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Abstract Digital twins have attracted a great deal of recent attention from a wide range of fields. A
basic requirement for digital twins of nonlinear dynamical systems is the ability to generate the system
evolution and predict potentially catastrophic emergent behaviors so as to provide early warnings. The
digital twin can then be used for system “health” monitoring in real time and for predictive problem
solving. For example, if the digital twin forecasts a possible system collapse in the future due to parameter
drifting as caused by environmental changes or perturbations, an optimal control strategy can be devised
and executed as early intervention to prevent the collapse. Two approaches exist for constructing digital
twins of nonlinear dynamical systems: sparse optimization and machine learning. The basics of these two
approaches are described and their advantages and caveats are discussed.

1 Introduction

In applications, it is often the case that an accurate
mathematical model of the underlying dynamical sys-
tem is not available but time series measurements or
observations of some key variables can be made. If the
existing empirical data indicate that the underlying sys-
tem has been functioning as designed or “healthy,” how
to anticipate any future potential collapse of the sys-
tem, e.g., caused by slow drifting of a system parame-
ter? Digital twins provide a viable solution. In partic-
ular, if a digital “copy” of the system can be faithfully
constructed, then a computational bifurcation analysis
with respect to variations in the parameter of interest
can be performed to assess the possible future collapse
of the system.

Recent years have witnessed a fast growing interest in
building digital twins not only in many fields of science
and engineering but also in industry, health care, and
defense [1]. Historically, digital twins were first used for
predicting the structural life of aircrafts [2]. In dynam-
ical systems, digital twins can be exploited for predict-
ing the future states and anticipating emergent, poten-
tially catastrophic behaviors [3]. In medicine and health
care, for a certain type of disease, mechanistic knowl-
edge, observational or diagnostic data, medical histo-
ries, and detailed physiological modeling can be com-
bined to construct patient-specific digital twins [4–6].
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Development of digital twins of the Earth for green
transition is currently underway in Europe [7, 8].

The aim of this perspective is to present an overview
of the current approaches to digital twins for nonlinear
dynamical systems. The need for digital twins can be
appreciated through an illustrative example. As shown
in Fig. 1, a dynamical system of interest generates two
time series at two slightly different parameter values:
one before a critical transition and another after. Before
the transition, the system functions “normally” in the
sense that the dynamical variable plotted has a finite
mean value, in spite of the statistical fluctuations, as
shown in the top panel. The variable can be, e.g., the
population of a protected species in an ecosystem. After
the transition, for an initial period of time, the vari-
able exhibits a statistically indistinguishable behavior
from that before the transition. However, in the long
run the variable becomes zero, signifying, e.g., popula-
tion extinction. If observations were made at any time
before the variable begins to decrease systematically,
any observation would suggest that the system is com-
pletely healthy and functional. Assume that a model
of the system is not available and all information that
can be obtained from the system is time series measure-
ments. The question is, if at a time when all measure-
ments or observations of the system give no indication
of any “abnormal” behavior of the system, how can
one tell that in one case the system will continue to
be functional (the top panel in Fig. 1), but in another
case, a catastrophic collapse will occur (the bottom
panel in Fig. 1), based on measured time series only?
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Fig. 1 A challenging prediction problem that was previously deemed unsolvable in nonlinear dynamics. Shown are two
time series from a chaotic system at two different parameter values, respectively. The system exhibits a crisis, a global
bifurcation that destroys the chaotic attractor, at a critical parameter value pc. The parameter values corresponding to the
time series in the top and bottom panels are before and after pc, respectively. In the observation time interval [0, 3000]
(corresponding approximately to about 80 oscillation cycles of the dynamical variable), the two time series are statistically
indistinguishable with approximately identical nonzero mean values (no extinction). Even when the observation time interval
is twice as long ([0, 6000]), the two time series still cannot be distinguished. Only when the observation time extends to over
8000 (corresponding to about 250 cycles of oscillation—the red dashed vertical line) will the time series exhibit completely
different behavior: one sustaining (top) and another collapsing toward zero (bottom). Suppose the observation time is
t = 3000—the present time, so the only information available about the system is the two time series. How can the future
behaviors of the two time series, i.e., one corresponding to sustained or healthy behavior while another to extinction, be
predicted based on the time series that cannot be distinguished?

This model-free prediction of system’s future behavior
is an extremely challenging problem in applied nonlin-
ear dynamics. Digital twins provide a solution.

