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ABSTRACT

A foundational machine-learning architecture is reinforcement learning, where an outstanding problem is achieving an optimal balance
between exploration and exploitation. Specifically, exploration enables the agents to discover optimal policies in unknown domains of the
environment for gaining potentially large future rewards, while exploitation relies on the already acquired knowledge to maximize the imme-
diate rewards. We articulate an approach to this problem, treating the dynamical process of reinforcement learning as a Markov decision
process that can be modeled as a nondeterministic finite automaton and defining a subset of states in the automaton to represent the pref-
erence for exploring unknown domains of the environment. Exploration is prioritized by assigning higher transition probabilities to these
states. We derive a mathematical framework to systematically balance exploration and exploitation by formulating it as a mixed integer pro-
gramming (MIP) problem to optimize the agent’s actions and maximize the discovery of novel preferential states. Solving the MIP problem
provides a trade-off point between exploiting known states and exploring unexplored regions. We validate the framework computationally
with a benchmark system and argue that the articulated automaton is effectively an adaptive network with a time-varying connection matrix,
where the states in the automaton are nodes and the transitions among the states represent the edges. The network is adaptive because the
transition probabilities evolve over time. The established connection between the adaptive automaton arising from reinforcement learning
and the adaptive network opens the door to applying theories of complex dynamical networks to address frontier problems in machine
learning and artificial intelligence.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0221833

In the development of artificial intelligence, reinforcement
learning (RL) has been playing a foundational role. For exam-
ple, AlphaGo, a computer program that plays the board game
Go, is based mostly on RL. In RL, agents learn optimal decision-
making policies through trial and error. In particular, an RL
agent interacts with the environment that it is in, receives feed-
back in the form of rewards or penalties, and updates its strategy
accordingly. The dynamical process of RL has two major ingredi-
ents: exploration and exploitation. More specifically, exploration
is necessary for discovering potentially beneficial actions or states
that may yield higher rewards in the long run, but exploitation
involves utilizing the already acquired knowledge to maximize
the immediate rewards. While exploration may lead to states with

better rewards, excessive exploration can impede the agent’s abil-
ity to exploit the known profitable actions, in addition to the risk
that no such states can be found. Furthermore, excessive exploita-
tion can lead to suboptimal policies due to insufficient explo-
ration of the state space. For efficient and effective learning in
RL, a balance between exploration and exploitation is essential. In
spite of previous efforts, there is no definite solution to the explo-
ration–exploitation balance problem. This article presents an
approach to this problem based on the automata theory—a math-
ematical framework for treating systems with discrete states and
transitions. The basic idea is that the dynamical process of RL can
be viewed as a Markov decision process that can be represented
as a nondeterministic finite automaton. Accordingly, a subset of
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states in the automaton can be defined to represent the prefer-
ence for exploring unknown domains of the environment. The RL
agent is encouraged to prioritize exploration when higher transi-
tion probabilities are assigned to these states, thereby realizing
control of the dynamical behavior of the RL agent. A formalism
is derived, providing a systematic way to balance exploration and
exploitation. The framework is verified computationally through
a benchmark system, where an optimal trade-off point is explic-
itly demonstrated. A key message pertinent to this Focus Issue is
that the articulated automaton for achieving an optimal balance
between exploration and exploitation can be viewed as an adap-
tive network with a time-varying connection matrix, where the
states in the automaton are effectively nodes in the network and
the transitions among the states are edges connecting the nodes.
The transition probabilities evolve over time depending on fac-
tors, such as the current state and action. While explicit equations
describing the couplings among the nodes cannot be explicitly
written down, they are implicitly defined by the interactions of
the RL agent with the environment through actions. The present
work establishes a natural “bridge” between a frontier problem in
RL and adaptive networks, suggesting the possibility that some
well developed theories in the field of complex dynamical net-
works may be exploited to benefit machine learning and artificial
intelligence in terms of understanding and optimization.

