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ABSTRACT

In nonautonomous dynamical systems, rate-induced tipping (R-tipping) is a critical transition triggered by the rate of change of a time-
varying parameter, rather than its absolute value. In recent years, there is a growing interest in R-tipping due to its relevance to significant
problems of current interest, such as potential, catastrophic collapse of various ecosystems induced by climate change. This brief review
provides an overview of the basic concept, theory, and real-world implications of R-tipping from a global phase-space point of view. The key
quantity underlying the global approach is the probability of R-tipping defined with respect to initial conditions in the phase space. A recently
discovered scaling law governing this probability and the rate of parameter change is introduced, which has so far been restricted to a class
of high-dimensional, complex, and empirical ecological networks: pollinator–plant mutualistic networks. Issues such as prediction of tipping
and protection of ecosystems from R-tipping are discussed.
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Once upon a time, there was a donkey grazing near a river. A
flash flood occurred and the donkey began to run toward the high
ground some distance away. If the flood front was sufficiently
slow, the donkey would reach the high ground in time and sur-
vive. However, if the flood front was too fast, the donkey would
be swept into the water and would not survive. Clearly, in addi-
tion to the speed of the flood front, the survival of the donkey also
depends on its initial position: near to or far away from the river.
For any specific position, there is a critical speed of the flood,
below which there is survival but above which death or extinc-
tion occurs. This is an intuitive picture of the phenomenon of
rate-induced tipping, or R-tipping. In nonlinear dynamics, if the
system is autonomous and bistable with two coexisting steady-
state attractors, one corresponding to survival and another to
extinction, each with its own basin of attraction, the basin bound-
ary is stationary, i.e., it does not move in time. When a parameter
changes with time so that the system becomes nonautonomous,
the basin boundary will move with time. Whether a specific ini-
tial condition will lead to system survival or extinction depends
on its location in the phase space as well as the “speed” at which
the basin boundary moves. For an initial condition originally
in the basin of the survival attractor, if it moves more “slowly”

than the basin boundary, it will be swept into the basin of the
extinction attractor, leading to a tipping of its fate. For any such
initial condition, there exists a critical speed of the movement of
the basin boundary, or a critical rate of the parameter change,
above which R-tipping will occur. For a given rate of parameter
change, some initial conditions in the phase space will experience
R-tipping, while some others will not by remaining in the basin of
the survival attractor, in spite of the time variation of the param-
eter. The probability of R-tipping can then be defined for any
given rate of parameter change. How does this probability depend
on the rate? Characteristically, there are two possible scenarios.
If, as the rate becomes nonzero, this probability increases from
zero but slowly, a safe interval will arise in the rate in which the
probability remains at some near-zero value—a desired situation.
However, if the probability grows immediately and drastically
as soon as the rate of parameter change increases from zero, no
such safe interval or region will exist. In this case, in order to
keep the probability of R-tipping diminishingly small, practically
the rate of parameter change must be reduced to zero. Unfor-
tunately, in nonautonomous dynamical systems, the dependence
of the probability of R-tipping on the rate of parameter change
tends to follow the second scenario. This brief review presents
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mathematical reasoning establishing such a dependence, or the
scaling law, which so far has been computationally verified only
for a class of complex, high-dimensional empirical ecological net-
works: plant–pollinator mutualistic networks. One implication
for such ecological networks is dire: in order to protect ecosys-
tems from climate change, the rate of adverse parameter change,
such as the rate of emissions of chemicals into the atmosphere,
must be kept at near zero values.

I. INTRODUCTION

A tipping point is a critical threshold within a complex dynam-
ical system where a small perturbation can lead to significant and
often irreversible system changes.1–33 Due to its implications for
system stability and resilience, the phenomenon of tipping has
garnered substantial attention across various scientific disciplines
including climate science,1,11,30 neuroscience,6,14 and engineering.7

In autonomous dynamical systems, a tipping point is the result of
parameters reaching a critical level or of the influence of noise,
which are referred to as bifurcation-induced tipping or noise-
induced tipping,11,32 respectively. A common dynamical mechanism
for tipping is a backward saddle-node bifurcation where, as the
bifurcation parameter increases through a critical point, a stable
steady state and an unstable one coalesce and disappear together.
Assume that the stable steady state corresponds to a “healthy” or
“survival” state of the system. Before the bifurcation, there is bista-
bility where the “healthy” steady state and another steady state asso-
ciated with the “collapse” or “extinction” of the system coexist. After
the bifurcation, the “healthy” steady state no longer exists, leaving
the “collapse” state as the only attractor of the system. The back-
ward saddle-node bifurcation thus leads to a tipping, after which the
system functions are destroyed.

