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Abstract. When a piece of information spreads on a complex network, error or distortion can occur. For
a high error probability, the phenomenon of information explosion can occur where the number of distinct
pieces of information on the network increases continuously with time. We construct a physical model to
address this phenomenon. The transition to information explosion as the error probability increases through
a critical value is uncovered and elucidated, and a control strategy is articulated to maximize the robustness
of the network against information explosion, which is validated by both numerical computations and a
mean-field based analysis.

1 Introduction

Spreading and transportation processes are fundamental
and ubiquitous in a variety of complex systems: the In-
ternet, biological networks, and social networks. Most ex-
isting works have addressed how the underlying network
structure affects the spreading and transportation dynam-
ics, with efforts ranging from routing data traffic on the In-
ternet [1–9] to the spreading of epidemic [10–15], opinions
and rumors [16–20] on either social networks or communi-
cation networks. Often, one focus of analysis and computa-
tion is on the asymptotic extent of the spreading process,
as characterized by the percentage of infected nodes after
the termination of the process. In this regard, various pro-
cesses such as those described by the two-state spreading
model (SIS) [11,12,14], the voter model [16–18], and the
rumor-spreading model [19,20] have been studied. In most
previous works, the entity of spreading, such as a partic-
ular type of virus or a piece of information, is assumed
to be invariant during the process. In realistic situations,
distortion of the entity during the spreading process can
be expected, such as mutations of viruses, errors in trans-
ported data packets and distorted opinion or rumors [21].
The problem of information distortion is particularly rel-
evant when human behaviors are involved in the spread-
ing and transportation process [22]. The distortions can
lead to a significant increase, or even a divergence in the
number of messages on the network over the time. The
purpose of this paper is to address the problem of infor-
mation explosion on complex networks. Information ex-
plosion has occurred in the modern time. There has been
an unprecedented growth in the number and variety of
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data collections as technology and network connectivity
become increasingly affordable [23,24]. Distortion in com-
munication is inevitable and may contribute partially to
the growth of data information. How to hold and release
information becomes an issue of increasing importance,
with implications ranging from personal privacy to na-
tional security [24,25].

The starting points of our consideration are the fol-
lowing: (i) a node (or an agent) accepts or discards a mes-
sage based on the existent information content in its mem-
ory, and (ii) information distortion can occur during the
spreading process, which can be quantified by the proba-
bility p that a message is distorted after passing through
an agent. In principle, the values of p can be different for
different agents, but for simplicity we shall assume that
the spread in the probabilities is small and can be ne-
glected. To gain insight, we examine the case where one
message is set out to spread on the network initially. In the
error-free case of p = 0, the number of messages is simply
one. For p � 0, we expect the number of messages to be
greater than one. However, since p is small, a steady state
may arise where the average number of messages on the
network tends to a constant. For large values of p, due to
the frequent mutations, the number of distinct messages
can increase with time. This introduces a positive feed-
back mechanism that generates an increasing amount of
difficulty for agents to distinguish between the true and
modified messages. As a result, different versions of the
true message can accumulate in the memories of agents,
generating even more distorted messages. As a result, the
number of messages can keep increasing with time, lead-
ing to information explosion. In general, we expect that
as p is increased from zero and passes through a criti-
cal point pc, a transition can occur from steady state to
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information explosion. A main finding of this paper is that
this scenario can indeed occur on complex networks.

Another result of this paper concerns a network’s ro-
bustness to information explosion, which can be measured
by the value of pc, where a higher value indicates that
the network is more robust. An issue then concerns about
some control strategy to increase the network robustness.
We shall demonstrate in this paper that a process that
controls an agent’s selection of a neighbor to spread the
message to can be used to maximize the value of pc. We
shall derive a theoretical analysis of the controlled strat-
egy of selection and provide numerical support.

Qualitatively, spreading dynamics leading to informa-
tion explosion can be understood, as follows. Each agent
is endowed an internal memory to store what they have
received from their neighbors. The incorporation of the
memory is motivated by previous works on task queue-
ing model and naming game [22], in which memories for
agents are a key characteristic. When an agent receives a
message that is different from any of the messages in its
memory, the new message will be stored in the memory.
Messages that are different from the original ones are a
result of distortion during the spreading process. In each
communication, the message received by an agent differs
from that in the memory of the agent that sends the mes-
sage with probability p. Physically, the distortion may be
due to noise, errors in communication, mutation, or cheat-
ing and rumoring. Every message in an agent’s memory
is weighted by the frequency that the message is received.
More frequently communicated messages are more likely
to stay in the memories of various agents for a longer time,
and less frequently received messages are more likely to be
disregarded. For a small value of p, mutated messages are
few in number and their frequencies are low, so they are
more likely to be removed. In this case, the number of mes-
sages in the network can reach a steady state. However, for
large p values, the balance between message mutation and
removal may be broken, leading to information explosion.

