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Counting unstable periodic orbits in noisy chaotic systems:
A scaling relation connecting experiment with theory
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The experimental detection of unstable periodic orbits in dynamical systems, especially those which
yield short, noisy or nonstationary data sets, is a current topic of interest in many research areas.
Unfortunately, for such data sets, only a few of the lowest order periods can be detected with
quantifiable statistical accuracy. The primary observable is the number of encounters the general
trajectory has with a particular orbit. Here we show that, in the limit of large period, this quantity
scales exponentially with the period, and that this scaling is robust to dynamical noise. ©1998
American Institute of Physics.@S1054-1500~98!00904-5#
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The recent development of new methods for detecting
and counting unstable periodic orbits „UPOs… in short,
noisy time series have opened the door to studies of chao
in systems of unknown dynamics that were previously
inaccessible. Unfortunately, when applied to data sets o
typical experimental lengths, these methods are unable to
detect orbits with periods greater than about four. But
can it be maintained that chaos has been demonstrated in
such experimental systems, given that the structure of the
strange attractor is built upon an infinite set of UPOs?
Can these three or four orbits be convincingly connected
to the infinite set? Here we investigate the possibility of a
scaling relation to make this connection. We derive ap-
proximate expressions for the scaling exponents in two
ways, beginning with a well known scaling relation. Our
numerical results test the accuracy of the scaling for
noise contaminated dynamics of both discrete and con
tinuous systems. We find exponential scaling which is ro-
bust to dynamical noise, and an example from experi-
mental sensory biology is given.

I. INTRODUCTION

The detection of chaotic attractors from time series g
erated by experimental systems of unknown dynamics
problem of continuing interest in a variety of fields. Tec
niques based on ensemble averages of the metric prope
of attractors,1,2 for example, measurements of one or more
the Lyapunov exponents3–5 or fractal dimensions,6–11 have
been enormously successful. However, their requirements
long, relatively noise free data sets have limited their ap
cations. Various predictor and other methods12,13 have suf-
fered similar limitations, though recent progress with nonl
ear predictors14,15 has been reported.

Recently, however, new methods based on the detec
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8531054-1500/98/8(4)/853/8/$15.00

Downloaded 20 Jun 2002 to 129.219.51.205. Redistribution subject to AI
-
a

ties
f

or
i-

-

on

of unstable periodic orbits~UPOs! of low period have been
developed. Two of these, which exploit the topological pro
erties of attractors, have been particularly successful, tho
in very different applications. The first, called the method
close returns~CR!,16,17 is suitable for finding UPOs with pe
riods up to at leastp530 in long data sets~typically 107 or
108) from relatively noise free, stationary numerical
physical data.17–19 The second, called the topological recu
rence ~TR! method,20 is statistically based and useful fo
short ~a few3102 to 103), noisy data sets, such as tho
typical of nonstationary biological systems.21–23 In contrast
to some metric and other methods, the TR method is abl
distinguish between UPOs and stable periodic orbits~SPOs!.
This advantage arises because it specifically searches fo
topological signature of instability, that is, intersections
unstable and stable manifolds, in the returns. This prop
has been crucial in recent experiments in sensory biolo
wherein control parameter induced bifurcations betwe
UPOs and SPOs have been discovered in diverse sen
neurons.21,23 A third method, based on a dynamical transfo
mation ~DT!24 of the near neighborhoods of periodic orbi
in phase space, has also been successfully used to d
UPOs in data sets from noise contaminated systems.24,25The
TR and DT methods have recently been reviewed a
compared.26

Two facts, relevant to these recent methods, motiv
this work: ~1! the primary experimental observable is th
number of times a UPO of periodp is encountered in a time
series; and~2! ~obviously! the largest detectable period
finite. In the case of the TR and DT methods, this period
not larger than four.26 But the structure of chaotic attractor
is a countable infinity of UPOs.27–33 While the detection of
as many as 30 orbits may be convincing, as with the CR
other methods which find the shadows of reference orb
the measurement of only three or four, as with DT and T
can hardly be put forth as evidence of the infinite set. Unf
tunately, the CR method is not useful for short, noisy,
example, biological, systems. In contrast, the DT and
© 1998 American Institute of Physics
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854 Chaos, Vol. 8, No. 4, 1998 Pei et al.
methods have successfully detected UPOs in data
wherein they were invisible to other methods. However,
cause they exploit much more specific or restrictive~than
simply close returns! signatures of encounters with UPO
they sacrifice the ability to find orbits of larger period.

