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The experimental detection of unstable periodic orbits in dynamical systems, especially those which
yield short, noisy or nonstationary data sets, is a current topic of interest in many research areas.
Unfortunately, for such data sets, only a few of the lowest order periods can be detected with

quantifiable statistical accuracy. The primary observable is the number of encounters the general

trajectory has with a particular orbit. Here we show that, in the limit of large period, this quantity
scales exponentially with the period, and that this scaling is robust to dynamical noisE99&
American Institute of Physic§S1054-150(08)00904-5

The recent development of new methods for detecting
and counting unstable periodic orbits (UPOS9) in short,
noisy time series have opened the door to studies of chaos
in systems of unknown dynamics that were previously
inaccessible. Unfortunately, when applied to data sets of
typical experimental lengths, these methods are unable to
detect orbits with periods greater than about four. But
can it be maintained that chaos has been demonstrated in
such experimental systems, given that the structure of the
strange attractor is built upon an infinite set of UPOs?
Can these three or four orbits be convincingly connected
to the infinite set? Here we investigate the possibility of a
scaling relation to make this connection. We derive ap-
proximate expressions for the scaling exponents in two
ways, beginning with a well known scaling relation. Our
numerical results test the accuracy of the scaling for
noise contaminated dynamics of both discrete and con-
tinuous systems. We find exponential scaling which is ro-
bust to dynamical noise, and an example from experi-
mental sensory biology is given.

I. INTRODUCTION

of unstable periodic orbitdJPOg of low period have been
developed. Two of these, which exploit the topological prop-
erties of attractors, have been particularly successful, though
in very different applications. The first, called the method of
close returngCR),'%is suitable for finding UPOs with pe-
riods up to at leasp=30 in long data setétypically 10’ or

10°) from relatively noise free, stationary numerical or
physical datd/~*° The second, called the topological recur-
rence (TR) method? is statistically based and useful for
short (a fewx10? to 10°), noisy data sets, such as those
typical of nonstationary biological systerfis23 In contrast

to some metric and other methods, the TR method is able to
distinguish between UPOs and stable periodic oft3R0s3.

This advantage arises because it specifically searches for the
topological signature of instability, that is, intersections of
unstable and stable manifolds, in the returns. This property
has been crucial in recent experiments in sensory biology,
wherein control parameter induced bifurcations between
UPOs and SPOs have been discovered in diverse sensory
neurons’23 A third method, based on a dynamical transfor-
mation (DT)?* of the near neighborhoods of periodic orbits

in phase space, has also been successfully used to detect
UPOs in data sets from noise contaminated syst&fsThe

TR and DT methods have recently been reviewed and

The detection of chaotic attractors from time series 9€Neompared®
erated by experimental systems of unknown dynamics is @ 1y facts, relevant to these recent methods, motivate

problem of continuing interest in a variety of fields. Tech-pic \work: (1) the primary experimental observable is the

niques baseg on ensemble averages of the metric propertig§mper of times a UPO of periqulis encountered in a time
of attractors;? for example, measurements of one or more Ofseries; and2) (obviously the largest detectable period is

the Lyapunov exponertts® or fractal d|men§|on§j?1 have  finite. In the case of the TR and DT methods, this period is
been enormously successful. However, their requirements fo{o |arger than fou?® But the structure of chaotic attractors
long, relatively noise free data sets have limited their appliig 5 countable infinity of UPO¥ -3 While the detection of
cations. Various predictor and other metht5ds have suf- 55 many as 30 orbits may be convincing, as with the CR or
fered similar I|n11état|0ns, though recent progress with nonlin-giher methods which find the shadows of reference orbits,
ear predictor$"'*has been reported. _ the measurement of only three or four, as with DT and TR,
Recently, however, new methods based on the detectiogyn hardly be put forth as evidence of the infinite set. Unfor-
tunately, the CR method is not useful for short, noisy, for
example, biological, systems. In contrast, the DT and TR
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related to the metric and topological entropies and to the
largest Lyapunov exponent of the attractor:

67363 | ® P (p)~ e®™'exd — Qp]. ()