2 Model

Our model for information explosion in the absence of con-
trol can then be described, as follows. All agents possess
unlimited memory lengths and start with empty memo-
ries, and an agent is randomly chosen to initiate an orig-
inal message with weight one. At each time step, every
agent i whose memory is not empty selects, completely
randomly, a neighboring agent j, after which agent i picks
the message, denoted by a, with the largest weight in its
memory and sends it to j. With probability p, j receives a
different message, say a′, which is included in its memory
with weight wa′ = 1. With probability 1 − p, j receives
the same message a. If a already exists in j’s memory be-
fore the communication, a’s weight wa becomes wa + 1
(weight strengthening). At the same time, the message
with the lowest weight is removed from j’s memory. If a
is a new message to j, a will be added to j’s memory
with weight 1 and no deletion occurs. Note that mutated
messages are always new to all agents and if there are

Fig. 1. (Color online) For a scale-free network of 500 nodes and
average degree 〈k〉 = 6, time evolutions of the total numbers of
different messages for different values of the distortion proba-
bility p, where an agent selects randomly one of its neighbors
to transmit the message.

more than one message with the same largest or the low-
est weight, one of them is picked randomly. The weight-
strengthening mechanism describes the fact that one may
trust more a message if it is received more times than other
messages. Since different messages tend to contradict each
other in an agent’s memory, if an agent trusts a message
more, others will carry less weights. Because of this, weight
strengthening and message deletion occur simultaneously.
In a social network, people usually tell others what they
believe. In our model, this fact is incorporated by allow-
ing agents to transmit messages with the largest weight
to their neighbors.

To provide a numerical example for the scenario to in-
formation explosion, we implement our model on a stan-
dard scale-free network [26]. Suppose a seed message is
initiated at time t = 0. We monitor the evolution of the
total number of distinct messages, nv, for different val-
ues of p, as shown in Figure 1. We see that, after a short
transient phase, nv exhibits two characteristically differ-
ent types of behavior, depending on the value of p. For
small values of p, the numbers of distorted and removed
messages are balanced, resulting in a steady state in which
nv is characterized by small random fluctuations about a
constant mean value. When p exceeds the critical value
pc ≈ 0.087, on average nv keeps increasing with time, sig-
nifying information explosion, as the cases for p = 0.10
and p = 0.11 in Figure 1.

A key issue in spreading dynamics is the selection of
a neighbor for an agent to transmit a message to. This
process is usually not completely random. For example,
an agent may choose a particularly “important” neighbor,
i.e., a neighboring node with relatively large degree, to
pass the message onto. Motivated by this consideration,
we propose the following controlled selection strategy. At
each time step, every agent i whose memory is not empty
selects a neighboring agent j according to the probability

Φ = kβ
j

/ ∑

l∈Γi

kβ
l , (1)



X. Ma et al.: Information explosion on complex networks and control 181

Fig. 2. (Color online) Order parameter η as a function of
the distortion probability p for different values of the control
parameter β. The network ensemble is the same as in Figure 1.

where Γi is the set of neighboring nodes of i, k is the
node degree, and β is a tunable parameter. For β > 0
(β < 0), neighbors with larger (smaller) degrees are more
likely to be chosen. Assuming that information explosion
is undesirable and is to be prevented, we ask whether the
network robustness to the explosion can be enhanced by
adjusting β. That is, can the value of the critical point pc

be made larger by choosing value of β in a proper range?
To quantify the transition from steady state to infor-

mation explosion so that the value of pc can be obtained
accurately , we introduce the following order parameter:

η = lim
t→∞

nv(t + Δt) − nv(t)
NΔt

, (2)

where N is the maximum possible number of distorted
messages generated per unit time so that the value of η
is confined in [0, 1]. In a steady state, nv(t + Δt) − nv(t)
does not increase as Δt increases so that η is zero for large
enough t and Δt. When an information explosion occurs,
nv(t+Δt)−nv(t) increases with Δt so that η will be larger
than zero. Thus, the transition can be characterized by a
sudden increase in η from zero to a positive value. Simu-
lation results of η as a function of p for different values of
β are shown in Figure 2. It can be seen that, for any given
value of β, when p exceeds a critical value pc, η increases
rather abruptly from approximately zero to some positive
value, as anticipated. Figure 3 shows pc versus β. We see
that, as β is decreased from some positive value, the value
of pc increases. This trend continues until β reaches the
value β̄ ≈ −1. For β < β̄, pc remains approximately at a
constant value. The network is thus most robust to resist
information explosion for β < β̄. This means that, when
small-degree nodes are frequently chosen to receive mes-
sages, the likelihood for information explosion can be re-
duced significantly as compared with the case where high-
degree nodes are selected. The value β̄ ≈ −1 can thus be
regarded as the onset of network robustness against infor-
mation explosion. In what follows we present a mean-field
approach to analytically predicting this onset value.