Observations of a typical biological system with T
seem to indicate that the probability to observe UPOs
creases exponentially with increasing period,p. See, for ex-
ample, Fig. 1. This suggests that a scaling relation mi
exist by means of which the few experimentally detecta
orbits can be connected to the infinite set. The analogy w
universal scalings near thermodynamic phase transition
evident and has been previously advanced,32–37 and orbital
return times in two, nonhyperbolic, chaotic systems ha
been studied.38,39 The purpose of this work is to derive from
this a simple and physically motivated, though approxima
theory of the probabilityF(p), that an orbit of periodp is
encountered in a time series of finite length. One way to
this is to begin with the well known probability of finding
shadow, that is, a trajectory of lengthn, within a distancee
of a reference orbit, which is approximatelŷP(n,e)&
'ea(x) exp(2nK1), whereK1 is the metric entropy, anda~x!
is a dimension which depends on the trajectoryx, that is on
an initial condition. We lump all orbits of the same perio
together by estimating the cumulative encounter probabi
This is exactly what the TR and DT methods detect. We fi
that, in the limit of largep, the encounter probability,F(p),
indeed scales exponentially with an exponent,Q, which is

FIG. 1. The probability to observe unstable periodic orbits of periodp in the
sensory mechanoreceptive system of the crayfish,Procambarus clarkii.
Neural recordings were made from the caudal photoreceptor cell, a p
maker ~oscillator! embedded within and synaptically connected to the
ganglion, a small network of interneurons that processes noisy hydr
namic signals from the hair receptors arrayed on the animal’s tailfan.
hair receptors were periodically stimulated by a sinusoidal water mo
applied to the tailfan. These data represent 44 files~different symbols!,
chosen from more than 1000 on the basis of large responses atp52. The
data were obtained for a variety of different experimental conditions fr
19 different animals, and thus represent the general behavior to be exp
for such systems. The vertical axis is the natural logarithm of the proba
ity, obtained by counting the number of encounters with UPOs in a data
and subtracting the number found in a suitable surrogate. See Refs. 2
for details. The solid line represents an exponential scaling of the probab
with period p with slope20.51. The arrow marks the region of behavi
indistinguishable from the surrogates.
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related to the metric and topological entropies and to
largest Lyapunov exponent of the attractor:

F~p!;econst exp@2Qp#. ~1!

We test the exponential behavior, whereQ is a constant
related toK0 , K1 , andl, for periods up top530 with nu-
merical experiments using a somewhat modified version
the CR method on long, noise free data sets of the logi
and Hénon maps, and on the Lorenz dynamical system.
addition, our numerical experiments confirm the prefac
econst.40 Moreover, because the He´non map is one of the few
model systems for which, in principle, an arbitrarily larg
number of orbits can be analytically computed by a nume
cal algorithm,41,42 we can thus provide a test independent
the CR or TR algorithms.

A primary objective is to test the robustness of the sc
ing relation on systems contaminated with noise. The m
vation for this is provided by sensory biology, where da
sets of limited length from noisy dynamics are ubiquitou
We mention that our theory applies strictly only to hype
bolic systems, whereas nonhyperbolic motion is generic
real physical systems.38,39 However, as we show here, th
scaling appears to be valid even for nonhyperbolic syste
of which the Hénon and Lorenz systems are examples.
nally, we mention that because there is an infinity of sta
periodic orbits~SPOs! embedded in the attractors of nonh
perbolic systems, search algorithms which can distingu
between UPOs and SPOs, such as the TR algorithm, hav
inherent advantage for analyses of real physical system
preliminary account of this work is to be given elsewhere43

This paper is organized in the following way. In Sec.
we outline the approximate theory, which we develop fro
two different approaches. In Sec. III we discuss our mod
cations of the CR algorithm. We use it to test the scal
relation for the logistic and He´non maps, including tests o
its robustness in the presence of additive noise. In addit
we apply the analysis to the Lorenz system. Finally, in S
IV, we summarize our results and comment on their appli
bility to searches for UPOs in biological systems.

