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ABSTRACT

A problem in nonlinear and complex dynamical systems with broad applications is forecasting the occurrence of a critical transition based
solely on data without knowledge about the system equations. When such a transition leads to system collapse, as often is the case, all
the available data are from the pre-critical regime where the system still functions normally, making the prediction problem challenging. In
recent years, a machine-learning based approach tailored to solving this difficult prediction problem, adaptable reservoir computing, has been
articulated. This Perspective introduces the basics of this machine-learning scheme and describes representative results. The general setting
is that the system dynamics live on a normal attractor with oscillatory dynamics at the present time and, as a bifurcation parameter changes
into the future, a critical transition can occur after which the system switches to a completely different attractor, signifying system collapse.
To predict a critical transition, it is essential that the reservoir computer not only learns the dynamical “climate” of the system of interest
at some specific parameter value but, more importantly, discovers how the system dynamics changes with the bifurcation parameter. It is
demonstrated that this capability can be endowed into the machine through a training process with time series from a small number of distinct,
pre-critical parameter values, thereby enabling accurate and reliable prediction of the catastrophic critical transition. Three applications are
presented: predicting crisis, forecasting amplitude death, and creating digital twins of nonlinear dynamical systems. Limitations and future
perspectives are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0200898

Critical transitions are a ubiquitous phenomenon in a variety
of complex dynamical systems. For example, in an ecosystem,
as the environmental conditions continuously deteriorate due
to global climate change, some key parameters underlying the
system dynamics can drift through a critical point and tipping
leading to mass extinction can arise. In an electrical power-grid
network, as a parameter characterizing the load increases through
a critical value, voltage collapse and a large-scale blackout can
occur. In engineering, an infrastructure such as a bridge can
suddenly collapse as some intrinsic parameter varies through
a critical value. In social, economical, and political systems,
a large institution or even a government can collapse as the
result of accumulated deterioration of certain internal and/or
external conditions. To be able to predict or anticipate the

potential occurrence of a critical transition is of broad inter-
est. For complex systems in the real world, it is not possible to
write down the mathematical equations governing their dynam-
ics. Even for those for which an approximate set of the governing
equations can be obtained through mathematical modeling, the
inevitable existence of errors, disturbances, and noise can defy
any prediction from the mathematical model. Predicting criti-
cal transitions should then be done based on data. A realistic
situation is that, typically, data can be measured from a system
but only when it is functioning—no data can be obtained after
its collapse. Because of this realistic constraint, a useful predic-
tion framework must rely on data that can be collected while the
system is still in a normal operational regime. The difficulty is
that, for fixed parameters in the pre-critical regime, no sign of
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any collapse can be detected from the measured dataset, making
predicting critical transitions a challenging problem in the field
of nonlinear and complex dynamical systems. In recent years, a
machine-learning framework for anticipating critical transitions
has begun to emerge, where a major approach is based on reser-
voir computing, a recurrent neural-network architecture that has
been investigated extensively for predicting the dynamical evo-
lution of nonlinear and chaotic systems for specific parameter
values. To enable a reservoir computer to predict critical tran-
sitions, it must be endowed with the ability, through training,
of assessing the dependence of the system dynamics on changes
in the parameters. That is, a well-trained reservoir computing
machine must not only learn the dynamical “climate” of the target
system for any fixed parameter set, but more importantly, to learn
how the “climate” changes with the parameter. Adaptable reser-
voir computing was developed to meet these requirements, with
demonstrated success in predicting critical transitions in a vari-
ety of low-dimensional dynamical systems or high-dimensional
systems with a simple parameter structure. Adaptable reservoir
computing also provides the foundation for creating digital twins
of nonlinear dynamical systems. This Perspective is devoted to
introducing adaptable reservoir computing, explaining its work-
ing, and presenting some representative examples of successful
prediction of different types of critical transitions. Limitations
and future perspectives are also discussed.

I. INTRODUCTION

In real-world applications, it is often the case that a precise
mathematical model describing the underlying system is not avail-
able, so understanding and predicting its dynamical behaviors must
be based on observation and measured data. The reality raises a chal-
lenging problem in nonlinear dynamics: how to anticipate potential
future collapse of the system with only data collected in the past?
More specifically, suppose that, at the present, the system is in a pre-
critical parameter regime of normal functioning, but a bifurcation
parameter of the system changes slowly with time. At certain points
in the future, as the parameter increases through a critical value, a
transition can occur that places the system in a catastrophic state
of collapse. Nearly half a century of research in nonlinear dynam-
ics revealed that such critical transitions are in fact quite common,1,2

such as a crisis3 at which a chaotic attractor is suddenly destroyed
or an amplitude death4,5 at which the normal oscillatory behavior
halts. The question is that given measured data as the only available
information about the system, how can a critical transition that can
potentially occur in the future be anticipated with confidence?

Developing a model-free, purely data-driven framework to pre-
dict the future state of a nonstationary complex dynamical system is
pertinent to some of the most pressing problems in modern times.
For example, due to global warming and climate change, some natu-
ral systems may have already passed the so-called tipping point and
are in a transient state awaiting a catastrophic collapse to occur. A
reliable and accurate assessment that the system has already passed
the critical transition point to a transient state would send a clear
message to policy makers and the general public that actions must
be taken immediately to avoid the otherwise inevitable catastrophic

collapse. A data-driven prediction paradigm also has applications
in engineering systems that can be vulnerable to catastrophic fail-
ures due to a variety of internal and external factors. While external
factors such as extreme weather can be foreseen, it is much harder
to detect intrinsic dynamical effects that can potentially lead to sys-
tem collapse. An example is aircraft landing on an aircraft carrier,
where internal maneuvers such as reducing the fuel mixture are
necessary. However, this can lead to engine flameout that can be
catastrophic. Developing methodologies to detect precursors and
predict the possible occurrence of engine flameout in advance so
that appropriate control can be applied to significantly reduce the
probability of engine failure is of considerable engineering interest.