Fig. 3. (Color online) Critical distortion probability pc as a
function of the control parameter β. The network ensemble
is the same as in Figure 1. The data points are obtained by
numerical simulations and the dash line is the analytical esti-
mation.

For an arbitrary agent i, the content of information
stored in its memory changes with time during the spread-
ing process, which can be characterized by Li, the length
of the occupied portion of its memory. In a steady state,
we have dLi/dt = 0 for i = 1, . . . , N . To gain insights
into the dynamical behaviors of the spreading process in
terms of the value of pc for positive and negative val-
ues of β, we consider two extreme cases: β is positively
large and negatively large, respectively. For β > 0, nodes
with large degrees are more likely to be chosen to re-
ceive an message. If β is positive and sufficiently large,
the agent with the largest degree in Γi will be chosen
by node i (if there is more than one neighbor of i with
the same largest degree, they have the same probability
to be chosen). The largest degree agent in the network
will then be chosen by all its neighbors. For simplicity,
we assume that there is only one largest degree agent in
the network. Let Ri be the number of messages received
by node i from its neighbors at each time step. For the
largest-degree agent, we then have Rkmax ≈ kmax. For
t > 0, all new messages are due to distortions and an
old message is removed for this agent at each time step.
We thus have dLkmax/dt ≈ kmaxp− (1−kmaxp), where the
first term describes the increase in Lkmax and the second
term represents the decrease of a message with probabil-
ity 1−kmaxp averagely. For a standard scale-free network,
we have kmax ≈ kmin

√
N . The condition dLi/dt = 0 thus

leads to

pc(β → ∞) ∼ 1
2kmax

≈ 1
2kmin

√
N

. (3)

This means that for sufficiently large values of β, pc tends
to a small constant, regardless of the values of β.

Similarly, for the smallest-degree agent, we have

pc(β → −∞) ∼ 1
2kmin

. (4)

Indication that pc(β < 0) > pc(β > 0) can be seen
by comparing equation (4) to (3), where we see that
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pc(β → −∞) is much larger than pc(β → ∞). This com-
parison is only valid in a qualitative sense because a scale-
free network typically has many nodes that share the same
smallest degree.

To derive the value of β̄ for the onset of the plateau
in pc for β < 0, we note that, for an arbitrary node i,
two factors contribute to changes in Li: receipt of new
messages and removal of the existing message with the
lowest weight. We have

dLi

dt
= Rip + (1 − p)cRi − (1 − p)(1 − c)1, (5)

where c denotes the probability that the received message
is new to i but no distortion occurs in the transmission.
Averagely, c can be estimated by

c ≈ nv

nt
, (6)

where nv is the number of different messages in the net-
work and nt is the total number of messages. This esti-
mation can be validated by considering the fact that if
all the messages are the same, i.e. nv = 1, c tends to be
zero because nt ≥ N ; while if all messages are different,
i.e. nv = nt, all the messages transmitted from neighbors
are new as confirmed by c = 1. In the absence of informa-
tion explosion, both nv and nt are independent of time,
as exemplified in Figure 1. We can then write

dLi

dt
=

∑

j

Ai,jk
β
i∑

l Aj,lk
β
l

p +
∑

j

Ai,jk
β
i∑

l Aj,lk
β
l

× (1 − p)c − (1 − p)(1 − c)1

=
∑

j

Ai,jk
β
i∑

l Aj,lk
β
l

(p + (1 − p)c) − (1 − p)(1 − c)1

(7)

for j, l = 1, . . . , N . The first term on the right represents
the increase in Li resulting from the distortion during the
transmission from node i’s neighbors to i, the second term
is the increase in Li induced by the non-distorted mes-
sages that are new to node i, and the last term denotes
the decrease caused by removal of messages. To reach a
steady state, the condition dLi/dt = 0 should be satisfied,
which leads to the critical value pc for any value of β. We
use the mean-field approximation to simplify equation (7).
For a network with negligible degree-degree correlation
among nodes, a common property observed in real-world
networks, we have