II. THEORY

To gain intuition for the validity of the scaling relation
we first consider a simple class of one-dimensional cha
systems defined on the unit interval: the tent map@x(n11)

52xn if xn,1/2, andx(n11)52(12xn) if xn>1/2#, or the
doubling transformation@x(n11)52xnmod(1)#. It is known
that both maps generate a chaotic attractor, and the inva
density generated by a trajectory originated from a rand
initial condition ~a typical trajectory! is uniform in the unit
interval.44 Thus in order for a trajectory to stay in a sma
e-neighborhood of a periodic orbit of periodp, the trajectory
must fall within ee2lp of any one of the components of th
periodic orbit, wherel5 ln 2 is the Lyapunov exponent o
the chaotic attractor. Since the invariant density is unifor
the probability for a typical trajectory to fall in an interval i
equal to the length of this interval. Note that there arep

orbits of period p in the tent map. We haveF(p)

5( i 51
2p

m i(p)ee2lp, where m i(p)522p is the weight, or
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855Chaos, Vol. 8, No. 4, 1998 Pei et al.
natural measure, associated with thei th orbit of periodp in
the tent map. This consideration also applies to chaotic
tems with smooth invariant densities such as the o
dimensional logistic mapx(n11)5axn(12xn) at a54. In
such a case, we have, for the probability,F traj(e,p), for a
trajectory to fall within a small interval of lengthee2lp cen-
tered at a periodic pointxp , the following,

F traj~e,p!5E
xp2e exp~2lp!/2

xp1e exp~2lp!/2
r~x!dx'e exp~2lp!, ~2!

where r(x) is the smooth invariant density of the chao
attractor. Summing all periodic orbits of periodp and using
m i(p);exp(2lp), we haveF(p);N(p)exp(22lp), where
N(p);exp(K0p), and K0 is the topological entropy of the
chaotic attractor.

Chaotic systems with smooth invariant densities are r
Often, the density function contains an infinite number
singularities.44 Thus it is not apparent whether the scali
relation holds in general. Nonetheless, heuristic argum
can be made to lend credence to the validity of an expon
tial scaling of the encounter probability. In the sequel,
present two different approaches to the approximate der
tion of Eq. ~1!, both yielding the same exponential scalin
relation, but with slightly different constants,Q.

A. Derivation based on a property of the metric
entropy

In this approach we make use of the well known, but n
rigorously derived, property that the length of a shadow o
scales exponentially with the metric entropy. We restrict o
consideration to systems with chaotic attractors. To find
encounter probability with a periodic orbit of periodp, we
utilize the concept of the generalized entropiesKq .45 Given
a chaotic system, described either by a smooth autonom
flow or by a discrete map, the generalized entropiesKq can
be defined by considering the probability for a typical traje
tory to fall within a smalle-neighborhood of a target orbit o
length t embedded in the chaotic attractor. This target or
can be either periodic or chaotic. Letx be the starting point
of the target orbit~in the case of a periodic orbit,x can be
any point of the orbit! and letP(e,t;x) denote the probabil-
ity. For chaotic systems, it is assumed35 that P(e,t;x) scales
with e and t as,

P~e,t;x!'ea~x!e2k~x,t !t, ~3!

in the limit e→0 and t→`, where a~x! is the pointwise
dimension of the pointx and k(x,t) is the local entropy of
the target orbit. The information dimensionD1 and the met-
ric entropyK1 of the chaotic attractor can be defined as

^P~e,t;x!&'eD1e2K1t, for e→0 and t→`, ~4!

where ^ & denotes the ensemble average over many typ
trajectories on the chaotic attractor. Now consider the c
where the target orbit is a periodic orbit of periodp. There
areN(p)}(1/p)exp(K0p) such orbits, whereK0 is the topo-
logical entropy. Denote the orbit byxip wherei 51,...,N(p)
~here for simplicity of notation we just usexip , to denote the
orbit which actually hasp components!. The probability for a
Downloaded 20 Jun 2002 to 129.219.51.205. Redistribution subject to AI
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typical trajectory to come close to this orbit is then given
Eq. ~3! wherex is replaced byxip , and the timet is replaced
by the periodp. The encounter probabilityF(p) with a pe-
riodic orbit of periodp is then the cumulative probability o
encounters with allN(p) periodic orbits. We have