At the present, there are two main approaches to
digital twins in nonlinear dynamical systems. One is
based on reconstructing the system model by finding
the accurate equations governing the dynamical evo-
lution from measurements. Crutchfield and McNamara
[9] pioneered the problem of determining the system
equations from measurements based on estimating the
information contained in a sequence of observations to
deduce an approximate set of equations of motion repre-
senting the deterministic portion of the system dynam-
ics. Bollt proposed the idea of constructing a dynam-
ical system “near” the original system with a desired
invariant density by exploiting the Frobenius–Perron
theorem [10]. Later, Yao and Bollt developed a least-
squares approximation strategy to estimate the system
model and parameters [11]. In the past decade or so, a
leading approach to finding system equations [12–20] is
based on sparse optimization such as compressive sens-
ing [21–26] in situations where these equations have a
“sparse” structure ,1. The basic idea is as follows. If the

1The idea of exploiting sparse optimization for discover-
ing system equations was first published by the ASU group
in 2011 [12, 13]. Five years later (in 2016), the same idea
was republished and named as “SINDy” [S. L. Brunton,
J. L. Proctor, and J. Nathan Kutz, “Discovering governing

vector fields are smooth, they can be approximated by
some series expansions such as power or Fourier series.
The task then becomes that of estimating the various
coefficients in the series expansion. If most of these coef-
ficients are non-zero, the problem is not simplified as
the total number of coefficients to be determined will
be large. However, if the series expansion is sparse in
the sense that the vast majority of the coefficients are
zero, then well-developed sparse-optimization methods
such as compressive sensing can be used to uniquely
solve the few non-trivial coefficients even with a small
amount of data [12, 13]. With those coefficients, the sys-
tem equations described by the series expansions rep-
resent a “digital copy” of the original system.

The second approach to digital twin is machine learn-
ing [27]. The basic idea is that a dynamical system
functions to evolve the state vector forward in time
according to a set of mathematical rules, so a digital
twin must also be able to evolve the state vector for-
ward in time even without any input. Reservoir com-
puting [28–30] is a suitable choice because its intrin-
sic recurrent neural network can be trained to execute

equations from data by sparse identification of nonlinear
dynamical systems,” Proc. Nat. Acad. Sci. 113 3932–3937
(2016)]. Approximately five months before this 2016 paper
was published, at a Program Review meeting, Prof. Kutz
was made aware of the ASU work earlier and was provided
the references.
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closed-loop, self dynamical evolution with memory. In
recent years, there is a great deal of interest in reservoir
computing for predicting chaotic systems [31–52]. The
advantage of the machine-learning approach to digital
twins is its applicability to any systems, regardless of
the underlying mathematical structure of the govern-
ing equations (e.g., sparse or dense in terms of some
series expansion). The disadvantage is that the amount
of data required for training can be quite demanding.

The sparse-optimization approach to digital twin
through discovering system equations has been previ-
ously reviewed [53, 54]. The focus of this Perspective
article is on the general principle of the more recent
machine-learning approach.

2 Digital twins of nonlinear dynamical
systems: adaptable machine learning

Dynamical systems in the real world are not only non-
linear but also complex. Even if an approximate model
of the system can be found, the underlying nonlin-
earity is likely to cause sensitive dependence on ini-
tial conditions, parameter variations, stochastic fluc-
tuations, and perturbations, rendering ineffective any
model-based prediction method. Predicting character-
istic changes in the system in advance of their occur-
rence thus must rely on data collected during its normal
functioning phase, for which machine learning is viable
and potentially powerful.

Most previous studies on reservoir computing focused
on the behavior of the target dynamical system at a
fixed parameter setting, i.e., once the machine has been
trained through learning for certain parameter values,
it is utilized to predict the state evolution of the system
but at the same set of parameter values. A digital twin
of the system, by its nature, must be able to faithfully
generate the changes in the system behavior as some
parameter varies. A basic requirement of digital twin is
that it must be able to generate the correct bifurcation
behaviors of the original system. That is, the digital
twin must not only capture the “dynamical climate” of
the original system, but also accurately reflect how the
climate changes with the bifurcation or control parame-
ter. Adaptable machine learning [45, 49] was developed
to meet this challenge, where the term “adaptable” was
introduced to mean that a machine trained with time
series data in one parameter regime is capable of gen-
erating the dynamical behaviors of the target system
in another, distinct parameter regime. The former is
referred to as the parameter regime of normal system
functioning from which the training data are collected,
while the latter is the prediction regime in which system
collapse can occur.