There have been two approaches to addressing the problem of
model free, data-driven prediction of critical transitions in nonlin-
ear and complex dynamical systems. The first is the natural one of
finding the governing equations of the system from data. A pioneer-
ing effort was made by Crutchfield and McNamara6 who articulated
the method of finding the equations governing the deterministic
dynamics of the system by estimating the information contained
in the data through the classical Takens delay-coordinate embed-
ding theory. Later, methods based on approximating the invariant
density,7 least-squares estimates,8 or sparse optimization9–18 such as
compressive sensing19–24 were proposed. When the system equations
have been found, an accurate prediction of the dynamical evolution
of the system into the future becomes possible through some appro-
priate computational analysis of the intrinsic bifurcations. However,
this “equation-finding” approach has limitations and are not gen-
erally applicable. For example, the sparse-optimization approach,
by its name, applies only to systems with a simple structure in the
sense that the velocity field can be represented by a small number of
power-series expansion or Fourier-series terms. Another challenge
is that real-world systems are complex and subject to internal fluctu-
ations and external disturbances, so precise knowledge of the system
equations is generally not available. Even if an approximate set of
the equations has been found, the underlying system can be funda-
mentally nonlinear and is likely to exhibit sensitive dependence on
initial conditions, parameter variations, stochastic fluctuations, and
perturbations, rendering ineffective any equation-based prediction
methods.

The second, more general and modern approach to predict-
ing critical transitions is machine learning, which is model-free
and fully data-driven.25–27 The basic idea is that, if a neural net-
work can be trained to capture not only the “dynamical climate”
of the system of interest for specific parameter values but also how
the “climate” changes with parameters, it may then become possi-
ble for the neural network to produce the correct evolution of the
system into the future. To enable a machine-learning architecture
to anticipate critical transitions, there are four basic requirements.
First, the “complexity” of the neural network must surpass that
of the target system of interest, i.e., the neural network should be
capable of encapsulating the diverse behaviors within the system,
enabling accurate prediction even in the presence of uncertainties
or variations. This can be achieved by making the dimension of the
dynamical neural network significantly higher than that of the target
system. Second, since the target system is a continuously evolving
dynamical system in that a change in the initial state can often sig-
nificantly affect the state of the system some time later, it is necessary
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that the neural network should possess certain intrinsic memory
properties, which can be achieved by a recurrent structure of the
neural network. Third, the machine-learning architecture must be
such that it is capable of self-evolution, because the original sys-
tem is a self-evolving dynamical system. These three requirements
can be met by reservoir computing.28–30 Indeed, recent years have
witnessed a growing interest in exploiting reservoir computing for
predicting the state evolution of nonlinear dynamical systems.31–50

Importantly, to endow a reservoir computer with the ability to prog-
nosticate critical transitions, it must be trained to learn how the
dynamical behavior of the target system changes with a bifurcation
parameter. The fourth requirement is then that the neural machine
be capable of reproducing the characteristic changes in the dynam-
ics of the original system as a parameter changes. To achieve this,
an input parameter channel was introduced to reservoir comput-
ing, leading to the machine-learning architecture of the adaptable
reservoir computing.25–27

The focus of this Perspective is on adaptable reservoir comput-
ing. Section II describes the basics of its architecture for anticipating
critical transitions in dynamical systems. In Sec. III, the power of
adaptable reservoir computing in predicting crisis is demonstrated.
Section IV presents another application: predicting amplitude death.
Section V is devoted to reservoir-computing based digital twin of
nonlinear dynamical systems, demonstrating that not only critical
transitions but the whole global bifurcation diagram can be recon-
structed using adaptable reservoir computing in a fully data-driven
manner. A discussion and future perspective is offered in Sec. VI.

II. ADAPTABLE RESERVOIR COMPUTING

The core of reservoir computing28–30,51 is a complex network of
artificial but nonlinear neurons, in which the neurons interact with
each other according to its topology, producing a recurrent neu-
ral network as interactions can propagate forward and backward in
the network. The idea and principle of exploiting reservoir comput-
ing for predicting the state evolution of chaotic systems were first
laid out about two decades ago.28,30 There are two major types of
reservoir computing systems: echo state networks28 and liquid state
machines.29 The training of an echo state network is associated with
supervised learning underlying recurrent neural networks, where
the basic principle is to drive a large neural network of a random
or complex topology, the reservoir network, with the input signal.
Each neuron in the network generates a nonlinear response signal.
Linearly combining all the response signals with a set of trainable
parameters yields the output signal.

There are three main components in reservoir computing: an
input layer, a hidden layer with a high-dimensional and complex
neural network (the reservoir network), and an output layer, as
illustrated in Fig. 1(a). The input layer maps the available, typi-
cally low-dimensional time series data into the high-dimensional
state space of the reservoir network and the output layer projects
the high-dimensional dynamical evolution of the neural network
state back into low-dimensional time series (readout). Training is
administered to adjust the elements of the projection matrix of the
output layer to minimize the difference between the output and the
true input time series. Because of the nature of the recurrent neural
network, the elements of the input reservoir network matrices are