F~p!5 (
i 51

N~p!

m i~p!P~e,p;xip!, ~5!

where the weightm i(p) is the natural measure46 associated
with the periodic orbitxip . This natural measure can be e
pressed in terms of the largest expanding eigenvalueL1(xip)
of the periodic orbit47–49 as

m i51/L1~xip![exp@2l i~p!p#, ~6!

wherel i(p).0 is the unstable Lyapunov exponent of th
periodic orbit, and the exponent varies among all t
period-p orbits. Forp large, we expectl i(p) to be close tol,
the Lyapunov exponent of the entire chaotic attractor. W
write l i(p)5l1Dl i(p). This consideration also applies t
the local dimension and entropy. Using Eq.~4! we can write
a(xip)5D11Da(xip) and k(xip ,p)5K11Dk(xip ,p).
Substituting these two expressions, Eqs.~3! and~6!, into Eq.
~5!, we obtain

F~p!}e2lpe2k1peD1 (
i 51

N~p!

e2@Dl i ~p!1Dk~xip ,p!#peDa~xip!.

~7!

SinceN(p) grows exponentially asp increases, we expec
N(p) to be a large number whenp is large. Thus roughly
Dl i(p), Dk(xip ,p) and Da(xip) can be treated as random
variables of zero mean. By the law of large numbers,
summation in~7! can be regarded as a random variable c
tered at one with a Gaussian probability distribution. T
width of the distribution behaves like 1/AN(p)
}exp(2K0p/2)→0 asp→`. Thus~7! becomes

F~p!}e2~l1K12K0!p. ~8!

In typical chaotic systems the quantitiesl, K1 andK0 have
similar numerical values, but sinceK0>K1 , the exponentQ
in Eq. ~1! can be expected to underestimatel.50

B. Derivation based on natural measure of periodic
orbits

Although the above derivation of the scaling relation
quite general, its starting point, Eq.~3!, is only an assump-
tion. Here we wish to point out that for chaotic system
described by two-dimensional hyperbolic mapsM ~x!,51 a
derivation can be made starting from the first principles.47 A
hyperbolic periodic orbit has a distinct set of expanding~un-
stable! and contracting~stable! directions. Consider the en
counter probability with one of the periodic orbits of perio
p. The periodic orbit is thus a fixed point of thep-times
iterated mapM (p)(x). Denote the fixed point byxip , and
there areN(p)}exp(K0p) such fixed points. Following Gre
bogi, Ott and Yorke,47 we cover the chaotic attractor with
grid of partitioning boxes, each being confined by segme
of the stable and unstable manifolds. Typically,xip is con-
tained in a boxCi . Since the boxes are constructed by usi
the stable and unstable foliations of the chaotic attrac
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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856 Chaos, Vol. 8, No. 4, 1998 Pei et al.
they can be made arbitrarily small. Thus each box can
regarded as being rectangular, as shown schematicall
Fig. 2, where the horizontal and vertical sides are segm
of the stable and unstable manifolds, respectively. Assu
there is a segment ofp points on a typical trajectory, denote
by $x(0),x(1),...,x(p)% which stays close toxip . One way
for this to occur is for both the beginning pointx~0! and the
ending pointx(p) of the segment to be contained in th
small boxCi . In order to estimate the probability for such a
encounter, imagine we choose a large number of initial c
ditions on the chaotic attractor according to the natural m
sure. The probability of encounter withxip is then approxi-
mately the fraction of initial conditions starting inCi but still
being inCi in p iterations. Letdx anddy be the lengths of the
horizontal and the vertical sides ofCi , respectively. Since
the dynamics is contracting in the horizontal direction a
expanding in the vertical direction, we see that the rectan
abcdmaps to another rectanglea8b8c8d8 in p iterations. The
sizes of the rectanglesabcd and a8b8c8d8 are dx