We test the exponential behavior, wh&)ds a constant
related toKy, K4, and\, for periods up tgp=30 with nu-
merical experiments using a somewhat modified version of
the CR method on long, noise free data sets of the logistic
and Haon maps, and on the Lorenz dynamical system. In
———— addition, our numerical experiments confirm the prefactor
: . : . €°°"310 Moreover, because the’Hen map is one of the few
0 2 4 6 8 model systems for which, in principle, an arbitrarily large
number of orbits can be analytically computed by a numeri-

cal algorithm**2we can thus provide a test independent of

FIG. 1. The probability to observe unstable periodic orbits of pepiatthe the CR or TR algorlt_hmg.
sensory mechanoreceptive system of the crayfaimcambarus clarkii A primary objective is to test the robustness of the scal-
Neural recordings were made from the caudal photoreceptor cell, a pacéng relation on systems contaminated with noise. The moti-
maker (oscillatoy embedded within and synaptically connected to the 6th vation for this is provided by sensory biology where data
ganglion, a small network of interneurons that processes noisy hydrody- ts of limited | th f isv d . ’ biquit
namic signals from the hair receptors arrayed on the animal’s tailfan. The€ls O 'r_m €d leng rom noisy . ynamlcs are ubiquitous.
hair receptors were periodically stimulated by a sinusoidal water motiorVe mention that our theory applies strictly only to hyper-
applied to the tailfan. These data represent 44 fitéifferent symbols bolic systems, whereas nonhyperbolic motion is generic to
chosen from more than 1000 on the basis of large responges 2t The real physical System°§,39 However. as we show here. the
data were obtained for a variety of different experimental conditions from i b ) lid f, h boli !
19 different animals, and thus represent the general behavior to be expecté&a '”9 appears to be valid even for nonhyperbolic SyStemS’
for such systems. The vertical axis is the natural logarithm of the probabilOf which the H@on and Lorenz systems are examples. Fi-
ity, obtained by counting the number of encounters with UPOs in a data filnally, we mention that because there is an infinity of stable
and subtracting the number found in a suitable surrogate. See Refs. 2028 ingjc orbits(SPO3 embedded in the attractors of nonhy-
for details. The solid line represents an exponential scaling of the probabilit . . . .. .
with period p with slope —0.51. The arrow marks the region of behavior perbO“C systems, search algorlthms which Can_ dIStIthISh
indistinguishable from the surrogates. between UPOs and SPOs, such as the TR algorithm, have an
inherent advantage for analyses of real physical systems. A
preliminary account of this work is to be given elsewh&re.
This paper is organized in the following way. In Sec. Il
yLe outline the approximate theory, which we develop from

methods have successfully detected UPOs in data se

wherein they were invisible to other methods. However, be:[WO different approaches. In Sec. Ill we discuss our modifi-

cause they exploit much more specific or restrictitiean cations of the CR algorithm. We use it to test the scaling

simply close returissignatures of encounters with UPOs relation for the logistic and Hen maps, including tests of
they sacrifice the ability to find orbits of larger period " its robustness in the presence of additive noise. In addition,

Observations of a typical biological system with TR we apply the analysis to the Lorenz system. Finally, in Sec.

seem to indicate that the probability to observe UPOs del-\_/’_ We summarize our result_s "’“?d co_mment on their applica-
creases exponentially with increasing peripdSee, for ex- bility to searches for UPOs in biological systems.

ample, Fig. 1. This suggests that a scaling relation might

exist by means of which the few experimentally detectablg; THEORY

orbits can be connected to the infinite set. The analogy with

universal scalings near thermodynamic phase transitions is TO gain intuition for the validity of the scaling relation,
evident and has been previously advanted’ and orbital ~We first consider a simple class of one-dimensional chaotic
return times in two, nonhyperbolic, chaotic systems havesystems defined on the unit interval: the tent nhag . 1)
been studied®*® The purpose of this work is to derive from =2Xn if X,<1/2, andX(n+1)=2(1—X,) if x,=1/2], or the
this a simple and physically motivated, though approximatedoubling transformatiofix, , 1)=2x,mod(1)]. It is known
theory of the probability®(p), that an orbit of periogp is  that both maps generate a chaotic attractor, and the invariant
encountered in a time series of finite length. One way to délensity generated by a trajectory originated from a random
this is to begin with the well known probability of finding a initial condition (a typical trajectory is uniform in the unit
shadow, that is, a trajectory of length within a distancee interval* Thus in order for a trajectory to stay in a small
of a reference orbit, which is approximatekP(n,e)) e-neighborhood of a periodic orbit of perigd the trajectory