FIG. 1. Reservoir computing architecture. The neural machine consists of three
layers: an input layer, a hidden layer, and an output layer. The input-to-reservoir is
characterized by the input matrixWin whose elements are randomly chosen. The
hidden layer consists of N neurons interacting with each other according to the
weighted matrixA characterizing the complex network, whose elements are also
random and pre-chosen. The reservoir-to-output is governed by the output matrix
Wout , whose elements are determined by training (supervised learning) with the
available data. The training process is of the open-loop type because of the data
input. After training, the output variables are connected to the input, generating a
closed-loop, self-evolving dynamical system. (a) Conventional reservoir comput-
ing for predicting the state evolution of the target system. (b) Adaptable reservoir
computing for predicting critical transitions with parameter variations, where the
specific value of the bifurcation parameter associated with the input time-series
data is also input to each and every neuron in the hidden-layer reservoir network,
making the neural-network dynamics dependent upon the parameter.

chosen a priori and fixed during the training and prediction phases
so as to achieve highly efficient learning. In terms of hardware real-
ization, reservoir computing can be implemented using electronic,
time-delay autonomous Boolean systems31 or high-speed photonic
devices.32

Reservoir computing has been applied to forecasting criti-
cal transitions. A relatively earlier work52 proposed a data-driven
method to predict noise-induced critical transitions in multiscale
nonlinear dynamical systems by using the conventional architec-
ture in Fig. 1(a), where a deep version of the echo-state network
was used to predict the short-term state evolution of nonstationary
dynamical systems. It was demonstrated that rare events induced by
noise can be forecasted. Since such a transition is induced by noise
without involving any parameter change of the target system, it is
not necessary for the hidden-layer network to be “aware” of the
pertinent parameter value, rendering applicable the conventional
reservoir-computing architecture in Fig. 1(a).

To predict critical transitions due to parameter changes,
it is essential that the reservoir neural network is trained to
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generate parameter-dependent dynamics. The idea of a parameter-
aware recurrent neural network was first proposed in an early
work,53 where a neural network was trained using time series from
different parameter values of the logistic and Hénon maps. It was
demonstrated that, with a “fixed weight neural network,” changing
input in the parameter channel alone can make the neural net-
work produce various dynamical behaviors of the target system for
different parameter values. More recently, adaptable reservoir com-
puting was developed to address the problem of predicting critical
transitions.25,26,47,54,55

Additional works on reservoir computing with a parameter
channel are Refs. 44–46. In particular, in Ref. 44, a dynamical learn-
ing approach was articulated for reservoir computing, where an
error feedback loop and a context feedback loop were added to
the standard reservoir-computing structure. It was shown that, after
training, the modified reservoir-computing system has the ability to
learn the dynamics that were different from those of the training
set with a small amount of data. The process was named “dynam-
ical learning” due to its relation with the automatic adaptation of
fixed-weight neural networks with the error and context feedback
loops. As a concrete example, it was demonstrated that the frame-
work is capable of predicting the Hopf bifurcation in the Lorenz
system.44 In Ref. 45, reservoir computing with a parameter chan-
nel was used to predict the occurrence of periodic windows and
other regimes of transitions in nonstationary chaotic systems with
or without dynamical noise. In Ref. 46, the approach was applied
to the Lorenz system to predict Hopf, saddle-node, and pitchfork
bifurcations, where training was carried out based on the normal
forms of the bifurcations. Transient chaotic behavior of the reser-
voir neural network was also demonstrated,46 where the predicted
trajectory of the Lorenz attractor behaves chaotically for a while and
then begins to fall into a fixed point. A systematic study was carried
out,25,26 demonstrating the ability of reservoir computing to capture
and predict transient chaotic dynamics triggered by a crisis. More
recently, this approach was extended56 to scenarios where knowl-
edge about the known parameter variations is unavailable and the
observed pre-transition motion is confined to a smaller state space
subset than the post-transition motion.

In adaptable reservoir computing, an additional input channel
is designated to simultaneously input the specific parameter value
associated with the input time-series data to each and every neu-
ron in the network, as illustrated in Fig. 1(b). The training process
rendering the reservoir computer adaptable to parameter changes
in the target system can be explained using the schematic illus-
tration in Fig. 2. Let p be the bifurcation parameter of the target
system. As p varies, a critical point occurs at pc, where the system
functions normally for p < pc and it exhibits a transient toward col-
lapse for p > pc. Training of the reservoir machine is done based on
time series taken from a small number of parameter values in the
normal regime, e.g., p1 < p2 < p3 < pc. For each parameter value,
adequate training is required in the sense that the machine is able
to predict correctly and accurately the oscillatory behavior at the
same parameter value for a reasonable amount of time. Suppose
that, currently, the system functioning is normal and it operates
at the parameter value p0 < pc. In the prediction phase, suppose a
parameter change 1p > 0 has occurred. The new parameter value
p0 + 1p is then fed into the reservoir machine through the

FIG. 2. Illustration of adaptable machine-learning scheme for prediction of sys-
tem collapse. Training of the neural machine is done in the pre-transition regime for
a small number of bifurcation parameter values (as indicated by the four vertical
dashed green lines), where the system is in the normal regime of operation and
generates oscillatory time series. The critical transition to collapse occurs at pc.
The target system currently operates at p0. Prediction is done for p = p0 + 1p,
where 1p > 0 is a parameter drift. Depending on whether the value of p0 + 1p
is below or above the transition, a properly trained machine shall be able to pre-
dict either a normal oscillatory behavior or a transient followed by system collapse,
respectively.

parameter channel. The prediction is deemed successful if the
machine generates normal oscillations for p0 + 1p < pc but exhibits
a transient toward collapse for p0 + 1p > pc.

III. PREDICTING CRISIS AND TRANSIENT CHAOS

In nonlinear and complex dynamical systems, a catastrophic
collapse is often preceded by transient chaos. For example, in electri-
cal power systems, voltage collapse can occur after the system enters
into the state of transient chaos.57 In ecology, slow parameter drift
caused by environmental deterioration can induce a transition into
transient chaos, after which species extinction follows.58,59 A com-
mon route to transient chaos is the global bifurcation termed crisis,3

at which a chaotic attractor is destroyed through collision with its
own basin boundary, generating a chaotic transient.

