
∑

j=1

Aijpi,j + pi,i =

ρC

[

r

〈k〉2

〈

k

k+1

〉〈

k2

k+1

〉

ki+
r

〈k〉

〈

k

(k+1)2

〉

ki

+
r

〈k〉

〈

k

k+1

〉

ki
ki+1

+
r

(ki+1)2
− 1

]

. (7)

For ki≫ 1, we can obtain

Pi ≈Aki+B, (8)

where

A = ρC

[

r

〈k〉2

〈

k

k+1

〉〈

k2

k+1

〉

+
r

〈k〉

〈

k

(k+1)2

〉]

,

B = ρC

[

r

〈k〉

〈

k

k+1

〉

− 1

]

.

(9)

Here we can have A�B, B >−1 and ki≫ 1, Pi is thus
proportional to ki. Distribution of wealth P̄ (P ) can then
be obtained by P̄ (k) dk= P̄ (P ) dP for P̄ (k) = 〈k〉2/2k−3:

P̄ (P ) = P̄ (k)
dk

dP
=
A2〈k〉2

2
(P −B)−3. (10)

Since in the mean-field approximation the payoffs of
hubs are proportional to their degrees, the connections
among hubs play a key role in the maintenance of coop-
eration [17,29,46]. The deletion of links among hubs thus
prevents cooperation, as shown in fig. 3(b).

Summary. – We have investigated the evolution of
cooperation in multi-group PGGs on scale-free networks
that were subject to link-targeted intentional attack. The
main finding is that the deletion of links connected to
hubs has a predominantly negative impact on the evolu-
tion of cooperation when players can participate in multi-
ple groups. However, the effect is strictly negative (the
more links are removed the lower the fraction of coop-
erators) only in a rather narrow region of the multipli-
cation factor, whereas outside this region there exists an
intermediate number of removed links at which defection
thrives best. The latter effect, however, is quite subtle and
is due to the emergence of group selection that sets in
because of the sparse network structure that occurs when
large numbers of links are removed. The results can be
explained by means of wealth distributions and an analyt-
ical treatment supported by heuristic arguments, albeit
the subtleties of the existence of an intermediate number
of link removals for highest levels of defection cannot be
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precisely accounted for (due to the emergence of a rather
contrived version of group selection, as described). Socially
diverse states are thus crucial for the successful evolution
of cooperation, where the upper limit of personal wealth
introduces a cutoff that warrants the most challenging
environment for the spread of defection. Given these facts,
strong parallels can be drawn between the evolution of
cooperation on complex networks and processes such as
spread of viral diseases or the effectiveness of information
retrieval, which were also found to be strongly affected by
intentional attack [26]. We hope that our work will inspire
further research in this direction and that it may provide
insights into the understanding of the stability of cooper-
ation under attack in social networks.
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