~ e*™ exp(—nK,), whereK , is the metric entropy, and(x) must fall within ee P of any one of the components of the
is a dimension which depends on the trajectorghat is on  Periodic orbit, where\=In 2 is the Lyapunov exponent of
an initial condition. We lump all orbits of the same period the chaotic attractor. Since the invariant density is uniform,
together by estimating the cumulative encounter probabilitythe probability for a typical trajectory to fall in an interval is
This is exactly what the TR and DT methods detect. We fincequal to the length of this interval. Note that there afe 2
that, in the limit of largep, the encounter probabilitgp(p), ~ Orbits of period p in the tent map. We haveD(p)
indeed scales exponentially with an exponé®t,which is =Ei2£1,ui(p) ee M where ui(p)=2"" is the weight, or
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natural measure, associated with thie orbit of periodp in  typical trajectory to come close to this orbit is then given by
the tent map. This consideration also applies to chaotic syd=d. (3) wherex is replaced by, , and the time is replaced
tems with smooth invariant densities such as the oneby the periodp. The encounter probabilitp(p) with a pe-
dimensional logistic map,+1)=ax,(1-x,) ata=4. In riodic orbit of periodp is then the cumulative probability of

such a case, we have, for the probabildy,(e,p), for a encounters with alN(p) periodic orbits. We have

trajectory to fall within a small interval of lengtke ™ *P cen- N(p)
tered at a periodic point,, the following, d(p)= >, 1i(P)P(€,P;Xip), (5)
xp+eexp(f)\p)/2 =1
Dyqi(€,p)= p(X)dx~e€ exp((—Ap), (2)  where the weighi(p) is the natural measuteassociated

— e exp-Ap)I2 ; CTITIRLAL .
XpT e ORTAD) with the periodic orbitx;, . This natural measure can be ex-

where p(x) is the smooth invariant density of the chaotic pressed in terms of the largest expanding eigenvialifg;,)
attractor. Summing all periodic orbits of peripdand using  of the periodic orbft’*°as
wi(p)~exp(=Ap), we haved(p)~N(p)exp(—2\p), where _ _
N(p)~expKop), and K, is the topological entropy of the pi=1a(xip) =exid ~Ni(p)p], )
chaotic attractor. where \;(p)>0 is the unstable Lyapunov exponent of the

Chaotic systems with smooth invariant densities are rareperiodic orbit, and the exponent varies among all the
Often, the density function contains an infinite number ofperiodp orbits. Forp large, we expeck;(p) to be close to,
singularities** Thus it is not apparent whether the scalingthe Lyapunov exponent of the entire chaotic attractor. We
relation holds in general. Nonetheless, heuristic argumentarite \;j(p)=\+A\;(p). This consideration also applies to
can be made to lend credence to the validity of an exponerthe local dimension and entropy. Using E4) we can write
tial scaling of the encounter probability. In the sequel, wea(Xi,)=D;1+Aa(Xp) and  «(Xip,p)=Ki+Ax(Xip,p).
present two different approaches to the approximate derivaSubstituting these two expressions, E@.and(6), into Eq.
tion of Eq. (1), both yielding the same exponential scaling (5), we obtain
relation, but with slightly different constant§. N(p)