A closely related problem is to determine if the system is
already in a transient state—the question of “how do you know you
are in a transient?.” In nonlinear dynamics, this is a difficult question
because the underlying system can be in a long transient in which all
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measurable physical quantities exhibit essentially the same behaviors
as if the system were still in a sustained state with a chaotic attractor.
Applying the traditional method of delay coordinate embedding60 to
such a case would yield estimates of dynamical invariants such as the
Lyapunov exponents and fractal dimensions,2,61 but it would give no
indication that the system is already in a transient and so an even-
tual collapse is inevitable. Developing a predictive framework solely
based on data, without relying on models, is valuable for addressing
some current challenges in the real world.

The adaptable reservoir-computing scheme illustrated in
Figs. 1(b) and 2 was applied to predicting crisis and transient chaos
in a number of low-dimensional chaotic systems such as the logis-
tic map and the Lorenz oscillator26 as well as an electrical power
model and a chaotic food chain.25 It was also demonstrated26 that this
approach is capable of predicting critical transitions in situations
where the sparse optimization approach to finding the governing
equations fails. One example is the Ikeda–Hammel–Jones–Moloney
optical cavity system described by a two-dimensional map.62–64 For
this classical and well-studied chaotic system,65 the map equations
have such a form that their power-series or Fourier expansions
contain an infinite number of terms, which violates the sparsity con-
dition. In fact, the Ikeda–Hammel–Jones–Moloney map is a conve-
nient example used to explain the failure of the sparse optimization
approach in an intuitive way. For data-driven prediction of critical
transitions in such a system, machine learning is a viable approach.
Indeed, it was demonstrated26 that the critical transition of crisis can
be anticipated by using the adaptable reservoir-computing scheme.

The classical Ikeda–Hammel–Jones–Moloney map describes
the dynamics of a laser pulse propagating in a nonlinear cavity,
which is described by62–64

zn+1 = µ + γ zn exp

(

iκ −
iν

1 + |zn|2

)

, (1)

where z is a complex dynamical variable, the dimensionless laser
input amplitude is a convenient bifurcation parameter that can be
experimentally controlled, γ is the coefficient of the reflectivity of
the partially reflecting mirrors of the cavity, κ is the laser empty cav-
ity detuning, and ν measures the detuning due to the presence of
a nonlinear medium in the cavity. As explained, the basic require-
ment of any sparse optimization technique for finding the system
equations is sparsity: when the system equations are expanded into
a power or a Fourier series, it must be that only a few terms are
present so that the coefficient vectors to be determined from data
are sparse.9,66 At the present, a sparse representation of Eq. (1) is not
available, rendering infeasible the data-driven approach of equation
finding to predicting critical transitions.

In Ref. 26, the values of the system parameters in Eq. (1) were
set as γ = 0.9, κ = 0.4, and ν = 6.0, with µ being the bifurcation
parameter. The system exhibits a boundary crisis67 at µ = 1.0027, as
shown by the black vertical dashed line in Fig. 3(a). The dynamical
behaviors for µ < µc and µ > µc are shown in Figs. 3(b) and 3(c),
respectively. There is a chaotic attractor for µ < µc, and transient
chaos leads to an escape of the system out of the previous operation
region for µ > µc. For each selected value of µ, the training and
validation lengths were ttrain = 800 steps and tvalidating = 15 steps,
respectively. During validation, the adaptable reservoir-computing

FIG. 3. Predicting crisis and transient chaos in a two-dimensional optical-cavity
map—the classical Ikeda–Hammel–Jones–Moloney map. (a) A typical bifurcation
diagram. The vertical black dashed line indicates the crisis point µc = 1.0027.
The three vertical blue dashed lines specify the three values of the bifurcation
parameter µ used for training the adaptable reservoir-computing machine:
µ = 0.91, 0.94, 0.97. (b) and (c) Typical behaviors of the system in the sustained
and transient chaos regimes, respectively, for µ = 0.99 < µc and µ = 1.01
> µc. (d) and (e) Predicted dynamical behaviors by adaptable reservoir
computing for the same values of µ as in (b) and (c), respectively. The machine
predicts correctly the system collapse forµ > µc. (f) Predicted (red) exponential
transient lifetime distributions for µ = µc + 0.02 and the ground truth (black).
With permission from Kong et al., J. Phys. Complex. 2, 035014 (2021). Copyright
2021, IOP Publishing.

scheme was able to predict the system evolution for more than five
Lyapunov times with a small relative error.

To make the reservoir computer adaptable, training was
conducted using time series from three values of the bifurcation
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parameter: µ = 0.91, 0.94, and 0.97, as shown in Fig. 3(a) by the
three vertical blue dashed lines. After training, a parameter change
1µ was applied and a test was conducted to determine if the
machine could generate transient chaos. As shown by an exem-
plary pair of machine-generated attractors in Figs. 3(d) and 3(e), the
reservoir computer can successfully generate transient chaos in the
transient regime, even though it was trained only with time-series
data from three chaotic attractors.