•@dy /L1(xip)# and @dx /L2(xip)#•dy , respectively, where
L1(xip).1 andL2(xip),1 are the unstable~expanding! and
stable~contracting! eigenvalues of the fixed pointxip . Initial
conditions chosen fromCi but not in the rectangleabcdmap
out of Ci in p iterations. Since the natural measure is unifo
in the unstable directions for a chaotic attractor, the fract
of initial conditions starting inCi but remaining inCi afterp
iterations is given by uadu/ua8d8u5@dy /L1(xip)#/dy

51/L1(xip)][exp@2li(p)p#, wherel i(p).0 is the unstable
Lyapunov exponent of thei th unstable periodic orbit of pe
riod p. Thus the encounter probability with this periodic orb
is exp@2li(p)p#.

Since there areN(p) periodic orbits of periodp, the
cumulative encounter probability with a period-p orbit is

F~p!5 (
i 51

N~p!

m i~p!exp@2l i~p!p#, ~9!

where m i(p)5exp@2li(p)p# is the natural measure assoc
ated with thei th orbit of periodp. For p large we can write
l i(p)5l1Dl i(p). Since N(p) grows exponentially asp
increases, we expectN(p) to be a large number whenp is
high. Thus we obtain

FIG. 2. Schematic illustration of a partitioning box containing a perio
orbit of periodp and the fraction of initial conditions that stay close to th
orbit in p iterations.
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F~p!'exp~22lp! (
i 51

N~p!

exp@2Dl i~p!p#. ~10!

Following the same argument from Eq.~7! to Eq. ~8!, we
have

F~p!'exp~22lp!N~p!'exp~22l1K0!p. ~11!

Thus we again predict exponential scaling of the encoun
probability with well characterized measures associated w
the attractor, and again the constantQ in Eq. ~1! underesti-
matesl.

Strictly speaking, the argument above is valid only f
hyperbolic systems for which a good partition of the pha
space can be made so that the shorter line segmentsa8b8 and
ad in Fig. 2 are completely contained in the boxCi . Such a
partition is called the Markov partition.52 Most chaotic sys-
tems arising in physical situations are, however, nonhyp
bolic. For nonhyperbolic systems it may happen that a g
of boxes in which each boxCi looks like the box in Fig. 2
cannot be constructed because of the set of an infinite n
ber of tangency points between the stable and unst
manifolds.44 Nevertheless, the fact that exponential scali
can be obtained via two different arguments leads us to
lieve that it is valid for chaotic systems arising in more re
istic situations.

III. NUMERICAL TESTS

The CR algorithm is a search technique that assumes
existence of a set of periodic orbits in a time series. We lo
for points near enough to the orbits that they evolve fo
time in its e-neighborhood. Such close return segments
be located in the original time seriesx( i ) ( i 51,2,...,N),
whereN is the total number of datum points in the set, wit
out embedding. The close returns can be found by plottin
histogram of the 1’s given by the following quantity,17

ux~ i !2x~ i 1n!u
,e→1

.e→0
. ~12!

Such a histogram shows peaks at values ofn corresponding
to the periodsp. The amplitudes of these peaks are the e
perimental values of the encounter probabilityF(p). We
have modified this algorithm in the following way. In th
original CR algorithm, individual close returns were tab
lated and contributed to the histogram as specified by
~12!. In our modification, when a close return is found at a
index n, then we additionally requiren sequential close re
turns to the neighborhoode in order for a 1 to bewritten to
the histogram. Thus only shadow trajectories of lengthn
contribute to the histogram. Examples of the maxima of
histograms are shown by the figures in the following s
tions.

We now give numerical evidence for exponential scali
using data generated by the logistic and He´non maps and the
Lorenz system. We use the modified CR algorithm discus
above. As a check, we additionally test the He´non map with
the method of Refs. 41 and 42. We generate files of to
lengthN the order of 108, and search with neighborhood siz
e in the range 1024– 1021 for the parameter values given
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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857Chaos, Vol. 8, No. 4, 1998 Pei et al.
We compare the results for the noise free dynamics to th
for noise intensitiesj in the range 1024– 1021.