(I)(p)oce*)\PefklpeDlz: e [AN(P)+Ak(Xip ,P)IP gAa(Xip)
=1

A. Derivation based on a property of the metric 7

t . . .
entropy Since N(p) grows exponentially ap increases, we expect

In this approach we make use of the well known, but notN(p) to be a large number whemis large. Thus roughly
rigorously derived, property that the length of a shadow orbitA\;(p), Ax(xi,,p) andAa(x;,) can be treated as random
scales exponentially with the metric entropy. We restrict ouvariables of zero mean. By the law of large numbers, the
consideration to systems with chaotic attractors. To find thgummation in(7) can be regarded as a random variable cen-
encounter probability with a periodic orbit of periged we  tered at one with a Gaussian probability distribution. The
utilize the concept of the generalized entropies*® Given  width of the distribution behaves like IN(p)

a chaotic system, described either by a smooth autonomousexp(—Kqp/2)—0 asp— . Thus(7) becomes
flow or by a d|scre'Fe map, the generz_;\!lzed entroﬁgs:an_ b (p)ce—A+Ki=Kolp, ®
be defined by considering the probability for a typical trajec-
tory to fall within a smalle-neighborhood of a target orbit of In typical chaotic systems the quantitiesK; andK, have
lengtht embedded in the chaotic attractor. This target orbitsimilar numerical values, but sinég,=K,, the exponenQ
can be either periodic or chaotic. Letoe the starting point in Eq. (1) can be expected to underestimate®
of the target orbit(in the case of a periodic orbix can be
any point of the orbjtand letP(e,t;x) denote the probabil-
ity. For chaotic systems, it is assunithat P(e,t;x) scales
with € andt as, Although the above derivation of the scaling relation is
P(eut:x) ~ e ¢~ KKUL 3 Egir;ce SEP:r\?VIé iﬁiss:]arttoing point, E(B), is only an assump-
. point out that for chaotic systems

in the limit e—~0 andt—c, where a(x) is the pointwise described by two-dimensional hyperbolic maplx),>* a
dimension of the poink and x(x,t) is the local entropy of derivation can be made starting from the first princigiea.
the target orbit. The information dimensi@y and the met- hyperbolic periodic orbit has a distinct set of expanding-
ric entropyK; of the chaotic attractor can be defined as  stabl§ and contractingstable directions. Consider the en-

) _ counter probability with one of the periodic orbits of period

(Pletix)~e”1e 4!, for =0 andt—-, @ p. The periodic orbit is thus a fixed point of thetimes
where () denotes the ensemble average over many typicaterated mapM (P (x). Denote the fixed point by;,, and
trajectories on the chaotic attractor. Now consider the casthere areN(p)xexpKqp) such fixed points. Following Gre-
where the target orbit is a periodic orbit of peripdThere  bogi, Ott and Yorké/ we cover the chaotic attractor with a
areN(p)«(1/p)expKqp) such orbits, wher&, is the topo-  grid of partitioning boxes, each being confined by segments
logical entropy. Denote the orbit by, wherei=1,...N(p) of the stable and unstable manifolds. Typicaly, is con-
(here for simplicity of notation we just usg, , to denote the tained in a boxC; . Since the boxes are constructed by using
orbit which actually hagp components The probability fora the stable and unstable foliations of the chaotic attractor,

B. Derivation based on natural measure of periodic
orbits
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FIG. 2. Schematic illustration of a partitioning box containing a periodic

orbit of periodp and the fraction of initial conditions that stay close to this
orbit in p iterations.

Pei et al.

N(p)
®(p)~exp—2\p) 2, ex2ANi(p)p]. (10
Following the same argument from E) to Eq. (8), we
have

d(p)~exp(—2\p)N(p)~exp — 2\ +Kq)p. (11

Thus we again predict exponential scaling of the encounter
probability with well characterized measures associated with
the attractor, and again the const&hin Eq. (1) underesti-
matesh.

