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Abstract – Utilizing rectangular graphene quantum dots with zigzag horizontal boundaries as a
paradigm, we find that the conductance of the dots can exhibit significant oscillations with the
position of the leads. The oscillation patterns are a result of quantum interference determined by
the band structure of the underlying graphene nanoribbon. In particular, the power spectrum of
the conductance variation concentrates on a selective set of bands of the ribbon. The computational
results are substantiated by a heuristic theory that provides selection rules for the concentration
on the specific dispersion bands.
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Graphene, a single layer of carbon atoms arranged in a
honeycomb lattice, has attracted much recent interest [1].
Potential applications of graphene range from electron-
ics [2] to nano-biosensors [3]. For example, due to the
distinctly high mobility of charge carriers in graphene [4],
nanoscale electronic devices made of graphene, such as p-n
junctions and transistors, can be superior to their Si-based
counterparts [5]. For most applications, there is a need to
connect the graphene device to external voltage or current
source via metal leads. Ideally, there should be zero resis-
tance between the metal lead and the graphene. However,
experiments have shown that the contact resistance can
approach or even exceed the quantum resistance [6]. This
indicates that some form of injection barrier must exist at
the metal-graphene interface, as demonstrated in fig. 1(a),
restricting the transmitting modes to a few [6,7].
In this letter, we use a zigzag graphene quantum-dot

model where the size of the leads is assumed to be small to
mimic the injection characteristics of a few transmitting
modes and study, systematically, how the conductance
of the quantum dot depends on the position of the leads
(fig. 1(b)). It has been noticed that the geometry of the
device can affect the electronic transport properties [7–10].
Intuitively, if the lead is located in a region where the local
density of states (LDS) is low, electrons can hardly hop

out of the localized pattern to get into the lead, resulting
in a small conductance [11]. Opposite situations can occur
when the lead is in a different region, leading to a large
conductance. Our systematic computations with varying
lead positions reveal significant conductance oscillations.
A heuristic analysis indicates that the oscillations are
caused by standing-wave–like patterns in the quantum
dot. In particular, the wave vector of the wave function
follows the underlying dispersion relation. For tall and
narrow quantum dots, as sketched in fig. 1(b), the relation
can be approximated by the band structure of the corre-
sponding armchair graphene ribbon when viewed verti-
cally (y-direction) in the absence of leads. There are two
sets of bands depending on the phase difference of the two
atoms (denoted by A and B) in a unit cell. At the bottom
of these bands, for one set, the wave function for A atoms
has the same phase as that for B atoms. For the other set,
the wave function for the two set atoms has the opposite
phase, which do not contribute to the transmission as they
annihilate from destructive interference. In the nanotrans-
port literature, conductance oscillations/fluctuations are
usually referred to those with respect to varying elec-
tron energy or changing magnetic field [12], the origin
of which can generally be attributed to scarred or
pointer states in the underlying dot structure [11]. The
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Fig. 1: (Color online) (a) A schematic graphene device with
metal contacts. Surface roughness may impose injection barri-
ers at the metal-graphene interface (as indicated by the red
arrow). (b) The same device with semi-infinite narrow leads
modeling the injection characteristics of a few transmitting
modes. Because of the discrete lattice structure, the position
of the lead can only be changed vertically in a multiple of
the lattice distance, which is

√
3a, where a= 0.246 nm is the

lattice constant, and iL/R = 1 if the left/right lead resides at
the bottom of the dot. The rectangles indicate a slice of N
atoms, and L is the width of the device. The short dotted lines
separate the dot and the leads. The circles are the boundary
atoms with direct interaction with the leads. The device para-
meters are iL = 13, iR = 3, L= 7a, and N = 16× 4.

oscillations/fluctuations reported here are induced purely
by geometrical variation in the whole device (quantum
dot plus leads), caused by a different mechanism.
In our calculations we assume the leads are semi-infinite,

narrow zigzag graphene ribbons supporting 8 transmission
modes, which has 4× 4 atoms in a slice (twice wider
than the leads in fig. 1(b)). The positions of the leads
can vary only in an integer multiplication of the basic
lattice unit in the vertical direction. To capture the
essential physics, we fix the left lead, and systematically
change the position of the right lead, denoted by iR.
We employ the standard tight-binding framework and the
non-equilibrium Green’s function formalism to calculate
the transmission T and then use the Landauer formula for
the conductance G [13]. The tight-binding Hamiltonian is

given by Ĥ =
∑
(−t)|i〉〈j|, where the summation is over all

pairs of nearest neighboring atoms, and t≈ 2.8 eV is the
hopping energy [1]. In the position representation, 〈i|j〉=
δij , thus the Hamiltonian matrix elements are given by