The adaptable machine learning framework is
schematically shown in Fig. 2. Its working principle
can be explained, as follows. Let p be the bifurca-
tion parameter of the target nonlinear system. As p

varies, a critical point arises: pc, where the system func-
tions normally for p < pc and it exhibits a transient
towards collapse for p > pc. Training of the digital twin
is done based on the time series taken from a small
number of parameter values in the normal regime, e.g.,
p1 < p2 < p3 < pc. For each parameter value, ade-
quate training is required in the sense that the twin is
able to predict correctly and accurately the oscillatory
behavior at the same parameter value for a reasonable
amount of time. Suppose that, currently, the system
functioning is normal and it operates at the param-
eter value p0 < pc. In the prediction phase, suppose
a parameter change Δp > 0 has occurred. The new
parameter value p0 + Δp is then fed into the digital
twin through the parameter channel. The prediction is
deemed successful if the twin generates normal oscilla-
tions for p0 + Δp < pc but exhibits a transient towards
collapse for p0 + Δp > pc.

A recent work demonstrated that the machine-
learning architecture of reservoir computing is effective
as digital twins for a variety of nonlinear dynamical sys-
tems [27]. A reservoir computing machine consists of
three main components: an input layer, a hidden layer
with a high-dimensional and complex neural network
(the reservoir network), and an output layer. The input
layer maps the typically low-dimensional time series
data into the high-dimensional state space of the reser-
voir network, and the output layer projects the high-
dimensional dynamical evolution of the neural network
state back into low-dimensional time series (readout).
Training is administered to adjust the parameters asso-
ciated with the projection matrix of the output layer to
minimize the difference between the output and the true
input time series. Because of the nature of the recur-
rent neural network, the input matrix and the reservoir
network structure and link weights are chosen a priori
according to the values of a few hyperparameters (e.g.,
the network spectral radius) and are fixed during the
training and prediction phases. As a result, highly effi-
cient learning can be achieved. In terms of hardware
realization, reservoir computing can be implemented
using electronic, time-delay autonomous Boolean sys-
tems [31] or high-speed photonic devices [32].

There are two major types of reservoir computing
systems: echo state networks (ESNs) [28] and liquid
state machines [29]. The architecture of an ESN is
one that is associated with supervised learning under-
lying recurrent neural networks. The basic principle
of ESNs is to drive a large neural network of a ran-
dom or complex topology—the reservoir network—with
the input signal. Each neuron in the network gener-
ates a nonlinear response signal. Linearly combining all
the response signals with a set of trainable parame-
ters yields the output signal. A schematic illustration
of the proposed adaptable reservoir computing scheme
is shown in Fig. 3, where the training and testing config-
urations are illustrated in Fig. 3a, b, respectively. The
machine consists of three components: (i) an input layer
that maps the low-dimensional (M ) input signal into
a (high) N -dimensional signal through the weighted

123



Eur. Phys. J. Spec. Top.

Fig. 2 Training scheme of adaptable machine learning. The target system of interest has two characteristically distinct
operational regimes: normal/oscillatory and collapse regimes separated by a critical transition point pc, where p is a
bifurcation parameter. As p increases through pc, the system transitions from the normal to the collapse regime. Suppose
the parameter drifts slowly with time, and let p0 be its value at the present time. The parameter values p1, p2, and p3, as
indicated by the three vertical blue dashed lines, thus occurred in the past, from which observational data or time series
can be obtained. Training of the neural machine is done using these time series in the normal or pre-transition regime. The
future behavior of the system can be predicted by adding a parameter variation Δp (corresponding to a specific time in
the future) to p0 and observing the dynamical state of the machine under the parameter value p0 + Δp. For p0 + Δp < pc,
a well trained machine shall predict that the system will still be in the normal functional regime. For p0 + Δp > pc, the
machine would generate dynamical evolution that is indicative of system collapse

N ×M matrix Win, (ii) the reservoir network of N neu-
rons characterized by Wr, a weighted network matrix
of dimension N ×N , and (iii) an output layer that con-
verts the N -dimensional signal from the reservoir net-
work into an L-dimensional signal through the output
weighted matrix Wout, where L ∼ M � N . The matrix
Wr defines the structure of the reservoir neural network
in the hidden layer, where the dynamics of each node
are described by its internal state and a nonlinear (e.g.,
hyperbolic tangent) activation function. For construct-
ing a digital twin, it is necessary to set M = L. As
mentioned, the matrices Win and Wr are generated ran-
domly prior to training, whereas all elements of Wout

are to be determined through training.
Consider the setting where the system and environ-