Note that, in Fig. 3(a), there is a periodic window. A pertinent
question is whether a properly trained reservoir computing machine
is able to predict periodic windows. In Ref. 26, the goal was to predict
crises and transient chaos, where multiple time series from a limited
number of distinct values of the bifurcation parameter, all within
the regime of attracting chaos, were utilized to train the reservoir-
computing machine, but the generation of the entire bifurcation
diagram or the prediction of periodic windows was not addressed.
It was demonstrated that a reservoir computer so trained is able to
accurately reproduce the dynamical behavior within the transient
chaos regime of the target system. Furthermore, the results indi-
cate that predicting system collapse as triggered by parameter drifts
leading the system into a transient regime is possible. It is worth
noting that the training parameters can also be chosen from a peri-
odic window in the bifurcation diagram of the system where there
is transient chaos. In Ref. 27, it was reported that a single or paral-
lel reservoir computer trained as a digital twin of the target system
can generate its global bifurcation behaviors including periodic win-
dows, which was demonstrated using a chaotic CO2 laser system, a
phytoplankton model with seasonal variations, and the Lorenz-96
climate network.

The statistical characteristics of the generated transient dynam-
ics were demonstrated through a comparison of the transient life-
time distribution generated by the reservoir and the ground truth.
For example, the input of the parameter channel of the adapt-
able reservoir computer was set to be µ = µ∗

c + 0.02, where µ∗
c

is the critical point calculated from each realization of the reser-
voir machine. In total, 50 stochastic realizations of the adaptable
reservoir computer and 400 random initial conditions for each real-
ization were used, and the transient lifetimes of these 20 000 trials
were recorded. The result shown in Fig. 3(f), where the distribution
from RC (marked in red) is quite close to that of the real system
with µ = µc + 0.02 (marked in blue), demonstrated the power of
the adaptable reservoir-computing approach to predicting transient
chaos.

We emphasize that the reason to use chaotic data to train the
reservoir computer lies in making the neural network to “learn” the
phase-space structure of the target system adequately, as a chaotic
trajectory will cover a large portion of the phase space. A reservoir
computer with a parameter channel, when trained using data from
a small number of parameter values from the regime of sustained
chaos, is capable of predicting the critical transition from sustained
to transient chaos. This parameter channel enables the machine to
sense, detect, and recognize the changes in the chaotic time-series
data and to “teach” the neural network to establish an association
between a specific value of the bifurcation parameter and the cor-
responding dynamical behavior. That is, training using data taken
from different values of the parameter in the chaotic regime enables
the neural network not only to learn the dynamical climate of the

target system but also how the climate changes with the parameter.
It is also worth noting that, in general, oscillatory time series can
be used to train a reservoir computer for tasks such as anticipating
amplitude death. For example, it was demonstrated that, using data
from a small number of parameter values in the oscillatory regime,
transition to amplitude death can be anticipated54 (Sec. IV).

IV. PREDICTING AMPLITUDE DEATH OF NONLINEAR

OSCILLATORS

In nonlinear dynamical systems, amplitude death is a phe-
nomenon by which the oscillatory behaviors of the state variables
halt suddenly and completely.4,5 A typical route to amplitude death
is the drift of a system parameter through a critical point at which
a bifurcation from oscillations to a steady state occurs. In biological
and physiological contexts, oscillations are essential to maintaining
the normal functions of the system. For example, in biomedicine,
normal physiological conditions are associated with oscillations,
while the system’s settling into a steady state is often viewed as the
onset of pathological conditions or is associated with death. Because
of the relevance of the phenomenon of amplitude death to physi-
cal, chemical, biological, and physiological systems,68–72 it has been
studied extensively in the past.

As amplitude death is undesired in real-world systems, it is of
interest to be able to predict its occurrence while the underlying sys-
tem is still in the regime of normal functioning. The formulation
of the prediction problem is similar to that of predicting a crisis.
More specifically, suppose a control or bifurcation parameter has
been specified and the system is currently in the parameter regime
in which the dynamical variables exhibit normal and “healthy” oscil-
lations, where oscillatory time series from a number of parameter
values in this regime have been measured. Suppose the bifurcation
parameter begins to drift toward a regime that the system has never
been in, i.e., no information is available about the system dynamics
in the new parameter territory. For a given amount of parameter
change, how can the occurrence of amplitude death be predicted
with confidence? If the system equations are known, this predic-
tion problem is trivial, as it can be solved by a simple computational
bifurcation analysis. However, in real-world applications, often the
only available information is the oscillatory time series collected
when the system is in a healthy regime. The problem is challeng-
ing because of the requirement to predict the catastrophic behavior
based on the presently accessible information, which indicates that
the system should and would be completely normal by all measures.
In fact, if one measures the dynamical variables of the system, the
resulting time series are healthy in the sense that they all exhibit
oscillations, giving no traceable sign that a catastrophic event such as
amplitude death would occur upon some amount of parameter drift
or a perturbation. Adaptable reservoir computing provided a viable
solution to this problem.54

The following Stuart–Landau oscillator system was used to
demonstrate how adaptable reservoir computing can be exploited
to predict amplitude death,54

ż1 =
(

1 + iω1 − |z1|2
)

z1 + ε (z2 − z1),

ż2 =
(

1 + iω2 − |z2|2
)

z2 + ε (z1 − z2),
(2)
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FIG. 4. Oscillations and amplitude death in the system of coupled Stuart–Landau
oscillators. (a) A bifurcation diagram with the coupling parameter ε. The system is
oscillatory for 0 < ε < 1 and amplitude death occurs for ε > 1. (b) An oscillatory
time series for ε = 0.99. (c) Amplitude death preceded by a short transient for
ε = 1.02. Other parameter values are ω1 = 2.0 and ω2 = 7.0. With permission
from Xiao et al., Phys. Rev. E 104, 014205 (2021). Copyright 2021, APS.

where zi = xi + iyi (i = 1, 2) are complex variables and ω1 and ω2

are parameters. Without coupling, i.e., ε = 0, both oscillators have
an unstable fixed point at z∗

1,2 = 0. A previous study73 revealed

that amplitude death occurs for ε > 1 and 1ω > 2
√

2ε − 1, where
1ω ≡ |ω1 − ω2| represents the mismatch between the two oscilla-
tors. Depending on the amount of mismatch, the system dynamics
can be quite different. Figure 4(a) shows a bifurcation diagram of
the dynamical variable x1. It can be seen that the system is in an
oscillatory state for ε ∈ (0, 1), and amplitude death occurs for ε > 1.
Figures 4(b) and 4(c) show an oscillatory time series for ε = 0.99 and
amplitude death (with a short transient) for ε = 1.02, respectively.