Hij = 〈i|Ĥ|j〉, which is (−t) if i and j are nearest neighbors
and 0 otherwise. The interslice interaction is characterized
by the coupling between the nearest neighboring pairs
linking the two slices. Thus the contacts, depending on
their vertical location, will link to different atoms in the
dot, which will modify the Hamiltonian matrix, especially
the subblock describing the interslice interactions of the
boundary slices of the dot with the lead. The semi-infinite
leads can equivalently be treated as a self-energy matrix
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Fig. 2: (Color online) (a) Contour plot of the conductance vari-

ation G̃ (in units of 2e2/h) as a function of the right-lead posi-
tion iR and the Fermi energy. (b) Power spectrum (arbitrary

units) of the conductance variation G̃ in the (k, E/t)-plane.
The geometric parameters of the device are L= 10a, N =
96× 4, and iL = 47 (the middle of the device). The crosses
represent the bands for the corresponding vertical ribbon where
the value of the wave vector is doubled.

of the atoms in the dot with direct interactions with
the leads (small circles in fig. 1(b)), which is included in
the Hamiltonian and Green’s function for calculating the
transmission [13].
To characterize the dependence of the conductance on

the lead position, for each Fermi energyE, we calculate the
quantity G̃(iR, E) =G(iR, E)−〈G(iR, E)〉iR . Figure 2(a)
shows, for a zigzag dot, a contour plot of the conductance
variation G̃ in the two-dimensional parameter space of
the right lead position iR and the Fermi energy E.
The high conductance region forms a well-pronounced
pattern, which is robust in that similar patterns persist
for varied dot size and/or left-lead position. For fixed left-
lead position and Fermi energy, the conductance depends
sensitively on the position iR of the right lead. For many
Fermi-energy values, the conductance variations are in
fact periodic. To characterize this periodic pattern, we
perform its spatial Fourier transform with respect to iR.
The results are shown in fig. 2(b). The contour plot of
the power spectrum reveals a striking pattern of well-
pronounced line segments. As the Fermi energy is varied,
a dominant frequency can occur but only for a small set of
energy values, signifying periodic conductance oscillations
with the lead position for these energy values. For other
energies, such a dominant frequency is absent, indicating
random conductance fluctuations with the lead position.
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Fig. 3: (Color online) (a) Contour plot of the dispersion relation
of an infinite graphene flake with the x-direction being zigzag.
The dashed line indicates the first Brillouin zone. The K and
K
′ points are (4π/(3a), 0) = (K, 0) and (−K, 0), respectively.
(b) Calculated band structure for the armchair nanoribbon
with L= 10a (ky-direction in (a)). The gray (lighter) curves are
for kx >K. The red (darker) ones are for kx <K. The labels
of the bands are the same as that in fig. 2(b).

The overlaid crosses in fig. 2(b) represent the band
structure of the corresponding vertical ribbon for which
the leads are removed1. The coincidence of the line
segments and the crosses indicates scarring of the power
spectrum of G̃ on the energy bands. We observe that,
although the bright spots in the power spectrum follow the
band structure, not all the bands are occupied. As we shall
demonstrate below, this selective scarring phenomenon
can be explained by the phase properties of the wave
functions.
We now provide an explanation for geometry-dependent

conductance fluctuations in graphene quantum dots. First,
consider an infinite graphene flake. Figure 3(a) shows
a contour plot of the energy dispersion relation for the
infinite graphene flake, where K and K′ are the two Dirac
points. For the quantum dot we studied, removing the
leads results in an armchair ribbon in the y-direction.
Figure 3(b) shows its dispersion relation. Note that there
are two sets of bands for the armchair ribbon. The first
set is for kx >K, which are the gray (lighter) curves in
fig. 3(b). The other set is for kx <K, which are the red
(darker) ones. Regarding the isolated quantum dot as an
armchair nanoribbon in the y-direction, the wave function
for wave vectors close to the Dirac point K has the
form [14] ψ(x, y) = eikyy[φA(x), φB(x)]

T . The Hamiltonian
is given by

HK = vF (p ·σ) = vF

(
0 px− ipy

px+ ipy 0

)
,

where σ denotes the Pauli matrices. The eigen-equation
Hψ=Eψ yields

φA(x) =
−i�vF
E
(∂x+ ky)φB(x) (1)

1The value of the wave vector for the band structure is doubled

because the probability density function determining the transmis-

sion is the square of the module of the wave function. As a result,

the frequency of the transmission oscillations as the right lead moves

is twice as that of the wave function in the y-direction.