mental variations are characterized by the changes in
a single parameter—the “bifurcation parameter.” The
idea is to designate an additional input channel to feed
the parameter value into each and every artificial neu-
ron in the hidden-layer network, as shown in Fig. 3,
which makes the reservoir computing machine “cog-
nizant” of the parameter variations. The basic consider-
ations are as follows. To predict critical transitions and
system collapse, a requirement is that the time series
data must be obtained while the system is still in nor-
mal operation, and it is necessary to collect data from

multiple values of the bifurcation parameter in the nor-
mal phase. Because the training data come from sev-
eral distinct bifurcation parameter values, it is neces-
sary that the machine “know” the parameter values at
which the data are taken, which can be accomplished
by “injecting” the parameter values to all nodes of the
recurrent dynamical neural network in the hidden layer.

3 Examples of digital twins of nonlinear
dynamical systems

3.1 Systems for which sparse optimization methods
fail

Recall that the basic requirement of any sparse opti-
mization technique for finding the system equations is
sparsity : when the system equations are expanded into
a power series or a Fourier series, it must be that only
a few terms are present so that the coefficient vectors
to be determined from data are sparse [12, 53]. How-
ever, there are physical and biological systems that vio-
late this sparsity requirement. An example is the two-
dimensional Ikeda map describing the dynamics of a
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Fig. 3 Basic structure of adaptable reservoir computing. a Training phase. Time series data provide the input to the
machine. The input matrix Win maps the M -dimensional input data to a vector of much higher dimension N , where
N � M , and the matrix Wp feeds the bifurcation parameter value into each and every neuron in the hidden layer as
denoted by the dashed circle. The complex neural network of N interconnected neurons in the hidden layer is characterized
by an N×N weighted matrix Wr. The dynamical state of the ith neuron in the reservoir is ri, for i = 1, . . . , N , constituting
the state vector r(t). The output matrix Wour converts the N -dimensional state vector of the reservoir network into an
L-dimensional output vector, where N � L. For constructing a digital twin, it is necessary to set M = L. During the
training phase, the vector u(t) is the input data, so the system is in open-loop operation. b In the prediction phase, the
external input is cut off and the output vector v(t) is directly fed back as the input to the reservoir, generating a closed-loop,
self-evolving dynamical system

laser pulse propagating in a nonlinear cavity: [55–57]:

zn+1 = μ + γzn exp
(

iκ − iν

1 + |zn|2
)

, (1)

where the dynamical variables x and y are the real
and imaginary parts of the complex variable z , μ is the
dimensionless laser input amplitude (a convenient bifur-
cation parameter), γ is the reflection coefficient of the
partially reflecting mirrors of the cavity, κ is the cavity
detuning parameter, and ν characterizes the detuning
contributed by the nonlinear medium in the cavity. If
the map functions are expanded into a power series or
a Fourier series, an infinite number of terms will be
present. In fact, for the Ikeda map it remains infeasi-
ble to find a suitable mathematical base to expand the
map functions into a sparse series, rendering inapplica-
ble the sparse optimization method for constructing a

digital twin. It was demonstrated [49] that adaptable
reservoir computing provides an effective approach to
creating a digital twin of the Ikeda map, which can be
used to predict bifurcations and critical transitions of
the optical-cavity system.

Another example is a three-species ecosystem
described by [58]

dR

dt
= R

(
1 − R

K

)
− xcycCR

R + R0
,

dC

dt
= xcC

[
ycR

R + R0
− 1

]
− xpypPC

C + C0
,

dP

dt
= xpP

(
ypC

C + C0
− 1

)
, (2)

where the dynamical variables R, C , P are the popula-
tion densities of the three species: resource, consumer,
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and predator, respectively, and the system parameters
are K (the carrying capacity), xc, yc, xp, yp, R0, and
C0. For a wide range of the parameter values, the sys-
tem exhibits a critical transition to species extinction.
A power-series expansion of the vector field on the right
side of Eq. (2) contains an infinite number terms, ren-
dering inapplicable any sparse optimization method. It
was demonstrated [45] that adaptable reservoir comput-
ing can be used to construct a digital twin of the ecosys-
tem to predict the critical transition and the dynamical
behaviors about the transition.