I. INTRODUCTION

Complex systems in the real world are often described by
interactive networks comprising interconnected dynamical units.
Adaptivity or plasticity emerges as a predominant trait within such
networks, where both the connectivity structure of the network and
the dynamics of individual nodes evolve over time.1–16 The adaptiv-
ity enables the network to respond to changing conditions, leading
to emergent properties and phenomena that do not arise in static
networks. Adaptive dynamical networks encompass a diverse spec-
trum of systems capable of adjusting their connectivity according to
their dynamic states.17 Indeed, incorporating adaptivity into static
networks allows a wide range of systems across diverse domains to
be studied, from biological neural circuits to social networks and
beyond.15,16 While static networks have gained significant attention
over recent decades, it remains challenging to understand the holis-
tic dynamical behaviors of adaptive networks due to the complex
interplay between the network structure and dynamics.

In this paper, we aim to establish a connection or a “bridge”
between adaptive networks and a basic and open problem in
reinforcement learning (RL)—a fundamental machine-learning
paradigm that has revolutionized artificial intelligence. In RL, agents
learn optimal decision-making policies through trial and error, and
RL algorithms learn by interacting with an environment, receiv-
ing feedback in the form of rewards or penalties, and updating
their actions or behavior accordingly.18–20 In spite of the widespread
use of RL in science, engineering, and technologies, a challenging
problem is the exploration–exploitation trade-off21 that arises from
the need to balance between gathering new information about the
environment (exploration) and exploiting the existing knowledge

to maximize rewards (exploitation). Specifically, exploration is nec-
essary to discover potentially beneficial actions or states that may
yield higher rewards in the long run, but exploitation simply utilizes
the already acquired knowledge to maximize the immediate reward.
Striking a balance between exploration and exploitation is crucial
for RL agents to learn efficiently, because overly excessive explo-
ration can impede the agent’s ability to exploit the known profitable
actions while excessive exploitation can lead to suboptimal policies
due to insufficient exploration of the state space.22–26

There were previous works on exploration–exploitation trade-
off in RL. A common approach to exploration in RL is the so-called
ε-greedy strategy,19 where the agent selects the action with the high-
est estimated reward value with the probability ε and explores a
random action with the probability 1 − ε. While this approach
is simple to implement and provides a basic level of exploration,
there is a lack of adaptability because the fixed exploration rate as
determined by the value of ε does not account for changes in the
environment or agent’s learning progress, leading to either exces-
sive or insufficient exploration. A widely used technique is the upper
confidence bound (UCB) algorithm,27,28 which balances exploration
and exploitation based on the uncertainty of the action values.
UCB algorithms assign exploration bonuses to actions based on
their uncertainty estimates, encouraging the agent to explore less
certain actions. While UCB methods offer a principled approach
to exploration, they often rely on strong assumptions about the
reward distribution and may not scale well to large state spaces
due to the computational complexity. Thompson sampling29–31 is a
Bayesian-based method that addresses exploration by maintaining a
posterior distribution over the parameters of the RL model. Instead
of relying on explicit uncertainty estimates, Thompson sampling
selects actions probabilistically according to the posterior distribu-
tion. This approach naturally balances exploration and exploitation
and has shown promising results in various contexts, but it can be
computationally demanding, especially in complex environments
with high-dimensional state and action spaces.32,33 Another line of
research focused on intrinsic motivation, which augments the exter-
nal reward signal with additional intrinsic rewards based on the
agent’s curiosity or novelty of experiences. Curiosity-driven explo-
ration methods, such as the intrinsic motivation module34–36 or the
curiosity reward approach,37–39 encourage the agent to explore novel
or uncertain states, fostering a more diverse exploration behavior.
However, these methods often require careful tuning of hyper-
parameters and may introduce additional complexities, such as
the need for separate reward models. Finally, there is a growing
recent interest in leveraging formal methods and automata the-
ory to address the exploration challenge in RL.40–43 Existing works
in this area have primarily focused on certain specific aspects of
exploration, such as option discovery or novelty detection. A sys-
tematic framework for balancing exploration and exploitation is still
lacking.44