Dynamical systems in the real world are often of the nonau-
tonomous type, due to the ubiquitous variations of the system’s
parameters with time. For example, influenced by global climate
change, the parameters of many ecosystems can drift with time,
making them nonautonomous. When a parameter of the system
changes with time, its rate of change is of particular concern—one
example is the rate of carbon-dioxide emission into the atmosphere,
which has been increasing steadily in recent decades. From the point
of view of tipping, one might tempt to think that the time rate of
change of a parameter may not be important, insofar as its value
has not reached the threshold for tipping. More specifically, consider
the two cases where a bifurcation parameter of the system changes
slowly or fast, respectively, and suppose that the value of the param-
eter is still far away from a tipping point from the bifurcation point
of view. In which case is a tipping event more likely? This ques-
tion was addressed in a series of seminal works,6,11,34 where the rate
of the parameter change acts as a “super parameter” of the system
and can induce tipping. This is known as rate-induced tipping or
R-tipping.

Most previous studies on R-tipping were from a near-
equilibrium perspective, focusing on initial conditions near the
system’s steady state. This approach is particularly effective if the
system is always near an equilibrium point. In the real world,
the state that an ecological system is in depends not only on

the deterministic dynamics, but more importantly, on random
and unexpected influences such as demographic stochasticity35 and
large-scale stochastic geographical and climatic events.36 As a result,
an ecosystem can be far from a stable equilibrium but may still be
in its basin of attraction if the perturbations are not strong enough
to push the system across the basin boundary. In fact, for a high-
dimensional ecosystem, the probability that it is found far from
equilibrium and is in a transient state can be quite appreciable.37,38

The non-equilibrium initial conditions can significantly influence a
system’s response to rapid parameter changes, rendering essential
and important considering initial conditions from a larger region of
the phase space rather than from the vicinity of some equilibrium
state.31,39

In a previous study, the global approach was employed to
demonstrate that different initial states of a ocean circulation
can lead to significantly different outcomes under rapid climate
changes.40 This study focused on the Atlantic Meridional Over-
turning Circulation (AMOC), revealing that certain initial ocean
conditions make the system more prone to tipping, while others
allow for more gradual transitions. Similarly, an experimental study
in thermoacoustic systems revealed that R-tipping can occur when
the system is preconditioned with some specific initial states,41 high-
lighting the role of non-equilibrium dynamics in R-tipping in that
even initial conditions far from equilibrium can trigger a tipping
event. In ecological and climate systems, a recent work showed
that R-tipping depends not only on the speed of parameter changes
but also on the unstable state, basin boundaries, and transient
dynamics,32 demonstrating that R-tipping is sensitive to initial con-
ditions, with different conditions having different critical rates of
change.

In this brief review, we explore the intricate dynamics of tip-
ping points with a focus on R-tipping. In Sec. II, we provide a brief
historical overview of different types of tipping phenomena, high-
lighting the distinct characteristics of R-tipping compared to other
forms of tipping such as bifurcation and noise-induced tipping. In
Sec. III, the necessity of the global phase-space approach beyond the
conventional near-equilibrium analysis to understand R-tipping is
described. Sections IV and V review the key findings of Ref. 31,
including a scaling law between the probability of R-tipping and
the rate of parameter change, which were established for a partic-
ular class of high-dimensional ecological networks. In Sec. VI, a
discussion on the implications of the scaling law for these empiri-
cal ecological networks is presented and potential topics for further
research of R-tipping in complex systems are suggested.

II. TYPES OF TIPPING IN NONLINEAR DYNAMICAL

SYSTEMS

A tipping point is a critical threshold where a system experi-
ences a sudden and irreversible shift from one stable state to another
due to internal or external drivers. Tipping points have been exten-
sively studied in various fields, including climate science, biology,
economics, and engineering. They can be classified into three main
types: bifurcation-induced tipping (B-tipping), noise-induced tip-
ping (N-tipping), and rate-induced tipping (R-tipping). Each type
arises from different mechanisms, and their understanding is crucial
in predicting and controlling system transitions.

Chaos 35, 043139 (2025); doi: 10.1063/5.0226420 35, 043139-2

Published under an exclusive license by AIP Publishing

 25 April 2025 15:54:36

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

A. Bifurcation-induced tipping (B-tipping)

The study of B-tipping dates back to the discovery of dynam-
ical systems and bifurcation theory in the late 19th and early 20th
centuries, pioneered by Henri Poincaré (1854–1912). Bifurcation
theory explores how small, continuous changes in system param-
eters can result in qualitative shifts in its overall behavior, such
as saddle-node (fold), transcritical, and pitchfork bifurcations.42

Among these, the saddle-node bifurcation is particularly relevant to
tipping, as it involves the collision and subsequent annihilation of
a stable (node) and unstable (saddle) equilibrium point.43,44 When
a saddle-node bifurcation occurs, the system experiences a sudden,
discontinuous shift to an alternative stable state—the hallmark of
B-tipping. In contrast, other bifurcation types such as the trans-
critical or pitchfork typically lead to smoother transitions, where
the system evolves more gradually between states without abrupt
changes.