3.2 Predicting amplitude death

In nonlinear dynamical systems, it can happen that,
when a bifurcation parameter of the system changes
through a critical point, the oscillatory behaviors of
the state variables halt suddenly and completely—a
phenomenon called amplitude death [59, 60]. From the
point of view of bifurcation, amplitude death is caused
by a sudden transition of the system from an oscilla-
tory state to a steady state. If the normal function of
the system relies on oscillations, then this phenomenon
will be undesired and it is important to be able to pre-
dict amplitude death before its actual occurrence. For
example, in biological systems, normal conditions are
often associated with oscillations, and amplitude death
marks the onset of pathological conditions. To antici-
pate amplitude death in advance of its occurrence based
on oscillatory time series collected during normal func-
tioning is important. It was demonstrated that adapt-
able reservoir computing as a digital twin of the system
of interest can be effective for this prediction task [61].

3.3 Predicting onset of synchronization

In complex dynamical systems consisting of a number of
coupling elements, synchronization is coherent motion
among the elements. Depending on the specific form of
the coherent motion, different types of synchronization
can emerge, including complete chaotic synchronization
[62], phase synchronization [63], and generalized syn-
chronization [64]. The occurrence of synchronization
has significant consequences for the system behavior
and functions. An example is the occurrence of epilep-
tic seizures in the brain neural system, where a widely
adopted assumption is that hypersynchrony is closely
associated with the occurrence of epileptic seizures [65],
during which the number of independent degrees of
freedom of the underlying brain dynamical system is
reduced. In the extensive literature in this field, there
was demonstration that partial and transient phase
synchrony can be exploited to detect and character-
ize (but not to predict) seizure from multichannel brain
data [66–68]. Reliable seizure prediction remains a chal-
lenge. In general, it is of interest to predict or antici-
pate synchronization before its actual occurrence based
on time series data obtained before the system evolves
into some kind of synchronous dynamical state. In par-
ticular, given that the system operates in a parameter

regime where there is no synchronization, would it be
possible to predict, without relying on any model, the
onset of synchronization based solely on the dynami-
cally incoherent time series measurements taken from
the parameter regime of desynchronization? A digital
twin of the original system represents a viable solution.

It was demonstrated [48] that adaptable reservoir
computing can be used to construct a digital twin
for predicting synchronization. In particular, the dig-
ital twin can predict, with a given amount of param-
eter change, whether the system would remain asyn-
chronous or exhibit synchronous dynamics. Systems
tested include representative chaotic and network sys-
tems that exhibit continuous (second-order) or abrupt
(first-order) transitions. Of special interest are network
dynamical systems exhibiting an explosive (first-order)
transition and a hysteresis loop, and it was shown [48]
that the digital twin possesses the power to accurately
predict these features including the precise locations of
the transition points associated with the forward and
backward transition paths.

4 Discussion and outlook

There exist two approaches to digital twins in nonlinear
dynamical systems: sparse optimization and machine
learning, where the former relies on finding the exact
governing equations of the system and its applicability
is thus limited. This Perspective explains the difficulty
with the sparse-optimization approach and focuses on
the machine-learning approach. An issue concerns the
type of machine-learning scheme that can be exploited
for constructing digital twins for nonlinear dynamical
systems. Since a dynamical system evolves its state for-
ward in time according to a set of mathematical rules,
its digital twin must be able to evolve forward in time
by itself. In this regard, reservoir computing is capable
of closed-loop, self dynamical evolution with memory,
so it provides a base for developing digital twins of non-
linear dynamical systems.

An important contribution to explainable machine
learning as applied to nonlinear dynamical system is the
mathematical understanding of the inner workings of
reservoir computing by Bollt [50], leading to the devel-
opment of “next-generation reservoir computing” [51].
A foundational problem underlying the development of
a physical understanding of the workings of reservoir-
computing based digital twins is searching for scaling
laws between the complexities of a chaotic system and
its digital twin. In particular, in order for the digital
twin to predict the state evolution of the target system,
the complexity of the former must “overpower” that
of the latter. What is the meaning of “overpowering”
and how can it be characterized? Are there scaling laws
quantifying the relationship? Answers to these ques-
tions will provide a deeper understanding of the inner
workings of reservoir-computing based digital twins.

For a chaotic system, its state evolution is deter-
mined by the trajectory movement on a dynamically
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invariant set, e.g., a chaotic attractor. The complexity
of the chaotic system can be faithfully characterized by
the information dimension of the chaotic invariant set
[69, 70]. Likewise, the complexity of the digital twin
is determined by its “inner” dynamical system, which
is typically a complex dynamical network in the hid-
den layer of the reservoir computer. For a complex net-
work, in general its complexity increases with its size.
As the information dimension of the target chaotic sys-
tem increases, the size of the reservoir network must
increase accordingly to warrant its predictive power
over the former. A universal scaling law between the
network size required for accurate prediction and the
information dimension of the chaotic system, if it indeed
exists, would represent a meaningful way to character-
ize the digital twins’ ability to overpower the target
chaotic system.