A. The logistic map

The logistic map is given by

xn115axn~12xn!1jn , ~13!

wherejn is the noise. We have chosen the bifurcation p
rametera53.9300. Forjn50, the results are shown in Fig
3~a!. A least-squares fit ofF(p);exp@2Qp# to the triangles
gives Q50.46060.035 ~SE! which can be compared with
the valuel50.602, which we measured using a stand
technique.53 Note that the scaling is accurate~that is, the
numerical results are well represented by a straight line
the semilog plot of Fig. 3! over more than two orders and fo
periods up top525. This procedure has been repeated
three noise intensities, taken from a uniform distributi
@2j,j#, with j smaller than and equal toe. The results for
various values ofe and for zero noise are shown in Fig. 3~b!.
Note that exponential scaling is again well represented by
numerical data, including the behavior predicted by the p
actor econst over a four decade range ofe, as shown by the
constant vertical~logarithmic! displacements of the data se
for each decade change ine. Figure 3~c! shows the accuracy
of the scaling for noise intensities comparable to and m
smaller thane. We see that the noise has little effect on t
accuracy of the scaling so long asj!e. Figure 3~d! shows

FIG. 3. Scaling of the encounter probability versus periodp, of UPOs in the
logistic map fora53.9300.~a! The scaling forj50 and e50.01. ~b! A
study of the effect of the neighborhood size with zero noise, fore50.1
~triangles!, 0.01 ~circles!, 0.001~diamonds!, and 0.0001~squares!. ~c! The
scaling for various noise intensitiesj50 ~solid circles!, 0.0001 ~open
circles!, 0.0001~open diamonds!, and 0.01[e ~crosses!. ~d! A study of the
effect of e with noisej50.01, fore50.1 ~triangles!, 0.01[j ~plus signs!,
0.001~crosses!, and 0.0001~squares!. In the iteration of the map, 104 points
were allowed for transients to die, and the total number of points va
from 13108 to 53108. Numerical agreement with Eq.~1! is excellent for
values ofj!e as expected. Note also that the results shown in~b! are in
excellent agreement with the behavior predicted by the prefactore^a& in Eq.
~1!. The largest Lyapunov exponent, 0.602, is underestimated by the s
of the numerical data in~a!, for which Q50.46060.035~SE!.
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results again for four decades ofe but with the noise held
constant atj50.01. These results show that, while expone
tial scaling remains the representative behavior, the valu
the exponentQ, increases rapidly whenj@e.

B. The Hénon map

The Hénon map is given by

~x,y!n11→~a2xn
21byn1jn ,xn1jn8!, ~14!

where the noisesjn , andjn8 are independent and were add
to both iteratesx, y. Here we use the parametersa51.4 and
b50.3. The results of the CR method forj50 always, but
for j850, 0.5e, and 1.0e, wheree50.01, are shown in Fig.
4. We have matched the results to Eq.~1! using only the
pointsp.8 with the result thatQ50.3260.02 for all noise
values except the largest, for whichj5e. The fit is per-
formed only for the higher periods, because, first, the the
is accurate only for largep, and second, the He´non map does
not contain UPOs of periodsp53 and 5, though the CR
method~and indeed any approximate search algorithm! will
return some finite value forF(p53,5). Thus the low period
values ofF are not expected to exactly follow the scalin
relation. As a check, we have also numerically calculated
first 32 periods by a different procedure41,42 for zero and
several different noise intensities again fore50.01. In this
case two noises,j and j8, were added to bothx and y as
shown by Eq.~14!. These results are shown in Fig. 5~a! for
zero noise and Fig. 5~b! for noise in the range 1023e to 1.0e.
The values ofQ are detailed in the caption of Fig. 5. Esse
tially, Q50.41 returns an underestimate of the known larg
Lyapunov exponent for all noise values significantly smal
thane. As a comparative illustration, we have tested the D
method on short, 3000 point data files of the noise f
Hénon map, as shown by the inset in Fig. 5~a!. We see that
the method, compared to results for suitable surrogates
capable of detecting only periods 1 and 2. There is no pe
3 in this map~but the method detects a small value!, and

d

pe

FIG. 4. Scaling of the encounter probabilityF(p) versus periodp, of UPOs
in the Hénon map fora51.4 andb50.3 using the CR method. The symbo
represent different noise intensities:j50 ~solid circles!, 0.01e ~open
circles!, 0.1e ~diamonds!, and 1.0e ~plus signs! where e50.01. Least-
squares fits of Eq.~1! to these results give:Q50.325, 0.326, 0.341, and
0.443 forj50, 0.1e, 0.5e, and 1.0e, respectively.
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period 4 is at the level of the surrogates. See Ref. 26
discussions of the use of this method and the generation
use of surrogate data sets.