∑

l

Ajlk
β
l ≈ kj

kmax∑

k=kmin

p(k
′ |kj)(k

′
)β

≈ kj

〈k〉
kmax∑

k=kmin

(k
′
)β+1p(k

′
) ≈ kj〈kβ+1〉

〈k〉 . (8)

Substituting equation (8) into equation (7), after some
algebra we have

dLi

dt
= W

[
p + (1 − p)

nv

nt

]
− (1 − p)

(
1 − nv

nt

)
,

where W = kβ+1
i /〈kβ+1〉. Setting dLi/dt = 0 yields

pc(i) =
1 − nv

nt
− W nv

nt

(W + 1)(1 − nv

nt
)
. (9)

The critical value of pc should be the lowest values of pc(i)
among all agents. To attain the highest value of pc, pc(i)
for all agents should assume values to keep the system as
far away as possible from the state of information explo-
sion. A heuristic choice β = −1, for which pc(i) is indepen-
dent of degree of i. This analytical estimate is consistent
with the numerical result, as shown in Figure 3.

The message removal strategy plays a key role in
achieving possible information consensus in the presence
of information distortion as, in the absence of message re-
moval, convergence can never occur for any values of p.
In general, there can be alternative ways to construct the
message-removal scheme in the convergence process. For
example, one can exploit “weakest message weakening”
instead of the “weakest message removal” in the current
model. In particular, in the weakest-message weakening
scheme, it can be assumed that at each time, a randomly
selected individual tends to decrease the weight of the mes-
sage with the lowest weight in its memory. This alternative
rule can avoid the situation where a message with rela-
tively low weight in the memory is deleted right after it is
strengthened. While this scenario is likely, the natural con-
vergent process in the presence of information distortion
is well captured by the current model with respect to de-
cision making. The weakest-message weakening can result
in similar consensus behavior and information explosion,
which depend on the information distortion probability in
the same way as in the current model. The advantage of
the current scheme lies in the fast achievement of informa-
tion consensus attributed to the removal of a large num-
ber of weakest message at each time. This can effectively
reduce redundant information stored in the memories of
individuals, which could otherwise generate interference
to reduce the reliability of information.

It is noteworthy that the phenomenon of information
explosion reported in this paper is quite different from the
congestion phenomenon in data traffic on complex net-
works, e.g., in references [1–9], although both correspond
to a continuous phase transition. In particular, our model
for information explosion differs from the existing network
traffic models in several aspects. Firstly, in traffic models,
there is a pair of origin destination nodes for each data
packet transmitted according to some routing protocol.
After a packet arrives at its destination, it is removed from
the network. This scenario is characteristic of, e.g., infor-
mation transmission on the Internet. In our model, how-
ever, it is not necessary to distinguish between origin and
destination for messages and routing strategies to guar-
antee successful transmission. Secondly, along a packet-
delivering path, all nodes are passive in the sense that they
act as routers that function to forward packets. In this
case, the content of the packet cannot be modified. In our
model, however, nodes are active because they represent
agents that serve to evaluate the messages received from
their neighbors and determine whether a message should
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be preserved or discarded. Thus, all messages are weighted
and the weights of repeated messages are strengthened
and messages with low weights are discarded with nonzero
probability. Distortion, weight strengthening and aban-
donment can occur at any time on any node. Thirdly, in
existing network traffic models, data packets are usually
different, regardless of whether the system is in a free-
flow or congested state. In contrast, in our model, in the
absence of information explosion, most messages are iden-
tical in the network. In fact, distorted messages are mi-
nority and their weights are relatively small. Under these
conditions, all agents can reach consensus about informa-
tion or opinions in the system. This is a unique feature
in the dynamics of opinion propagation and spreading on
complex networks, which is not captured by any existing
network-traffic models.

3 Conclusion

In conclusion, we have constructed a physical model to ad-
dress the phenomenon of information explosion on com-
plex networks due to inevitable distortion and errors in
the messages occurring during the spreading process. The
essence of our approach is to incorporate a memory-based
decision making mechanism. Our computations and anal-
ysis reveal a transition from steady state to information
explosion as the error probability passes through a criti-
cal value. We have also proposed a control strategy to di-
rect messages to small-degree nodes so as to maximize the
network robustness against information explosion, and we
have obtained quantitative prediction based on the mean-
field approximation for the optimal range of the control
parameter, characterized by higher probabilities for se-
lecting smaller-degree nodes to transmit messages. This
is consistent with the intuition that hub nodes are gener-
ally capable of spreading errors on a large scale so that
they should be avoided as much as possible. Information
explosion can be particularly relevant to social networks
where the chances for information distortion can be sig-
nificant due to human behaviors.
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