Acknowledgements I thank L.-W. Kong for discussions
and for assisting with Fig. 1. This work was supported by
the Army Research Office through Grant No. W911NF-21-
2-0055.

Data availability statement No data associated in the
manuscript.

References

1. A. Rasheed, O. San, T. Kvamsdal, Digital twin: Values,
challenges and enablers from a modeling perspective.
IEEE Access 8, 21980–22012 (2020)

2. E.J. Eric, J. Tuegel, A.R. Ingraffea, T.G. Eason, S.M.
Spottswood, Reengineering aircraft structural life pre-
diction using a digital twin. Int. J. Aerospace Eng. 2011,
154798 (2011)

3. F. Tao, Q. Qi, Make more digital twins. Nature 573,
274–277 (2019)

4. K. Bruynseels, F.S. de Sio, J. van den Hoven, Digital
twins in health care: Ethical implications of an emerging
engineering paradigm. Front. Gene. 9, 31 (2018)

5. S.M. Schwartz, K. Wildenhaus, A. Bucher, B. Byrd,
Digital twins and the emerging science of self: Impli-
cations for digital health experience design and “small”
data. Front. Comp. Sci. 2, 31 (2020)

6. R. Laubenbacher, J.P. Sluka, J.A. Glazier, Using digital
twins in viral infection. Science 371, 1105–1106 (2021)

7. P. Voosen, Europe builds ‘digital twin’ of earth to hone
climate forecasts. Science 370, 16–17 (2020)

8. P. Bauer, B. Stevens, W. Hazeleger, A digital twin of
earth for the green transition. Nat. Clim. Change 11,
80–83 (2021)

9. J.P. Crutchfield, B. McNamara, Equations of motion
from a data series. Complex Sys. 1, 417–452 (1987)

10. E.M. Bollt, Controlling chaos and the inverse frobenius-
perron problem: global stabilization of arbitrary invari-
ant measures. Int. J. Bif. Chaos 10, 1033–1050 (2000)

11. C. Yao, E.M. Bollt, Modeling and nonlinear parameter
estimation with Kronecker product representation for
coupled oscillators and spatiotemporal systems. Physica
D 227, 78–99 (2007)

12. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, C. Gre-
bogi, Predicting catastrophes in nonlinear dynamical
systems by compressive sensing. Phys. Rev. Lett. 106,
154101 (2011)

13. W.-X. Wang, Y.-C. Lai, C. Grebogi, J.-P. Ye, Net-
work reconstruction based on evolutionary-game data
via compressive sensing. Phys. Rev. X 1, 021021 (2011)

14. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, M. A. F.
Harrison, Time-series-based prediction of complex oscil-
lator networks via compressive sensing. EPL (Europhys.
Lett.)94, 48006 (2011)

15. R.-Q. Su, X. Ni, W.-X. Wang, Y.-C. Lai, Forecasting
synchronizability of complex networks from data. Phys.
Rev. E 85, 056220 (2012)

16. R.-Q. Su, W.-X. Wang, Y.-C. Lai, Detecting hidden
nodes in complex networks from time series. Phys. Rev.
E 85, 065201 (2012)

17. R.-Q. Su, Y.-C. Lai, X. Wang, Identifying chaotic
fitzhugh-nagumo neurons using compressive sensing.
Entropy 16, 3889–3902 (2014)

18. R.-Q. Su, Y.-C. Lai, X. Wang, Y.-H. Do, Uncovering
hidden nodes in complex networks in the presence of
noise. Sci. Rep. 4, 3944 (2014)

19. Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C. Lai, Recon-
structing propagation networks with natural diversity
and identifying hidden sources. Nat. Commun. 5, 4323
(2014)

20. R.-Q. Su, W.-W. Wang, X. Wang, Y.-C. Lai, Data based
reconstruction of complex geospatial networks, nodal
positioning, and detection of hidden node. R. Soc. Open
Sci. 3, 150577 (2016)

21. E. Candès, J. Romberg, T. Tao, Robust uncertainty
principles: exact signal reconstruction from highly
incomplete frequency information. IEEE Trans. Info.
Theory 52, 489–509 (2006)

22. E. Candès, J. Romberg, T. Tao, Stable signal recovery
from incomplete and inaccurate measurements. Comm.
Pure Appl. Math. 59, 1207–1223 (2006)

23. E. Candes̀, Proceedings of the International Congress of
Mathematicians (Madrid, Spain), vol. 3, pp. 1433–1452
(2006)