C. The Lorenz system

Because the TR and DT methods are finding their m
applications to natural systems of unknown dynamics
seems useful to test the proposed scaling relation on a wi
known and used nonhyperbolic, or generic, system. The s
dard Lorenz system is given by

ẋ5210~x2y!,

ẏ52y128x2xz, ~15!

ż52bz1xy1jn ,

where b58/3. These equations were integrated using
Runge-Kutta method with time step 0.01. The noisejn , was
chosen from a uniform distribution@2j,j# and updated a
every time stepn. The numerical dataz(t), were sampled a
a sequence of times such that the time interval betw
samples was ten times larger than the time step used in
numerical integration. The times at which the samples w
obtained were designated by an indexn51,2,...,N. Data sets

FIG. 5. Scaling of the encounter probabilityF(p) versus periodp, of UPOs
in the Hénon map fora51.4 andb50.3 using the analytic method of Refs
41 and 42 fore50.01.~a! For zero noise, the straight line is a fit to Eq.~1!
which givesQ50.41. The inset shows the TR method applied to short d
sets of this map for the same conditions. The straight line gives the esti
Q50.53. The dashed line gives the mean background probability es
lished by surrogate data sets.~b! The symbols show the scalings for differe
noise intensities:j50 ~solid circles!; 0.001e ~open circles!, 0.01e ~shaded
diamonds!, 0.1e ~open diamonds!, and 1.0e ~crosses!. Least-squares fits o
Eq. ~1! ~solid lines! give: Q50.41 for zero and all noises up to and inclu
ing 0.1e and 0.48~14% larger! for the largest noisej51.0e.
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r
nd
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of lengthN5108 were generated and tested with the mo
fied CR method. The encounter probabilities were obtain
in the same way as for the maps and are shown in Fig. 6
plotted against the indexn. Periodic behavior can be ident
fied by looking for sets of local maxima ofF(p) located at
indices which are separated by a constant index distancq.
Figure 6~a! shows the noise free results. We have identifi
two sets of periodic sequences:q51 ~solid triangles! andq
57 ~solid circles!. We cannot identify the specific period
within these two sets. For example, we might identify the 4
solid circle from the left as representing the encounter pr
ability of the p54 orbit, but due to the ambiguity of the
aforementioned set definition, the actual period of this or
may be an integer multiple of 4. Nevertheless, the expon
tial scaling of the encounter probabilities with period is e
dent from the approximately linear behavior of the data
this plot.

IV. SUMMARY AND DISCUSSION

Recent experimental work, primarily on biological sy
tems, suggests that the probability to observe the signat
of unstable periodic orbits decreases exponentially with

a
te
b-

FIG. 6. Scaling of the encounter probabilityF(p) versus periodp, of UPOs
in the standard Lorenz system forb58/3. In all cases the file lengths wer
1.53109, and the neighborhood parameter was 1.0. The noise was t
from a uniform distribution@2j,j#. ~a! j50, ~b! j50.001, ~c! j50.1
[0.1e. In all cases the solid symbols show identified periods forq51
~solid triangles! andq57 ~solid circles!. The open circles represent comple
behavior. Fits of the solid circles to the scaling relation giveQ50.157,
0.148, and 0.253 forj50, 0.001, and 0.1, respectively. These results sh
the exponential scaling behavior, but we cannot identify the points w
specific periods.
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riod. In this work we have developed an approximate sca
theory of the encounter probability by associating it w
estimates of the length of time a trajectory can shadow
periodic reference orbit within a small neighborhood. T
theory indicates that the probability does indeed decre
exponentially with period, at least for large periods, and t
the scaling parameter is related to the largest Lyapunov
ponent and the entropies of the attractor. We have stu
numerically the effects of noise and neighborhood size
this scaling in the logistic and He´non maps and the standa
Lorenz system using a modified CR method and, in the c
of the Hénon map, a direct numerical method. In all tests,
find exponential scaling with the period regardless of
noise intensity, so long as that intensity is smaller than
neighborhood parameter.