The adaptable reservoir computer was trained54 for three val-
ues of the bifurcation parameter: ε = 0.85, 0.9, and 0.95, as indicated
by the three vertical dashed lines in Fig. 4(a). Figures 5(a) and 5(b)
show an example of the predicted time series x1(t) and the difference
between the predicted time series and the ground truth, respectively.
The reservoir computer predicts correctly that the system is in an
oscillatory state for ε < 1, as exemplified in Fig. 5(c) for ε = 0.99.
For ε > 1, the machine predicts successfully amplitude death, as
demonstrated in Fig. 5(d) for ε = 1.02. Figure 5(e) shows a machine
predicted bifurcation diagram, which agrees with the real diagram
in Fig. 4(a). Figure 5(f) shows a distribution of the predicted transi-
tion point from 1000 random realizations of the reservoir machine,
where all predictions are close to the true transition point ε∗ = 1.

FIG. 5. Predicting amplitude death in the system of coupled Stuart–Landau oscil-
lators. (a) Predicted and real time series for ε = 0.95. (b) The difference between
the predicted and real time series for ε = 0.95. (c) Predicted state of oscillation for
ε = 0.99. (d) Predicted amplitude death preceded by a transient for ε = 1.02. (e)
Predicted bifurcation diagram. (f) The distribution of the predicted transition point
to amplitude death from 1000 random realizations of reservoir machine and initial
conditions. With permission from Xiao et al., Phys. Rev. E 104, 014205 (2021).
Copyright 2021, APS.

In general, having data from parameter values close to the crit-
ical point can lead to higher prediction accuracies. As the training
parameter values move away from the critical point, prediction error
will increase.27 The proximity of parameter selection to the critical
value depends on the specific characteristics of the system and the
prediction task at hand. In real-world applications, it can happen
that the parameter values from which observations are taken cannot
be freely chosen. In this case, large prediction errors may arise.

V. DIGITAL TWINS OF NONLINEAR DYNAMICAL

SYSTEMS

Digital twins are virtual replicas of real systems, exhibiting the
dynamic attributes, appearance, and behavior of their real counter-
parts. The significance of digital twins in nonlinear dynamics can be
appreciated through the main question addressed in this Perspec-
tive: how can a critical transition be anticipated from measured time
series collected from the system when it is in a “healthy” operating
regime? It is essentially a model-free prediction task, which assumes
that the only accessible information about the system is measured
time series and the system equations are unknown. Here, a healthy
system is referred to as “normal” functioning of a system in the
sense that the dynamical variable has a finite mean value, in spite
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of the statistical fluctuations (e.g., an ecosystem). The fundamental
question revolves around determining, at a point where all mea-
surements or observations show no signs of any “abnormal” system
behavior, how one can distinguish whether the system will operate
in its functional state or undergo a catastrophic collapse.

Developing digital twins has diverse applications in simula-
tion, integration, testing, monitoring, and maintenance.74 There is
a growing interest in digital twins across various areas such as
scientific research, engineering, industry, healthcare, and defense
systems.75 The inception of digital twins can be traced back to their
initial application in predicting the structural lifespan of aircraft.76

In the realm of medicine and healthcare, digital twins are used to
provide patient-specific treatment77 or have been used to provide
a qualitatively new Earth system to facilitate the green transition.78

Agriculture is another field that can benefit from digital twins as
they are able to provide real-time monitoring and optimizing crop
growth, track soil conditions, and manage irrigation.79 In dynami-
cal systems, digital twins can be used to forecast future states and
preempt emergent, potentially catastrophic behaviors.27,80 Here, we
provide a brief overview of the machine-learning approaches to
digital twins tailored to nonlinear dynamical systems.

A basic requirement for a digital twin of a nonlinear dynami-
cal system is to accurately generate the bifurcation behaviors. This
entails not only capturing the original system’s “dynamical long-
term statistical properties” but also faithfully reflecting how these
long-term statistical properties change with variations in bifurcation
or control parameters. Adaptable reservoir computing25,45 has been
used to address this problem. As an intuitive illustration, we use the
one-dimensional logistic map,81

x(n + 1) = Ax(n)
(

1 − x(n)
)

, (3)

where 0 ≤ x(n) ≤ 1 is the dynamical variable in discrete time and
A > 0 is the bifurcation parameter. For A ∈ [3.5 4], the system
exhibits chaotic behavior, as exemplified in Fig. 6(a).

We train the digital twin with time series from four values of
A, all in the chaotic regime: A = 3.8, 3.85, 3.9, and 3.95. The size
of the random reservoir network is 400. For each value of A in
the training set, the training and validation lengths are t = 1250
and t = 15, respectively, where the latter corresponds to approxi-
mately five Lyapunov times. The warming-up length is t = 20. The
results exemplified in Fig. 6 indicate that adaptable reservoir com-
puting provides an effective approach to creating a digital twin of
the logistic map.