24. D. Donoho, Compressed sensing. IEEE Trans. Info. The-
ory 52, 1289–1306 (2006)

25. R.G. Baraniuk, Compressed sensing. IEEE Signal Pro-
cess. Mag. 24, 118–121 (2007)

26. E. Candes̀, M. Wakin, An introduction to compressive
sampling. IEEE Signal Process. Mag.25, 21-30 (2008)

27. L.-W. Kong, Y. Weng, B. Glaz, M. Haile, Y.-C. Lai,
Reservoir computing as digital twins for nonlinear
dynamical systems. Chaos 33, 033111 (2023)

28. H. Jaeger, The “echo state” approach to analysing
and training recurrent neural networks-with an erratum
note. German National Research Center for Information
Technology GMD Technical Report 148, 13 (2001)

29. W. Mass, T. Nachtschlaeger, H. Markram, Real-time
computing without stable states: A new framework
for neural computation based on perturbations. Neur.
Comp. 14, 2531–2560 (2002)

123



Eur. Phys. J. Spec. Top.

30. H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless commu-
nication. Science 304, 78–80 (2004)

31. N.D. Haynes, M.C. Soriano, D.P. Rosin, I. Fischer, D.J.
Gauthier, Reservoir computing with a single time-delay
autonomous Boolean node. Phys. Rev. E 91, 020801
(2015)

32. L. Larger et al., High-speed photonic reservoir comput-
ing using a time-delay-based architecture: Million words
per second classification. Phys. Rev. X 7, 011015 (2017)

33. J. Pathak, Z. Lu, B. Hunt, M. Girvan, E. Ott, Using
machine learning to replicate chaotic attractors and
calculate Lyapunov exponents from data. Chaos 27,
121102 (2017)

34. Z. Lu et al., Reservoir observers: Model-free inference
of unmeasured variables in chaotic systems. Chaos 27,
041102 (2017)

35. J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Model-
free prediction of large spatiotemporally chaotic systems
from data: A reservoir computing approach. Phys. Rev.
Lett. 120, 024102 (2018)

36. T.L. Carroll, Using reservoir computers to distinguish
chaotic signals. Phys. Rev. E 98, 052209 (2018)

37. K. Nakai, Y. Saiki, Machine-learning inference of fluid
variables from data using reservoir computing. Phys.
Rev. E 98, 023111 (2018)

38. Z.S. Roland, U. Parlitz, Observing spatio-temporal
dynamics of excitable media using reservoir computing.
Chaos 28, 043118 (2018)

39. A. Griffith, A. Pomerance, D.J. Gauthier, Forecasting
chaotic systems with very low connectivity reservoir
computers. Chaos 29, 123108 (2019)

40. J. Jiang, Y.-C. Lai, Model-free prediction of spatiotem-
poral dynamical systems with recurrent neural net-
works: Role of network spectral radius. Phys. Rev.
Research 1, 033056 (2019)

41. G. Tanaka et al., Recent advances in physical reservoir
computing: A review. Neu. Net. 115, 100–123 (2019)

42. H. Fan, J. Jiang, C. Zhang, X. Wang, Y.-C. Lai, Long-
term prediction of chaotic systems with machine learn-
ing. Phys. Rev. Research 2, 012080 (2020)

43. C. Zhang, J. Jiang, S.-X. Qu, Y.-C. Lai, Predicting
phase and sensing phase coherence in chaotic systems
with machine learning. Chaos 30, 083114 (2020)

44. C. Klos, Y.F.K. Kossio, S. Goedeke, A. Gilra, R.-M.
Memmesheimer, Dynamical learning of dynamics. Phys.
Rev. Lett. 125, 088103 (2020)

45. L.-W. Kong, H.-W. Fan, C. Grebogi, Y.-C. Lai, Machine
learning prediction of critical transition and system col-
lapse. Phys. Rev. Research 3, 013090 (2021)

46. D. Patel, D. Canaday, M. Girvan, A. Pomerance, E. Ott,
Using machine learning to predict statistical properties
of non-stationary dynamical processes: System climate,
regime transitions, and the effect of stochasticity. Chaos
31, 033149 (2021)

47. J.Z. Kim, Z. Lu, E. Nozari, G.J. Pappas, D.S. Bas-
sett, Teaching recurrent neural networks to infer global
temporal structure from local examples. Nat. Machine
Intell. 3, 316–323 (2021)