Strictly speaking, the argument above is valid only for
hyperbolic systems for which a good partition of the phase
space can be made so that the shorter line segraéintsand
adin Fig. 2 are completely contained in the b@x. Such a
partition is called the Markov partitiotf. Most chaotic sys-
tems arising in physical situations are, however, nonhyper-
bolic. For nonhyperbolic systems it may happen that a grid

they can be made arbitrarily small. Thus each box can bgs poxes in which each bog; looks like the box in Fig. 2

regarded as being rectangular, as shown schematically iannot be constructed because of the set of an infinite num-
Fig. 2, where the horizontal and vertical sides are segmentsg; of tangency points between the stable and unstable
of the stable and unstable manifolds, respectively. Assumg,anifolds? Nevertheless, the fact that exponential scaling

there is a segment @fpoints on a typical trajectory, denoted ¢an pe obtained via two different arguments leads us to be-

by {x(0),x(1),...x(p)} which stays close ta;,. One way
for this to occur is for both the beginning poix{0) and the
ending pointx(p) of the segment to be contained in the
small boxC; . In order to estimate the probability for such an

lieve that it is valid for chaotic systems arising in more real-
istic situations.

encounter, imagine we choose a large number of initial conHl. NUMERICAL TESTS

ditions on the chaotic attractor according to the natural mea-

sure. The probability of encounter with, is then approxi-
mately the fraction of initial conditions starting @ but still

being inC; in p iterations. Lets, and d, be the lengths of the
horizontal and the vertical sides @f;, respectively. Since

the dynamics is contracting in the horizontal direction and
expanding in the vertical direction, we see that the rectangl

abcdmaps to another rectangééb’c’d’ in piterations. The
sizes of the rectanglesabcd and a’'b’c’'d’ are &,
L8y /L1(Xip)] and [y /La(Xip)]- 8y, respectively, where
L1(Xip)>1 andL»(x;,) <1 are the unstableexpanding and
stable(contracting eigenvalues of the fixed poinf, . Initial
conditions chosen fror@; but not in the rectanglabcdmap

out of C; in p iterations. Since the natural measure is uniform™ ", .
rﬁenmental values of the encounter probabilib(p). We

in the unstable directions for a chaotic attractor, the fractio
of initial conditions starting irC; but remaining inC; afterp
iterations is given by |ad|/|a’d’|=[8,/L(xip)]/ by
=1L, (Xip)]=exd —\i(p)p], where\;(p)>0 is the unstable
Lyapunov exponent of thgth unstable periodic orbit of pe-
riod p. Thus the encounter probability with this periodic orbit
is exd —Ni(p)p].

Since there areN(p) periodic orbits of periodp, the
cumulative encounter probability with a peripdarbit is

N(p)
®(p)= 2, wmi(p)ex ~\i(p)p], )
where u;(p) =exd —\i(p)p] is the natural measure associ-
ated with theith orbit of periodp. For p large we can write
Ni(p)=N+AN;(p). SinceN(p) grows exponentially ap
increases, we expedi(p) to be a large number whanmis
high. Thus we obtain

The CR algorithm is a search technique that assumes the
existence of a set of periodic orbits in a time series. We look
for points near enough to the orbits that they evolve for a
time in its e-neighborhood. Such close return segments can
be located in the original time serieqi) (i=1,2,...N),
whereN is the total number of datum points in the set, with-
But embedding. The close returns can be found by plotting a
histogram of the 1’s given by the following quantity,

<e—1
>e—0"

Ix(i)—x(i+n)] (12
Such a histogram shows peaks at values obrresponding
to the periodsp. The amplitudes of these peaks are the ex-

ave modified this algorithm in the following way. In the
original CR algorithm, individual close returns were tabu-

lated and contributed to the histogram as specified by Eg.
(12). In our maodification, when a close return is found at any
index n, then we additionally require sequential close re-
turns to the neighborhooéin order fa a 1 to bewritten to
the histogram. Thus only shadow trajectories of length
contribute to the histogram. Examples of the maxima of the
histograms are shown by the figures in the following sec-
tions.