B-tipping has been studied across a wide range of disciplines
from ecology and climate science to neuroscience and engineering.
One of the first fields to adopt B-tipping was ecology.4,16,29,38,45,46 In
the 1970s and 1980s, ecological models began incorporating the idea
that slow changes in the environmental conditions could lead to sud-
den, irreversible shifts in ecosystems.47,48 For example, a lake might
gradually become more eutrophic (nutrient-rich), but at a critical
threshold, it tips from a clear state to a turbid, algae-dominated
state49,50 In the 1990s and early 2000s, the study of critical transitions
in the Earth’s climate system began to expand rapidly.51 Climate
systems are highly nonlinear, and many components (such as ice
sheets, ocean circulation patterns, and vegetation cover) were shown
to exhibit tipping points.12,52–57 The idea of climate tipping points
was popularized,58 where the major components of the Earth’s sys-
tem were identified that are susceptible to B-tipping. For example,
the AMOC could slow down and collapse if fresh water from melting
ice caps reduces its salinity past a critical threshold.40,59–61

In physiology and medicine, B-tipping was also applied to the
study of epilepsy and other neurological disorders.62–66 In engineer-
ing, it was studied for controlling mechanical systems and power
grids.67–71

B. Noise-induced tipping (N-tipping)

The concept of noise influencing system behavior was first
proposed through the phenomenon of stochastic resonance, asso-
ciated with which noise can actually enhance the detection of weak
periodic signals in nonlinear systems.72 Despite the seemingly dis-
ruptive nature of noise, if a dynamical system exhibits a stochastic
resonance, some optimal level of noise can improve the system’s sen-
sitivity to small external forces.73 In nonlinear dynamical systems,
noise can induce a critical transition such as a crisis74 or make a
non-chaotic system chaotic.75,76 In biological sciences, it was demon-
strated that noise can also play a beneficial role in promoting coex-
istence in ecological systems77–80 and enhancing signals in neural
systems.81 In slow–fast excitable systems, a variety of noise-induced
phenomena can arise.82

Noise-induced tipping, or N-tipping, is referred to as a sudden
shift in a system’s state caused by external or internal stochas-
tic fluctuations without requiring any smooth changes in system
parameters.83,84 Differing from B-tipping driven by a deterministic

shift in some system parameters leading to a critical transition,
N-tipping is triggered by random perturbations that can desta-
bilize a system and push it toward a new state, even in the
absence of a bifurcation.83 In climate science, the importance of
stochastic fluctuations such as volcanic eruptions or fluctuations
in solar radiation in triggering abrupt large-scale climate tran-
sitions has been widely recognized.53,85–88 In ecology, N-tipping
was deemed as a potential driver of sudden transitions.89–91 While
deterministic changes in the environmental conditions can cause
B-tipping, random environmental fluctuations such as seasonal
changes, storms, or fires can also push an ecosystem from one state
to another, even in the absence of a parameter crossing a bifurca-
tion threshold. N-tipping has also been explored in neuroscience
and engineering, particularly in the context of brain dynamics and
disorders.81,92–95

C. Rate-induced tipping (R-tipping)

R-tipping is a ubiquitous phenomenon in natural and man-
made systems.30,33,96–98 It is particularly relevant to phenomena
induced by the global climate change.99,100 Rapid environmental
changes, such as accelerated global warming, can induce tipping
events in various components of the Earth’s climate system, includ-
ing ice sheets, ocean currents, and ecosystems.30 For example, the
rapid melting of Arctic sea ice due to increasing temperatures can
trigger feedback mechanisms that further accelerate ice loss and
contribute to global climate instability.101,102 Ecosystems, charac-
terized by their complex interactions and nonlinear dynamics, are
also susceptible to R-tipping.32,103 Rapid changes in environmen-
tal conditions, such as deforestation, pollution, or climate change,
can push ecosystems past critical thresholds, leading to regime
shifts.32 These shifts can result in significant biodiversity loss and
altered ecosystem services.39 For instance, coral reefs are vulnerable
to rapid increases in sea temperature and acidification, which can
cause widespread coral bleaching and degradation.104 Engineering
systems such as power grids, transportation networks, and indus-
trial processes are not immune to R-tipping.30 These systems often
operate under dynamic conditions where parameters such as the
load, demand, or operational settings can change with time.105 If the
rates of these changes surpass their corresponding critical thresh-
olds, system failures, cascading outages, or catastrophic breakdowns
can occur.

The phenomenon of R-tipping was first conceived in 2008
when the critical-rate hypothesis was proposed, suggesting that the
rate at which environmental changes occur can be more significant
than the magnitude of those changes in determining the long-
term ecosystem states.34 The concepts of critical ramping rate and
rate-dependent tipping were subsequently introduced.6,11,18 Insights
into R-tipping can be gained through the bifurcation diagrams
of the corresponding autonomous system.18,106 Another approach
is constructing asymptotic series expansions to characterize R-
tipping.107 The interplay between noise and the rate of parameter
change in triggering a tipping event was studied.108,109 R-tipping
was also investigated in cases where the quasi-static attractor is
not necessarily an equilibrium state but periodic,110 chaotic25 in
multi-dimensional,111–113 discrete-time dynamical systems,114 and
spatiotemporal dynamical systems.115 Further, early warning signals,
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which are a critical indicator for detecting tipping in dynamical
systems, have been adapted to R-tipping.116–118