A high-dimensional example is the Lorenz-96 climate system,
which is described by m coupled first-order nonlinear differential
equations under a sinusoidal driving force f(t),

ẋi = xi−1

(

xi+1 − xi−2

)

− xi + f(t), (4)

where i = 1, . . . , m is the spatial index. Under the periodic bound-
ary condition, the m nodes constitute a ring network, where each
node is coupled to three neighboring nodes. For m = 6 and f(t)
= Asin(ωt) + F with ω = 2 and F = 2, a digital twin was trained27

with time series from four values of A, all in the chaotic regime:
A = 2.2, 2.6, 3.0, and 3.4.

Figures 7(a1) and 7(a2) exemplify chaotic and quasiperiodic
dynamics of the Lorenz-96 system for A = 2.2 and A = 1.6, respec-
tively. Figures 7(b1) and 7(b2) show the corresponding dynamical

FIG. 6. Performance of an adaptable reservoir-computer based digital twin of the
classical logistic map in terms of the bifurcation diagram. (a) and (b) True and digi-
tal-twin generated bifurcation diagrams, where the four vertical black dashed lines
indicate the values of driving amplitudes A = 3.8, 3.85, 3.9, and 3.95, from which
the training time series data are obtained. The excellent agreement between the
two bifurcation diagrams attests to the capability of the digital twin in accurately
replicating the dynamic behaviors of the chaotic logistic map in a wide parame-
ter range, despite being trained only on data from a small number of parameter
values in the chaotic regime. (c) The relative error between the two bifurcation
diagrams.

behaviors generated by the digital twin. Figures 7(c) and 7(d) present
the ground truth and digital-twin generated bifurcations, respec-
tively, with their relative error shown in Fig. 7(e). The digital twin
not only accurately reproduces the expected dynamical behavior
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FIG. 7. Digital twin for the Lorenz-96 climate system. (a1 and a2) Ground truth simulated chaotic and quasiperiodic dynamics in the system for A = 2.2 and A = 1.6,
respectively. The periodic forcing signals f(t) are illustrated in green. (b1 and b2) The corresponding dynamics of the digital twin under the same driving signal f(t). Training
of the digital twin is conducted using time series from the chaotic regime. (c) and (d) True and digital-twin generated bifurcation diagrams, where the four vertical red dashed
lines indicate the values of the driving amplitude A from which the training time series data are obtained. The agreement between the two bifurcation diagrams attests to the
ability of the digital twin to reproduce the distinct dynamical behaviors of the target climate system in different parameter regimes, even with training data only in the chaotic
regime. (e) Relative error of the spanned regions. With permission from Kong et al., Chaos 33, 033111 (2023). Copyright 2023, AIP Publishing.

within the chaotic regime where it was trained but also has the ability
to predict the correct dynamics beyond the trained parameter range.

VI. DISCUSSION AND FUTURE PERSPECTIVE

Data-driven prediction of critical transitions in nonlinear
dynamical systems involves two main approaches: mathematical
modeling and machine learning. The former relies on finding an
approximate set of the governing equations, but it is effective only
when underlying equations have a simple mathematical structure
in the sense of sparsity: they contain a small number of power-
series or Fourier-series terms only. The machine-learning approach
is generally applicable, as it relies on a high-dimensional recur-
rent neural network to capture the dynamical climate of the tar-
get system, regardless of how complex the governing equations
might be.

Some basic considerations in developing an effective machine-
learning scheme to predict critical transitions in dynamical systems
are as follows.

The first is the available data for training. Naively, one may
attempt to regard machine-learning prediction of critical transitions
as a traditional binary classification problem in computer science:
with or without such a transition. To solve a classification problem,
data from both below and above the critical point are required for
training the neural network. However, from a practical perspective,
this is an ill-defined problem: if a critical transition had occurred, the
system would have collapsed and no measurement data could have
been available anymore. Because of this difficulty, predicting criti-
cal transitions is physically meaningful only if it is done using data
collected while the system is still normally functioning. Developing
any machine-learning approach must take into account this realistic
constraint.

The second factor is that the neural network architecture
should be capable of self-dynamical evolution, i.e., it can evolve
without external input or driving, as the target system is, in general,
a self-evolving dynamical system with memories: a small pertur-
bation to the initial condition can lead to a large change in the
system state after a long time, as in a chaotic system. In addition,
the complexity of the neural network must surpass that of the target
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system. These considerations lead to the choice of recurrent neural-
network architecture, e.g., reservoir computing that is fully capable
of self-dynamical evolution after training.

The third consideration is that the neural machine needs to
be trained to possess the ability to generate parameter-dependent
dynamical evolution. Since all the available training data are from
the pre-critical regime of the target system, in order to predict the
critical transition, the neural machine should be trained to possess
the same intrinsic dynamical climate of the target system, i.e., pro-
ducing distinct dynamics for different values of the parameter. As
described, this challenge can be met by making the neural network
“parameter aware,” and a straightforward way to realize this is to
design an input parameter channel: the value of the parameter is fed
to all neurons in the network simultaneously with the time-series
data from this parameter value. Existing works25,27 demonstrated
that, with such a combined input configuration of both the time
series data and the parameter value, even if the number of distinct
combinations is small (e.g., as few as three), the neural machine is
capable of learning the dynamical climate of the target system. A
theoretical understanding of this remarkable phenomenon has not
been available.