We now give numerical evidence for exponential scaling
using data generated by the logistic anchbie maps and the
Lorenz system. We use the modified CR algorithm discussed
above. As a check, we additionally test thenda map with
the method of Refs. 41 and 42. We generate files of total
lengthN the order of 18, and search with neighborhood size
€ in the range 10%-10"! for the parameter values given.
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] ‘ . . in the Henon map fora= 1.4 andb=0.3 using the CR method. The symbols
5 10 15 20 25 represent different noise intensitie§=0 (solid circleg, 0.0l (open
circles, 0.1 (diamondg, and 1.@ (plus sign$ where e=0.01. Least-
squares fits of Eq(1) to these results giveQ=0.325, 0.326, 0.341, and
0.443 foré=0, 0.1¢, 0.5, and 1.@, respectively.
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FIG. 3. Scaling of the encounter probability versus peppdf UPOs in the

logistic map fora=3.9300.(a) The scaling foré=0 and e=0.01.(b) A

study of the effect of the neighborhood size with zero noise,fer0.1

(triangles, 0.01 (circles, 0.001(diamonds, and 0.000Xsquares (c) The  results again for four decades efbut with the noise held
scaling for various noise intensities=0 (solid circles, 0.0001 (open constant at=0.01. These results show that, while exponen-

circles, 0.0001(open diamonds and 0.0% € (crosses (d) A study of the . . . . .
effect of e with noise£=0.01, for e=0.1 (triangles, 0.01=£ (plus signs, tial scaling remains the representative behavior, the value of

0.001(crosses and 0.000Xsquares In the iteration of the map, f@oints  the exponen), increases rapidly wheé&> e.
were allowed for transients to die, and the total number of points varied
from 1x 1% to 5x 10°. Numerical agreement with Eql) is excellent for
values ofé<e as expected. Note also that the results showtbjrare in
excellent agreement with the behavior predicted by the prefattbin Eq.
(1). The largest Lyapunov exponent, 0.602, is underestimated by the slope  The Heawon map is given by
of the numerical data i), for which Q=0.460+ 0.035(SE). 5
’
(X, Y)n+1—(@= X5+ byn+ & X0+ &), (14

B. The Hénon map

We compare the results for the noise free dynamics to thos‘é(hsrehthe noises, , :ndgn are mdc:]pendent and Wfr4e ad(;jed
for noise intensitiest in the range 10°—10 1, to both iterate, y. Here we use the parameters-1.4 an

b=0.3. The results of the CR method f6=0 always, but

for ¢’ =0, 0.5, and 1.@, wheree=0.01, are shown in Fig.

4. We have matched the results to Ed) using only the
The logistic map is given by pointsp>8 with the result thafQ=0.32+0.02 for all noise
values except the largest, for whidh=e. The fit is per-
formed only for the higher periods, because, first, the theory
where &, is the noise. We have chosen the bifurcation padis accurate only for largp, and second, the Hen map does
rametera=3.9300. Foré,=0, the results are shown in Fig. not contain UPOs of periodp=3 and 5, though the CR
3(a). A least-squares fit ob (p) ~exd —Qp] to the triangles method(and indeed any approximate search algorjthvill
gives Q=0.460+0.035 (SE) which can be compared with return some finite value fab(p=3,5). Thus the low period
the valuex=0.602, which we measured using a standardvalues of ® are not expected to exactly follow the scaling
technique’® Note that the scaling is accuratéhat is, the relation. As a check, we have also numerically calculated the
numerical results are well represented by a straight line ofirst 32 periods by a different proceddté? for zero and
the semilog plot of Fig. Bover more than two orders and for several different noise intensities again for 0.01. In this
periods up top=25. This procedure has been repeated forcase two noisest and &', were added to botlx andy as
three noise intensities, taken from a uniform distributionshown by Eq.14). These results are shown in Figabfor
[—¢&,¢], with ¢ smaller than and equal ta The results for  zero noise and Fig.(B) for noise in the range 1Ge to 1.Ce.
various values ot and for zero noise are shown in FighR  The values ofQ are detailed in the caption of Fig. 5. Essen-
Note that exponential scaling is again well represented by thgally, Q= 0.41 returns an underestimate of the known largest
numerical data, including the behavior predicted by the prefLyapunov exponent for all noise values significantly smaller
actor e*°"tover a four decade range ef as shown by the thane. As a comparative illustration, we have tested the DT
constant vertica{logarithmig displacements of the data sets method on short, 3000 point data files of the noise free
for each decade change énFigure 3c) shows the accuracy Henon map, as shown by the inset in Figas We see that

of the scaling for noise intensities comparable to and muclthe method, compared to results for suitable surrogates, is
smaller thane. We see that the noise has little effect on thecapable of detecting only periods 1 and 2. There is no period
accuracy of the scaling so long §<e. Figure 3d) shows 3 in this map(but the method detects a small valuand