The R-tipping phenomenon can be better appreciated from a
global perspective with a special focus on mutualistic networks.31

These complex real-world ecological networks, e.g., the
plant–pollinator networks from different geographical regions of the
world. The key quantity of interest is the probability of R-tipping in
these systems. In particular, for a given rate of parameter change, a
large number of initial conditions sampled from a relevant region of
the phase space can be examined so that the probability of R-tipping
can be defined as the fraction of initial conditions that lead to tipping
at a specific rate. For mutualistic networks, there are two potential
scenarios for this dependence at the opposite extremes, as illustrated
schematically in Fig. 1. One is that the probability increases slowly
from zero as the rate increases. Such a “benign” dependence might
be our hope, e.g., for an ecosystem, as this means there is a certain
tolerance of the system against even fast parameter changes, leav-
ing room for opportunities for control and mitigation. The opposite
scenario is that the probability of R-tipping grows drastically and
immediately as the rate of parameter change increases from zero. In
this case, the system has no tolerance against any rate value, even if it
is small. The implication is dire: in order to avoid R-tipping, the rate
of parameter change must be reduced to practically near zero values.
Which scenario of R-tipping do real-world dynamical systems tend
to follow? The answer, unfortunately, is likely to be the second sce-
nario for mutualistic networks.31 Quantitatively, this scenario can be
characterized by a general scaling law between the probability of R-
tipping and the rate of parameter change. In the following section,
a mathematical theory will be introduced to understand the scal-
ing law, with numerical support from real-world plant–pollinator
networks. The overall message is that, to prevent R-tipping from
occurring in ecosystems and climate systems, the time rate of param-
eter change, such as the rate of emissions of harmful chemicals
into the environment, must be significantly suppressed and kept at
near zero.

III. NECESSITY OF A GLOBAL PHASE-SPACE

APPROACH TO R-TIPPING

A. R-tipping as a global dynamical phenomenon

In real-world dynamical systems, parameters are not stationary
but constantly change with time. For example, in climate systems,
factors such as temperature and CO2 emissions are not static but
increase over time, influencing the system’s stability with poten-
tially severe consequences that can lead to the possible collapse
of the system. To gain a qualitative understanding of the phe-
nomenon of R-tipping in nonautonomous dynamical systems from
a global perspective, we compare it with bifurcation-induced tipping
in autonomous dynamical systems.

For bifurcation-induced tipping, we consider the scenario
where, in the parameter regime of interest, two stable steady states
(or attractors) coexist: a “left” state corresponding to “normal”
functioning, as highlighted by yellow in Fig. 2(a), and a “right”
or “abnormal” state. Each state has its own basin of attraction. If
external factors cause an increase in a bifurcation parameter of the
system, a tipping point can occur through a backward saddle-node

FIG. 1. Probability of R-tipping vs the time rate of parameter change: two possible
scenarios. The first one, as indicated by the black dashed curve, is that the R-tip-
ping probability increases from zero slowly with the rate, where there is a “safe
region” or “safe interval” of the rate in which the probability remains at some near
zero value, thereby providing opportunities of control or intervention to reduce the
rate of parameter change. The second scenario, as illustrated by the solid blue
curve, is that the R-tipping probability grows dramatically and immediately as the
rate of parameter change increases from zero. In this case, there is no safe region:
in order to keep the probability near zero, the rate of parameter change must prac-
tically be reduced to zero. Mathematical reasoning and numerical evidence from
empirical complex ecological networks tend to support the second scenario for
nonautonomous dynamical systems in the real world.

bifurcation, which is reached when the “normal” fixed point disap-
pears, leaving the “abnormal” state as the sole attractor. As a result,
the basin of attraction for the original “normal” state is absorbed
into that of the “abnormal” state. This means that, once the system
crosses this tipping point, it inevitably transitions to the “abnor-
mal” state, with no possibility of returning to the “normal” state
through small perturbations. This type of bifurcation highlights the
critical threshold beyond which a system undergoes an irreversible
transition to a drastically different state.

The R-tipping scenario is illustrated in Fig. 2(b). Rapid vari-
ations of a parameter can trigger a critical transition even if the
parameter values remain within some safe bounds. Consider the set-
ting where, in the range of parameter variations, the system exhibits
bistability with two coexisting stable steady-state attractors, repre-
sented by yellow and blue, respectively, in Fig. 2(b). Each state has
its own basin of attraction, as indicated by green and purple arrows,
respectively. During the transition, the basin of attraction of the left
state (yellow) expands, while the basin of attraction of the right state
(blue) shrinks. In this case, the final state of the system is determined
by both the initial condition and the speed at which the parameter
changes. In particular, rapid parameter changes can push the system
past some critical threshold, causing it to settle into a different stable
state than it would under slower, more gradual parameter changes.