48. H. Fan, L.-W. Kong, Y.-C. Lai, X. Wang, Anticipat-
ing synchronization with machine learning. Phys. Rev.
Resesearch 3, 023237 (2021)

49. L.-W. Kong, H. Fan, C. Grebogi, Y.-C. Lai, Emergence
of transient chaos and intermittency in machine learn-
ing. J. Phys. Complexity 2, 035014 (2021)

50. E. Bollt, On explaining the surprising success of
reservoir computing forecaster of chaos? the universal
machine learning dynamical system with contrast to var
and dmd. Chaos 31, 013108 (2021)

51. D.J. Gauthier, E. Bollt, A. Griffith, W.A. Barbosa, Next
generation reservoir computing. Nat. Commun. 12, 1–8
(2021)

52. T.L. Carroll, Optimizing memory in reservoir comput-
ers. Chaos 32, 023123 (2022)

53. W.-X. Wang, Y.-C. Lai, C. Grebogi, Data based identifi-
cation and prediction of nonlinear and complex dynam-
ical systems. Phys. Rep. 644, 1–76 (2016)

54. Y.-C. Lai, Finding nonlinear system equations and com-
plex network structures from data: A sparse optimiza-
tion approach. Chaos 31, 082101 (2021)

55. K. Ikeda, Multiple-valued stationary state and its insta-
bility of the transmitted light by a ring cavity system.
Opt. Commun. 30, 257–261 (1979)

56. K. Ikeda, H. Daido, O. Akimoto, Optical turbulence:
Chaotic behavior of transmitted light from a ring cavity.
Phys. Rev. Lett. 45, 709–712 (1980)

57. S.M. Hammel, C.K.R.T. Jones, J.V. Moloney, Global
dynamical behavior of the optical field in a ring cavity.
J. Opt. Soc. Ame. B 2, 552–564 (1985)

58. K. McCann, P. Yodzis, Nonlinear dynamics and pop-
ulation disappearances. Ame. Naturalist 144, 873–879
(1994)

59. G. Saxena, A. Prasad, R. Ramaswamy, Amplitude
death: The emergence of stationarity in coupled non-
linear systems. Phys. Rep. 521, 205–228 (2012)

60. A. Koseska, E. Volkov, J. Kurths, Oscillation quench-
ing mechanisms: Amplitude vs. oscillation death. Phys.
Rep.531, 173–199 (2013)

61. R. Xiao, L.-W. Kong, Z.-K. Sun, Y.-C. Lai, Predicting
amplitude death with machine learning. Phys. Rev. E
104, 014205 (2021)

62. L.M. Pecora, T.L. Carroll, Synchronization in chaotic
systems. Phys. Rev. Lett. 64, 821–824 (1990)

63. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase syn-
chronization of chaotic oscillators. Phys. Rev. Lett. 76,
1804–1807 (1996)

64. L. Kocarev, U. Parlitz, Generalized synchronization,
predictability, and equivalence of unidirectionally cou-
pled dynamical systems. Phys. Rev. Lett. 76, 1816–1819
(1996)

123



Eur. Phys. J. Spec. Top.

65. E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principle
of Neural Science (Appleton and Lange, Norwalk CT),
third edn (1991)

66. Y.-C. Lai, M.G. Frei, I. Osorio, Detecting and character-
izing phase synchronization in nonstationary dynamical
systems. Phys. Rev. E 73, 026214 (2006)

67. Y.-C. Lai, M.G. Frei, I. Osorio, L. Huang, Characteri-
zation of synchrony with applications to epileptic brain
signals. Phys. Rev. Lett. 98, 108102 (2007)

68. I. Osorio, Y.-C. Lai, A phase-synchronization and
random-matrix based approach to multichannel time-
series analysis with application to epilepsy. Chaos 21,
033108 (2011)

69. E. Ott, Chaos in Dynamical Systems (Cambridge Uni-
versity Press, Cambridge), 2nd edn (2002)

70. Y.-C. Lai, T. Tél, Transient Chaos - Complex Dynamics
on Finite Time Scales (Springer, New York, 2011)

Springer Nature or its licensor (e.g. a society or other part-
ner) holds exclusive rights to this article under a publish-
ing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing
agreement and applicable law.

123


	Digital twins of nonlinear dynamical systems: a perspective
	1 Introduction
	2 Digital twins of nonlinear dynamical systems: adaptable machine learning
	3 Examples of digital twins of nonlinear dynamical systems
	3.1 Systems for which sparse optimization methods fail
	3.2 Predicting amplitude death
	3.3 Predicting onset of synchronization

	4 Discussion and outlook
	References
	References