and
φB(x) =

−i�vF
E
(∂x− ky)φA(x). (2)

Combining eqs. (1) and (2), we have φB(x) =
(�2v2F /E

2)(k2y − ∂
2
x)φB(x). Applying the boundary

condition of the armchair ribbon, the solution is
φB(x) =Ae

iknx, where kn = nπ/L− 4π/(3a) and L is the
width of the ribbon [14]. Substituting this solution back
to eq. (1), we have

φA(x) =
−i�vF
E
(ikn+ ky)φB(x). (3)

Now reexamine fig. 2(b). The bands can be character-
ized by their cross points with the energy axis, which are
located at the bottom of the bands (fig. 3(b)). In this
region, ky ≈ 0 and E ≈ vF�|kn|> 0, so eq. (3) becomes

φA(x)≈
�vF kn
E
φB(x) = sign(kn)φB(x). (4)

The same holds for the other Dirac point. We see that,
depending on the value of kn or the location of kx (on the
right or left side of the Dirac pointK), the wave function of
A atoms may have the same phase or the opposite phase as
that of B atoms, corresponding to bonding or antibonding
states [15] when the energy surpasses the corresponding
band. This has been verified by numerical calculation of
the wave functions of armchair ribbons.
It can now be argued that only the bands for which the

wave functions for A and B atoms possess the same phase
contribute to the conductance of the quantum dot, while
the bands with opposite phases have no contributions.
Our idea is to use the mode matching technique in
the calculation of the transmission [16]. In particular,
the transmission of the quantum dot is nonzero if the
modes in the left lead match those in the dot, which
also match the modes in the right lead. The leads are
narrow zigzag ribbons. The wave functions of A and B
atoms are symmetric under reflection with respect to the
vertical direction. In other words, they possess the same
phase under a reflection. Since the width of the leads
is much smaller than the vertical scale of the quantum
dot, the wave functions of the dot in the lead region can
be regarded as constants. Mode matching is the sum of
the cross integral between the wave functions of A and B
atoms. If the wave functions have the same phase, their
contributions add up, resulting in a large transmission.
However, if the wave functions have opposite phases,
the two cross integrals annihilate, leading to nearly zero
transmission. Therefore, only the bands with positive kn,
where kx >K around the K point or kx <−K around
the K′ point, contribute to electron transmission and will
be revealed in the power spectrum of G̃, while the other
set of bands with negative kn will be absent in the plot.
We label the bands with numbers for energies from small
to large, as shown in fig. 2(b) and fig. 3(b), where the
bands with negative kn (2, 4, and 7) are marked in red.
To be specific, as the energy is increased from zero, the
first band (E/t∼ 0.1) has kn > 0 and contributes to the
conductance oscillations, resulting in bright spots along
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this band. When the second band emerges (E/t∼ 0.2),
since kn < 0, it has no contribution to the conductance
and is “missed” by the bright spots. When the third
band (E/t∼ 0.3) appears, it has kn > 0 and the bright
spots “jump” to this band and the corresponding wave
vector restarts from 0 following this band, and so on. This
selection can also be verified from fig. 2(a). Note that
for the corresponding armchair nanoribbon, all the bands
contribute to the transmission indistinguishably one mode
if the energy is above their bottom level.
Another interesting feature is that, below the band

dispersion curve, there is a pronounced conductance peak,
as shown in fig. 2(a). This occurs only when the armchair
ribbon has a band gap and is mainly resulted from the
interplay of the two eigenstates spanning this region.
The numerical results and analysis presented so far are

with respect to graphene quantum dots with horizontal
zigzag boundaries. Essentially the same phenomena have
been observed for and the same analysis applies to dots
with horizontal armchair boundaries.
To conclude, we have uncovered a type of conductance

oscillations in graphene quantum dots, which are caused
exclusively by variation in the geometry of the device,
and we have provided systematic computational results
and a physical theory to demonstrate that the oscillations
can be explained by the energy-band structure of the
graphene ribbon associated with the underlying quantum
dot. The bands on which the conductance oscillation scars
are determined by the phase of the wave function for
the two set of atoms, where only those with the same
phase have contributions. From an applied standpoint, our
finding has direct implications to devices where the device
is large and the leads are relatively small thus an accurate
alignment of the lead to the device is highly nontrivial. The
conductance of the device can depend sensitively on the
location of the leads and the Fermi energy. Such a sensitive
dependence can be employed for a control scheme [17] for
manipulation of electron beam propagation [18] as one can
apply small perturbations, e.g., the lead position or the
Fermi energy, to generate a desired conductance change.
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