Most previous studies of R-tipping focused on
low-dimensional dynamical systems from a near equilibrium point
of view, emphasizing the behavior of specific initial conditions in the
vicinity of a stable equilibrium point and their trajectories to address
issues such as the critical rate for tipping. Commonly, R-tipping was
conceived as an abrupt change in the system behavior occurring
at a specific rate of change of a bifurcation parameter.18 However,
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FIG. 2. Schematic comparison of bifurcation-induced tipping and R-tipping in a
simple potential model. (a) Bifurcation-induced tipping: static changes in the con-
trol parameter lead to the disappearance of one steady state of the system. (b)
R-tipping: the state of the system is determined by both the initial condition and
the speed at which the parameter changes.

real-world systems are inherently dynamic and often operate under
nonideal conditions:38,119 they are constantly influenced by exter-
nal disturbances, fluctuating environmental conditions, and inher-
ent variability where disturbances and stochastic variations are the
norm rather than the exception.35,87 For example, ecological systems
are affected by changes in species interactions and environmental
factors all the time, which, in turn, influence population dynam-
ics and stability.36–38 In these contexts, species may face varying
levels of predating, competition, and resource availability, leading
to complex and unpredictable behaviors. The dynamic nature of
these systems means that they often drift away from the equilib-
rium point, making them susceptible to tipping events triggered by
rapid changes in external conditions. This variability necessitates the
study of R-tipping from a global perspective, taking into account
the entire relevant phase space rather than focusing solely on the
near-equilibrium dynamics surrounding the equilibrium point.

More generally, initial conditions away from an equilibrium
point can influence the system’s response to rapid parameter
changes, making it essential to consider a broader range of initial
conditions in R-tipping studies. For example, in ecological systems,
the natural variability in species populations and environmental
conditions invalidate the assumption of initial conditions being near
some equilibrium. Similarly, in engineering systems, operational
parameters can drift due to external shocks or internal variabil-
ity, necessitating a comprehensive analysis that accounts for a wide
range of the initial states. In fact, the integration of diverse ini-
tial conditions into R-tipping research is not merely an academic
exercise, but a practical necessity for accurately assessing and man-
aging the risks associated with critical transitions in natural and
engineering systems.

B. Dependence of critical rate for R-tipping on initial

conditions

A consequence of a global analysis is that the critical rate for
R-tipping depends on the initial condition. This dependence can
be conveniently analyzed in the general setting of bistability in a
two-dimensional phase space in which two steady-state attractors
coexist: survival and extinction, as illustrated by the filled green
and red circles, respectively, in Fig. 3. To gain insights, we begin
by considering two extreme cases: r = 0 and r → ∞. For r = 0,
there is no change in the parameter p with time: it stays at the ini-
tial value p1. For this relatively small parameter value, the system
is mostly “healthy” so the basin of attraction of the survival attrac-
tor is “larger.” In this case, the majority of the initial conditions in
the phase space will land the system in the survival attractor, so the
basin boundary 61 between the two basins is located closer to the
extinction attractor, as shown in Fig. 3(a). In the opposite extreme
r → ∞, for any t > 0, the system is already at the larger parameter
value p2 so the system is in a decayed environment that is hostile to
system’s normal functioning. In this case, the majority of the initial
conditions in the phase space will lead to extinction and the basin
boundary 62 is closer to the survival attractor, as shown in Fig. 3(b).
The phase-space structures for these two extreme cases, as illustrated
in Figs. 3(a) and 3(b) for r = 0 and r → ∞, respectively, implies that
for any finite value of r, say r∗, the basin boundary 6∗ must lie in
between 61 and 62, as shown in Fig. 3(c).

We now provide a mathematical reasoning for the dependence
of the critical rate for R-tipping on the initial condition, which pro-
vides a geometric principle to determine the critical rate for any
given initial condition. In particular, in Fig. 3(c), all initial condi-
tions on the basin boundary 6∗ have the critical rate r∗. To see
this, consider two parameter values in the vicinity of r∗: r∗ ± δr,
where δr is infinitesimal. For r = r∗ − δr < r∗, the basin bound-
ary is located slightly closer to the extinction attractor than 6∗, as
shown in Fig. 3(d). In this case, all initial conditions on 6∗ belong
to the basin of the survival attractor. For r = r∗ + δr > r∗, the basin
boundary is located slightly closer to the survival attractor than 6∗,
so all initial conditions on 6∗ now belong to the basin of the extinc-
tion attractor. As a result, an infinitesimal increment in the rate
from r∗ will cause all initial conditions on 6∗ to switch their fate:
from survival to extinction, indicating that r∗ is the critical rate of R-
tipping for all the initial conditions on the basin boundary 6∗. For
a different value of the rate, say r†, the location of the basin bound-
ary in the phase space is different, so the initial conditions on this
boundary will have the critical rate r†, which is different from r∗. It
is therefore apparent that, from the point of view of the whole phase
space, the concept of critical rate may not be meaningful as there is
an uncountably infinite number of critical rate values for R-tipping,
depending on the initial condition.