A. The logistic map

Xn+1=aXp(1—Xp) + &y, (13
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41 and 42 fore=0.01.(a) For zero noise, the straight line is a fit to Ed) . . .
which givesQ=0.41. The inset shows the TR method applied to short dataFIG' 6. Scaling of the encounter probabilityp) versus periogb, of UPOs

sets of this map for the same conditions. The straight line gives the estimat? the standard Loren_z system f6=8/3. In all cases the file Iepgths were
Q=0.53. The dashed line gives the mean background probability establ'5>< 10, a_nd the ‘nel_ghb_orhood parameter was 1.0. The noise was taken
lished by surrogate data set) The symbols show the scalings for different oM @ uniform distribution[~£.£]. (@ £=0, (b) £=0.001, (¢) £=0.1
noise intensitiesé=0 (solid circle3: 0.00% (open circlel, 0.0l (shaded ~ —0-l¢. In all cases the solid symbols show identified periods derl
diamonds, 0.1¢ (open diamonds and 1.@ (crosses Least-squares fits of (solid t_r|ang|_e$ andq=7 (s_ohd_ circles. The open circles r_epresent complex
Eq. (1) (solid lineg give: Q=0.41 for zero and all noises up to and includ- behavior. Fits of the solid circles to the scallng relation gye0.157,
ing 0.1¢ and 0.48(14% largey for the largest noisé= 1.0e. 0.148, and 0._253 fo§_=0, 0.001_, and 0.1, respecnve_ly. These resu!ts shqw
the exponential scaling behavior, but we cannot identify the points with
specific periods.

period 4 is at the level of the surrogates. See Ref. 26 for
discussions of the use of this method and the generation ang} |ength N= 108 were generated and tested with the modi-

use of surrogate data sets. fied CR method. The encounter probabilities were obtained
in the same way as for the maps and are shown in Fig. 6 but
C. The Lorenz system plotted against the inden. Periodic behavior can be identi-

B he TR and DT hod finding thei . fied by looking for sets of local maxima db(p) located at
ecause the an methods are finding their MaNdices which are separated by a constant index distgnce

applications to natural systems of upknown_ dynam|c§, ! igure @a) shows the noise free results. We have identified
seems useful to test the proposed scaling relation on a wide 0 sets of periodic sequencap=1 (solid triangle andq

known and used nonhyp_erbohc, or generic, system. The starl:- 7 (solid circles. We cannot identify the specific periods
dard Lorenz system is given by

within these two sets. For example, we might identify the 4th
X=—-10(x—vYy), solid circle from the left as representing the encounter prob-
. ability of the p=4 orbit, but due to the ambiguity of the

y=-y+28&=xz, (19 aforementioned set definition, the actual period of this orbit
7= — Bz+Xy+ &, may be an integer multiple of 4. Nevertheless, the exponen-

tial scaling of the encounter probabilities with period is evi-

where $=8/3. These equations were integrated using thejent from the approximately linear behavior of the data on
Runge-Kutta method with time step 0.01. The ndiggwas g plot.