The recent adaptable reservoir-computing machine was artic-
ulated according to the three ingredients.25,27 A distinct feature, as
justified above, is an additional input channel to accommodate the
value of the bifurcation parameter as a special label for the time-
series data that the machine is being trained on. Through such
parameter-dependent training with data from a few distinct val-
ues of the bifurcation parameter in the normal functioning regime
of the target system, the reservoir-computing machine establishes
a “regression” between the dynamical behavior of the target sys-
tem and the bifurcation parameter, enabling the machine to capture
the “long-term statistical properties” of the dynamics of the target
system and making accurate prediction outside the training param-
eter regime possible. While training is conducted with data from
a few distinct values of the bifurcation parameter, individual pre-
diction from a single reservoir can have large errors. However,
the average behavior of a large number of independent reservoir
machines, trained using the same set of data, usually produces quite
accurate predictions. Not only can the critical transition point be
predicted, but the exponential distribution of transient lifetimes
beyond the transition, a key characteristic of transient chaos, can
also be accurately assessed. In fact, the scaling relation between
the average lifetime and the parameter difference from the criti-
cal point can be predicted by adaptable reservoir computing, even
in the presence of observational noise. It is worth noting that the
scaling law holds in the post-critical regime of transient chaos, to
which the neural machine has not been previously exposed. The
ability of the machine-learning scheme to reproduce such scaling
relations in unseen conditions underscores its robustness and utility
in predicting statistical characteristics of transient chaos.

A properly trained adaptable reservoir computer is in fact a
digital twin of the target system: not only can it predict critical tran-
sitions, but a global bifurcation diagram can be reproduced. It was
demonstrated that the reservoir-computing based digital twin can
faithfully reproduce the dynamics of the target system in a wide
parameter interval, even with training data from a small number

of distinct parameter values. The digital twin is particularly effec-
tive for low-dimensional nonlinear dynamical systems27 as well as
for high-dimensional spatiotemporal coupled systems with a sim-
ple parameter structure, e.g., the Lorenz-96 climate model. Here, the
term “simple” means that the bifurcation parameter is additive and
uniform for all the spatial sites involved. Note that the Lorenz-96
system belongs to the broad class of systems under an external, time-
dependent forcing. For such systems, the digital twin can be quite
effective in anticipating critical transitions or regime shifts in the
target system, providing early warnings of a potential catastrophic
collapse. In scenarios where direct measurements of the target sys-
tem are impractical or costly, the digital twin offers a means to
assess the dynamical evolution of the system. The privilege of digital
twins also extends to various qualitative capabilities such as provid-
ing long-term continual forecasts for nonlinear dynamical systems
subject to nonstationary external driving, even with sparse state
updates.27 Furthermore, it can extrapolate the presence of hidden
variables within the system and reproduce/predict their dynamical
evolution. The digital twin is adaptable to external driving with dif-
ferent waveforms, and it can extend predictions of global bifurcation
behaviors to systems of varying sizes. This versatility underscores the
potential of digital twins based on adaptable reservoir computing
in diverse applications involving dynamical systems under changing
external conditions.

For adaptable reservoir computing, a challenge is to con-
struct digital twins for spatiotemporal dynamical systems with a
somewhat sophisticated parameter structure. For example, consider
the Kuramoto–Sivashinsky equation: ut + auxxxx + b(uxx + uux)

= 0, where u(x, t) is a scalar field and a and b are two parameters.
Unlike the forcing parameter in the Lorenz-96 model, both parame-
ters here are not additive to the equation but are multiplicative as
they are directly associated with terms that involve the field and
its derivatives. To our knowledge, efforts in exploiting adaptable
reservoir computing to create digital twins for such spatiotemporal
dynamical systems have not been successful.

The critical transitions discussed in this Perspective have one
common feature: before the critical point is reached, the system
exhibits oscillatory behaviors, chaotic or periodic. This feature facil-
itates training of the reservoir computer. There exists an important
class of critical transitions for which oscillatory time series data are
not available: a tipping point.82–107 The standard definition of a tip-
ping point is a transition from a normal or healthy stable steady state
to another that can often be catastrophic. For example, in ecological
systems, the normal stable steady state or fixed point corresponds
to coexistence of species with healthy abundance, and a tipping
point means the transition to a massive extinction state—another
fixed point of the system. Conceivably, adaptable reservoir com-
puting can be used to anticipate a tipping point, but a challenge
is that the available time-series data for training are typically not
oscillatory. A possible solution is exploiting dynamic noise in the
system, which generates time series with random fluctuations about
the deterministic steady-state value. While noise can potentially
degrade the quality of prediction, it can benefit the training pro-
cess by enabling the neural network to explore a larger region of the
phase space, potentially revealing hidden features or dynamics that
might be obscured in noise-free conditions. In fact, dynamical noise
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and/or measurement noise in the data can benefit the training pro-
cess, sometimes significantly, through a stochastic-resonance type of
mechanism.108 Moreover, an optimal level of noise can prevent over-
fitting and promote generalization, allowing the reservoir computer
to adapt to varying environmental conditions and data distributions.

Considerable efforts were devoted to anticipating tipping by
identifying early warning indicators or signals.83,109–113 As a bifur-
cation parameter changes so that the system approaches a tipping
point, the dynamics are governed by a few normal modes that
define the qualitative aspects of the new state. Recently, a deep-
learning algorithm was developed, which was capable of providing
early warning signals, classifying bifurcations, predicting the tip-
ping point, and identifying the normal form and scaling behavior
of the dynamics near the tipping point.112 Subsequently, a deep
learning classifier was developed to provide an early warning sig-
nal for discrete-time bifurcations and abrupt changes in dynamics
cardiology, ecology, and economic systems.114 Deep learning has
also been used to predict critical transitions such as bifurcations,
tipping points, and hysteresis in ecological systems,115 where vari-
ous machine-learning methods such as recurrent neural networks,
transformers, and encoder-decoder were discussed. Without being
parameter adaptable, these methods were not effective in predict-
ing qualitative shifts in dynamic behavior in critical-transition sce-
narios. The findings of this work underscore the significance of
dynamical learning and control parameter channels in enhancing
the performance of conventional machine-learning methods to gen-
erate diverse, previously unseen dynamical behaviors within the
target system.
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