IV. SCALING LAW OF R-TIPPING PROBABILITY

In our recent work,31 a scaling law governing the dependence
of the probability of R-tipping on the rate of parameter change in
mutualistic networks was uncovered. To explain the scaling law, we
assume that a parameter of the system, denoted as p(t), increases
at the linear rate r from an initial value p1 at time t = 0 to a final
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FIG. 3. Phase-space structure for different values of the rate parameter and dependence of the critical rate on initial condition. The nonautonomous bistable system has
a time-varying parameter p(t) that increases at the linear rate r from an initial value p1 at time t = 0 to a final value p2 > p1 during the time interval [0, T ], where p1 (p2)
corresponds to a health (deteriorated) environment. There are two attractors throughout the parameter variation: a survival and an extinction attractor. (a) The extreme case
r = 0 [p(t) = p1], where the basin boundary 61 is located closer to the extinction attractor. (b) The opposite extreme case r → ∞, where basin boundary 62 is located
closer to the survival attractor. (c) The location of the basin boundary6∗ for any finite rate value r∗, which is in between61 and62. (d) The basin boundaries for rate values
r∗ ± δr with infinitesimal δr , revealing that all initial conditions on 6∗ share r∗ as the critical rate value for R-tipping.

value p2 > p1 during the time interval [0, T] with T = (p2 − p1)/r.
We assume a qualitative correspondence between the environmental
condition and p(t): a smaller value of p indicates a relatively more
healthy state of the system. In ecosystems, such a parameter could
be, e.g., the decay rate of some species, which tends to increase as
the environment deteriorates with time. Let 8(r) be the probability
of R-tipping. The scaling law is

8(r) ∼ exp

[

−C
(p2 − p1)

r

]

, (1)

where C > 0 is a constant. This scaling law has the following fea-
tures: (1) the probability 8(r) is an increasing function of r, (2) the

derivative 8′(r) is a decreasing function of r, and (3) the maximum
rate of increase in 8(r) occurs for r & 0. The second feature indi-
cates that the rate at which 8(r) increases slows down as r increases,
eventually approaching zero as r → ∞. The third feature empha-
sizes the fact that, insofar as the parameter varies with time, even
with a very small rate of change, the chance of R-tipping can be
nonzero and large. This has alarming real-world implications: a
slow change in the parameter could still precipitate a system col-
lapse with catastrophic consequences, so simply slowing down the
rate of parameter change might not be sufficient to prevent tipping.
Instead, the rate of change must be reduced to a nearly zero value to
prevent R-tipping.

Chaos 35, 043139 (2025); doi: 10.1063/5.0226420 35, 043139-6

Published under an exclusive license by AIP Publishing

 25 April 2025 15:54:36

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

To derive the scaling law (1), we consider two different rates
of parameter change: r1 and r2 > r1. In an autonomous system,
the boundary is the stable manifold of an unstable fixed point,
denoted as f, as indicated by the filled green circle in Fig. 4. When
the system becomes nonautonomous with a time-varying parameter
p(t), the unstable fixed point and the basin boundary become time
dependent, so we write f(t) or f(p). We focus on an infinitesimal
neighborhood of f(t), where the basin boundary is approximately
straight, as shown in Figs. 4(a) and 4(b) for r = r1 and r = r2, respec-
tively. For the two cases, the parameter variation occurs within the
interval [p1, p2] in the time interval [0, T1] and [0, T2], respectively.
Since r2 > r1, we have T2 < T1. In each case, the arrowed dashed
line through f(t) indicates the direction along which it moves in the
phase space as the parameter changes over time. The solid green (at
t = 0) and blue (for t = T1 or T2) line segments through f(t) rep-
resent the boundaries separating the extinction from the survival
basin. Before the parameter variation starts (p = p1), initial condi-
tions below the solid green lines belong to the basin of the extinction
attractor, while those above belong to the survival attractor. After
the parameter variation ends (p = p2) the initial conditions below
the solid blue lines belong to the extinction basin, and those above
belong to the survival basin.

During the parameter variation, f(t) shifts from the green cir-
cle’s position to the blue circle’s position, causing its stable manifold
(the basin boundary) to move accordingly. Initial conditions in the
light-green shaded area, which initially belong to the survival attrac-
tor’s basin for p = p1, will be exponentially stretched along f(t)’s
unstable direction and compressed in the stable direction, forming
a long blue rectangle. Since T1 > T2, the blue rectangle for r = r1 is
longer and thinner compared to that for r = r2. Due to f(t)’s move-
ment and the changing basin boundary as the parameter varies, a
portion of the long rectangle (dark shaded blue) now falls within the
basin of the extinction attractor. The initial conditions in the origi-
nal green rectangle that evolve into this dark shaded blue region are
those that switch from the survival to the extinction attractor due to
the time-dependent parameter change, experiencing R-tipping, as
indicated by the red rectangle within the green area in Fig. 4(b). The
fraction of such initial conditions for any given rate r determines the
R-tipping probability. Denoting the fraction of R-tipping initial con-
ditions by d(0) and the distance between the basin boundaries along
f(t)’s unstable direction by 1, we have

d(T) = 1 = d(0) exp (λT), (2)

where λ is the unstable eigenvalue of f(t), which is assumed to
remain approximately constant in the course of time variation of
the parameter. Substituting T = (p2 − p1)/r into Eq. (2) leads to the
scaling law (1).