We turn now to a brief discussion of the applicability
the theory and numerical simulations to the TR method. W
is this method uniquely successful at finding low peri
UPOs in short noisy data sets, and why can it not see h
periods? The TR method detects the signatures of encou
with UPOs by searching for intersections of the unstable
stable manifolds~in two dimensions!. It does so by examin-
ing returns to a Poincare´ section and computing the perpe
dicular distances of the return points to the line of perio
points,xn1p[xn . There must be a sequence of points w
decreasing distances followed by a sequence with increa
distances, orm points in total ~m is typically 5, see Refs
20–23 and 26!. The occurrence of these two connected
quences is the signature of a trajectory approaching the
stable periodic point at the intersection of the manifolds a
then departing from it. If the definition of an encounter r
quiresm total returns in the two sequences, then some deg
of coherence must be maintained over a lengthmp. For high
periods, this is a large number, which means that the p
ability to find a valid encounter becomes small. In practi
this probability drops to the level of the probability fo
chance findings as determined by the surrogates for per
of about four or greater. Thus the TR method fails to det
high period orbits. However, the signature of an encounte
a very specific sequence of points. See Refs. 20, 21, an
for details. By contrast the theory and the numerical me
ods, particularly the CR method, used here to find the
counter probabilities, require only thatp returns fall within
some neighborhood of sizee of the periodic point. Thus
significant coherence must be maintained only over a len
p ~instead ofmp as required for the TR method!. Moreover,
the TR method successfully detects low period orbits in v
noisy data sets because there is no small neighborhood
dition. By contrast, as shown here, the CR method begin
fail when the noise intensity becomes comparable to
neighborhood size which, for accurate detection of high
riod orbits, must be small. These conditions evidently all
the TR method to detect low periods in short data sets w
failing for higher periods. The CR method, in compariso
fails with short data sets, but can detect higher periods if v
long data sets (O108) are available for which the noise in
tensity is smaller than the neighborhood size. The task
construct a theory of the encounter probability under the
strictive definitions used by the TR method for generic c
Downloaded 20 Jun 2002 to 129.219.51.205. Redistribution subject to AI
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otic systems might be formidable, though an approxim
calculation of this quantity for random files has be
accomplished.54

Biological data, specifically recordings of the discharg
from stimulated or unstimulated neurons, arise from the n
linear dynamics of the neuron and its internal dynami
noise. Thus in seeking evidence of low dimensional dyna
cal behavior in biological preparations, one must have
method that can look down through the noise. Moreov
because biological preparations can at best be only appr
mately stationary, whatever analysis technique is adop
must be able to effectively deal with relatively short da
sets. Finally, the state of stability of the dynamics is of prim
interest in biology, because it is more likely to be succe
fully related to animal behavior. Thus the technique sho
also be able to distinguish stable from unstable periodic
bits and detect bifurcations between these behaviors. As
have shown here the TR method is well suited for the
tasks. Moreover, it is numerically relatively simple, thus it
easy to implement and runs rapidly enough to be used on
during experiments. The latter feature is essential to appl
tions involving control of chaos.55,56

The example biological data presented in Fig. 1 sho
considerable scatter. These files were selected only on
basis that they show a significant number of period-2 orb
They were thus obtained under various experimental co
tions. The analogous situation in a physical system would
to collect orbits at random while varying the system para
eters, then selecting all data sets showing any evidence
period-2 orbit. Under these conditions large variability is
be expected. We show here the data selected in this
because it is probably typical of what might be expected
most biological systems where experimental conditions~pa-
rameters! cannot be nearly so well controlled as for physic
systems. Our intention was to test the method and look
evidence of scaling using data as it might typically~rather
than ideally! be encountered in biological preparation
Given the large variability typical of our biological data, it
problematic that we have successfully achieved our goa
connecting the three or four observable UPOs~see, for ex-
ample, Fig. 1! with the infinite set. We have, however, pro
vided a convincing reason for the rapid decrease in the
served encounter probabilities with period.
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