chosen from a uniform distributiof—¢,£] and updated at

every time step. The numerical data(t)., were sampled at IV. SUMMARY AND DISCUSSION

a sequence of times such that the time interval between

samples was ten times larger than the time step used in the Recent experimental work, primarily on biological sys-
numerical integration. The times at which the samples weréems, suggests that the probability to observe the signatures
obtained were designated by an index1,2,...N. Data sets of unstable periodic orbits decreases exponentially with pe-
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riod. In this work we have developed an approximate scalingtic systems might be formidable, though an approximate
theory of the encounter probability by associating it with calculation of this quantity for random files has been
estimates of the length of time a trajectory can shadow accomplished?
periodic reference orbit within a small neighborhood. The  Biological data, specifically recordings of the discharges
theory indicates that the probability does indeed decreastom stimulated or unstimulated neurons, arise from the non-
exponentially with period, at least for large periods, and thatinear dynamics of the neuron and its internal dynamical
the scaling parameter is related to the largest Lyapunov exioise. Thus in seeking evidence of low dimensional dynami-
ponent and the entropies of the attractor. We have studiecal behavior in biological preparations, one must have a
numerically the effects of noise and neighborhood size onmethod that can look down through the noise. Moreover,
this scaling in the logistic and en maps and the standard because biological preparations can at best be only approxi-
Lorenz system using a modified CR method and, in the cas@ately stationary, whatever analysis technique is adopted
of the Haon map, a direct numerical method. In all tests, wemust be able to effectively deal with relatively short data
find exponential scaling with the period regardless of thesets. Finally, the state of stability of the dynamics is of prime
noise intensity, so long as that intensity is smaller than thénterest in biology, because it is more likely to be success-
neighborhood parameter. fully related to animal behavior. Thus the technique should

We turn now to a brief discussion of the applicability of also be able to distinguish stable from unstable periodic or-
the theory and numerical simulations to the TR method. Whypits and detect bifurcations between these behaviors. As we
is this method uniquely successful at finding low periodhave shown here the TR method is well suited for these
UPOs in short noisy data sets, and why can it not see highasks. Moreover, it is numerically relatively simple, thus it is
periods? The TR method detects the signatures of encounteg@sy to implement and runs rapidly enough to be used on line
with UPOs by searching for intersections of the unstable an@uring experiments. The latter feature is essential to applica-
stable manifoldgin two dimensions It does so by examin- tions involving control of chaos>*®
ing returns to a Poincargection and computing the perpen- ~ The example biological data presented in Fig. 1 shows
dicular distances of the return points to the line of periodicconsiderable scatter. These files were selected only on the
points, X+ ,=X,. There must be a sequence of points with basis that they show a significant number of period-2 orbits.
decreasing distances followed by a sequence with increasingey were thus obtained under various experimental condi-
distanceS, om points in total (m is typ|ca||y 5, see Refs. tions. The analOgOUS situation in a phySicaI System would be
20-23 and 2b The occurrence of these two connected sel0 collect orbits at random while varying the system param-
quences is the signature of a trajectory approaching the uriters, then selecting all data sets showing any evidence of a
stable periodic point at the intersection of the manifolds andP€riod-2 orbit. Under these conditions large variability is to
then departing from it. If the definition of an encounter re-be expected. We show here the data selected in this way
quiresm total returns in the two sequences, then some degre@ecause it is probably typical of what might be expected of
of coherence must be maintained over a lergth For high ~ Most biological systems where experimental cond|t|Cpts.
periods, this is a large number, which means that the prog@meters cannot be nearly so well controlled as for physical
ability to find a valid encounter becomes small. In practice SyStéms. Our intention was to test the method and look for
this probability drops to the level of the probability for €vidence of scaling using data as it might typicaligther
chance findings as determined by the surrogates for period§an ideally be encountered in biological preparations.
of about four or greater. Thus the TR method fails to detec{3'ven the large variability typical of our biological data, it is
high period orbits. However, the signature of an encounter igroblematic that we have successfully achieved our goal of
a very specific sequence of points. See Refs. 20, 21, and F§nnecting the three or four observable URGse, for ex-
for details. By contrast the theory and the numerical meth@MPl€, Fig. 1 with the infinite set. We have, however, pro-
ods, particularly the CR method, used here to find the enYided a convincing reason for the rapid decrease in the ob-
counter probabilities, require only thatreturns fall within ~ S€rved encounter probabilities with period.
some neighborhood of size of the periodic point. Thus
significant coherence must be maintained only over a length ckNOWLEDGMENTS
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