In the derivation of the scaling law (1), the assumption that
the initial conditions are uniformly distributed in the phase-space
region was employed.31 This assumption is speculative and at the
best approximate as there are no empirical data on how the initial
conditions are distributed in typical real-world ecological systems.
A heuristic justification is that an ecosystem is under constant
bombardment of stochastic perturbations of different scales, such
as small-scale demographic stochasticity and large-scale climatic
events. Under such perturbations, an ecosystem is pushed away
from a stable equilibrium into different regions of the phase space

FIG. 4. A geometrical argument leading to the scaling law (1). See text for details.
This figure is based on Fig. 5 in Ref. 31.

along a variety of directions at all times. In this sense, a uniform
distribution is a crude but not unreasonable assumption. How dif-
ferent initial-condition distributions may modify the scaling law is a
question that warrants further efforts.

V. SCALING LAW OF R-TIPPING IN COMPLEX

ECOLOGICAL NETWORKS

The derivation of the scaling law (1) is based on a two-
dimensional phase-space structure. Real-world systems are high-
dimensional. Can the scaling law (1) be expected to hold in high-
dimensional nonautonomous dynamical systems? One class of such
systems that was used31 to test the scaling law (1) is complex plant-
pollinator mutualistic networks,16,20,23,90,120–127 where a species in the
plant group benefits from interacting with some species in the polli-
nator group, and vice versa, as illustrated in Fig. 5(a). The structures
of over 100 empirical mutualistic pollinator–plant networks from
many geographical regions in the world have been well documented
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FIG. 5. Illustration of mutualistic networks. (a) Mutualistic interaction between a
plant and a pollinator species. (b) Network structure of an empirical mutualistic
network from the Web of Life database.

(Web of Life database, www.Web-of-Life.es). One example of such
a network is shown in Fig. 5(b). At the present, a detailed computa-
tional model for these empirical mutualistic networks is available.120

In spite of their high dimensionality, due to the nature of steady-
state dynamics associated with tipping, a mutualistic network can
be reduced effective to a two-dimensional system20 through some
conventional dimension-reduction methods, providing a feasible
paradigm for numerically testing the scaling law (1).

The dynamics of a plant–pollinator mutualistic network, com-
prising NA pollinator and NP plant species, are described by a system
of N = NA + NP nonlinear differential equations of the Holling type
in terms of the species abundances,120

Ṗi = Pi



αP
i −

Np
∑

l=1

βP
il Pl +

∑NA
j=1 γ P

ij Aj

1 + h
∑NA

j=1 γ P
ij Aj



 , (3)

Ȧj = Aj

(

αA
j − κj −

NA
∑

l=1

βA
jl Al +

∑NP
i=1 γ A

ji Pi

1 + h
∑NP

i=1 γ A
ji Pi

)

, (4)

where Pi and Aj are the abundances of the ith and jth plant and
pollinator species, respectively, i = 1, . . . , NP and j = 1, . . . , NA. The
equations account for intrinsic growth rates, intraspecific and inter-
specific competitions, and mutualistic interactions, with specific
parameters characterizing the dynamics, such as the pollinator decay
rate κ , intrinsic growth rate αP(A), and the half-saturation con-
stant h. The mutualistic interactions are further quantified through

parameters γ
P(A)
ij = ξijγ0/Kτ

i that depend on whether a mutualistic
interaction exists (ξij), the general interaction parameter γ0, and the
degree of the plant species Ki.

To introduce the rate change of a parameter, three different
scenarios were considered31 where negative environmental impacts
can lead to: (1) a linear increase in the species decay rate, (2) a
linear decrease in the mutualistic interaction strength, and (3) simul-
taneous linear changes in both parameters over time. Simulations
were conducted using ten empirical mutualistic pollinator–plant
networks, where the intervals of parameter variations were selected
to ensure the occurrence of bistability. The structures of the ten net-
works are illustrated in Fig. 6(a), and their structural parameters and
origin are listed in Fig. 6(b).

FIG. 6. Scaling law of R-tipping for ten empirical mutualistic networks. The time--
varying parameter is the pollinator decay rate κ . (a) The network structures. (b)
Structural parameters and origins of the ten empirical networks. (c) R-tipping prob-
ability 8(r) vs the rate r of parameter change. The dots are the results from
direct numerical simulations of the high-dimensional networks with an ensem-
ble of random initial conditions from a substantial volume of the high-dimensional
phase space. The solid curves are the theoretical fits of the scaling law (1). Other
parameter values in the computational model are fixed:α = 0.3,β = 1, h = 0.4,
γ P = 1.93, and γ A = 1.77. This figure is based on Fig. 5 in Ref. 31.

For the high-dimensional mutualistic network given by Eqs. (3)
and (4), the probability 8(r) of R-tipping can be calculated, as fol-
lows. One first sets r = 0 and solves Eqs. (3) and (4) numerically
for a large number of random initial conditions chosen uniformly
from the whole high-dimensional phase space. Next, a large number
(e.g., 105) initial conditions resulting in trajectories that approach
the high stable steady state in which no species becomes extinct are
determined. The rate r is then increased from zero. For each fixed
value of r and for each of the selected 105 initial conditions, whether
or not the final state is the high stable state is checked. If yes, there
is no R-tipping for the particular initial condition. However, if the

Chaos 35, 043139 (2025); doi: 10.1063/5.0226420 35, 043139-8

Published under an exclusive license by AIP Publishing

 25 April 2025 15:54:36

https://pubs.aip.org/aip/cha
https://www.Web-of-Life.es


Chaos ARTICLE pubs.aip.org/aip/cha

final state becomes the extinction state, R-tipping has occurred for
this value of r. The probability 8(r) can be approximated by the frac-
tion of the number of initial conditions leading to R-tipping out of
the 105 initial conditions.

Figure 6(c) presents examples of the scaling law of the prob-
ability of R-tipping 8(r) with the rate r where, for each network,
the species decay rate κ varies with time linearly across the interval
specified in Fig. 6(b). It can be seen that the R-tipping probabili-
ties for all ten networks exhibit qualitatively similar behavior: as the
rate of parameter change increases from zero, the probability ini-
tially rises rapidly and then plateaus at an approximately constant
value, as predicted by the scaling law (1). The final value of the R-
tipping probability depends on the specific structural characteristics
of the network.

VI. DISCUSSION

Investigating R-tipping is important for understanding how
complex systems respond to the constant changes in their param-
eters due to environmental effects. There are two approaches to
R-tipping in nonautonomous dynamical systems: near-equilibrium
and global. The near-equilibrium approach focuses on the behavior
near some equilibrium point, taking advantage of the correspond-
ing autonomous system to determine the conditions under which
the system transitions from one state to another. This approach has
provided insights into the R-tipping mechanism.

This brief review aims to introduce the global approach to
the nonlinear-dynamics community, which offers a comprehen-
sive and holistic picture, particularly for real-world systems that
are typically open, dynamic, and under the influences of stochastic
disturbances. Due to these effects, in the phase space, the dynam-
ical trajectory of the system can hardly be confined near some
equilibrium point but rather, it can wander in an extended region
of the phase space. Under such circumstances, a more effective
approach to studying R-tipping is to move beyond near-equilibrium
initial conditions and explore a broader range of initial conditions
within the relevant phase-space region. Consequently, the concept
of a single critical rate for R-tipping becomes less applicable, as it
varies with the initial condition, leading to an uncountably infi-
nite number of possible critical values. The scaling law (1), derived
through a geometric argument and validated in a number of com-
plex empirical plant-pollinator mutualistic networks, suggests a dire
consequence of the rate of parameter changes for these ecological
networks: insofar as it is not zero, the probability of R-tipping can be
substantial.

A topic of current interest is data-driven prediction of tipping
in nonlinear and complex dynamical systems. Traditional methods
often rely on detailed knowledge of the system’s dynamics, which
may not always be available. A promising approach is machine
learning, especially recurrent neural-network architectures capable
of identifying dynamical patterns and predicting critical transitions
by learning from data.128–136 To develop effective machine-learning
models for predicting tipping, two considerations are essential. First,
the availability of training data is crucial. While traditional clas-
sification problems require data from both sides of the critical
transition, this is impractical since post-transition data are not avail-
able. Training must be based on data from the pre-critical regime,

necessitating the development of models that can extrapolate from
this information. Second, the machine-learning architecture must
be capable of Self-organizing evolution, mimicking the inherent
dynamics of the target system. The recently developed adaptable
reservoir-computing129–133 provides a possibility.

A significant problem to which R-tipping is relevant is the
possible collapse of the AMOC40,137,138 that plays a crucial role in
maintaining moderate temperature conditions in Western Europe
by transporting warmer, upper waters northward and returning
colder, deeper waters southward.138,139 While studies have indicated
a tendency for AMOCs to weaken in the last 30 years,140,141 at the
present the AMOC is still in a stable state that ensures the contin-
uation of these critical ocean flows. However, due to the increasing
human influence on the climate change, a potential halt of this cir-
culation signifying a collapse of the AMOC represents a shift to
another stable steady state within the underlying dynamical system,
which is characteristic of R-tipping. Recent research based on sim-
plified stochastic dynamical system models suggests that the AMOC
may be on the course toward collapse, with a tipping point poten-
tially occurring as early as 2025.102 Estimating the probability of the
collapse due to R-tipping based on measurement data is an urgent
but open problem.
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