With respect to complex dynamical systems, recent years have
witnessed widespread adoption of machine learning, including RL
across various areas, such as evolutionary game dynamics,45 control
systems,46,47 epidemic spreading,48 crisis prediction,49–51 and artificial
complex dynamical memory.52 There are also recent efforts in devel-
oping adaptive networks that integrate RL with complex dynamical
systems.45 Our approach to addressing the exploration–exploitation
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balance problem is unique in that we exploit the principles of the
automata theory53,54 from the point of view of adaptive networks. In
particular, the theory of automata provides a mathematical frame-
work for modeling and analyzing systems with discrete states and
transitions. By modeling the RL problem as a Markov Decision
Process (MDP) and representing it as a nondeterministic finite
automaton (NDFA), we arrive at a formalism to explicitly capture
and manipulate the exploration preference of the RL agents. Our
approach entails defining a subset of states in the NDFA that rep-
resent the preference for exploring unknown domains of the envi-
ronment. These states are characterized by higher transition proba-
bilities, thereby encouraging the agent to prioritize exploration. By
assigning appropriate transition probabilities within this subset, the
exploration behavior of the RL agent can be controlled. The for-
malism provides a means to systematically balance exploration and
exploitation in RL and offers a unique perspective for understand-
ing the dynamics of exploration within the RL framework, leading to
a better exploration–exploitation balance. We computationally vali-
date our framework in terms of exploration efficiency and the overall
learning performance.

In Sec. II, we present our formulation of the adaptive network
approach to exploration–exploitation balance in RL by introducing
the NDFA, justifying it as an adaptive network, and formulating
the satisfaction of the exploration preference as a mixed integer
programming (MIP) problem. In Sec. III, we study a concrete
example to illustrate the preference-induced MDP implementation
and formulation of the MIP. In Sec. IV, we demonstrate that our
automata theory-based framework can lead to an optimal explo-
ration–exploitation balance in RL through a benchmark system:
the movements of a taxi on a spatial grid. In Sec. V, we point out
the limitations of the framework and offer a future perspective.
In the Appendix, we present four potential application examples:
robotic maintenance in a power grid, sensor calibration, circuit
design optimization, and control system optimization, and describe
how each problem can be formulated using our adaptive automaton
or adaptive network framework.

II. ADAPTIVE NETWORK APPROACH TO

EXPLORATION–EXPLOITATION BALANCE IN

REINFORCEMENT LEARNING: THEORETICAL

FORMULATION

We argue and show that the exploration–exploitation balance
problem can be formulated as an MIP problem based on linear
temporal-logic constraints. In particular, a fundamental concept
in computer science is abstract machines capable of transitioning
between different states based on inputs. These machines, known
as automata, provide a mathematical framework for modeling and
analyzing systems with discrete states and transitions. Furthermore,
a temporal logic is a formal logic used to reason about events and
their relationships over time. It models and analyzes the dynamic
behavior of the RL training process, verifies control systems, predicts
outcomes, and identifies vulnerabilities. In our work, the theory of
automata is used as a foundational tool for modeling the explo-
ration–exploitation balance in RL. In the following, we introduce
finite automata as a class of adaptive networks and show how

linear temporal-logic formulas quantify preferences to address the
exploration–exploitation balance problem.

A. Non-deterministic finite automaton (NDFA)

A nondeterministic finite state machine (NDFA) is a theoret-
ical model used in computer science to recognize patterns within
input strings of symbols. Unlike a deterministic finite state machine
(DFA) where each state and input symbol determines a single,
unique next state, an NDFA can transition to multiple possible states
for a given input. This allows the NDFA to explore multiple potential
state sequences simultaneously. When given an input string of sym-
bols, the NDFA processes each symbol by moving through its states,
which are connected by transitions. These transitions are defined
based on the symbols of the string, but the key feature of an NDFA
is that, for any given state and symbol, there may be several possible
next states or even none. In some cases, an NDFA can also transition
to a new state without consuming any input symbols. The NDFA
accepts the string if there exists at least one sequence of transitions
leading from the initial state to an accepting (or final) state that
corresponds to the entire input string. If no such sequence exists,
the NDFA rejects the string. This nondeterminism means that the
automaton does not follow a single path; instead, it explores multi-
ple paths simultaneously and determines if any path leads to success.
NDFAs are particularly useful in theory because they are conceptu-
ally simpler and often easier to design than DFAs. Importantly, for
any NDFA, there exists an equivalent DFA that recognizes the same
language, even though the DFA might have more states.53,55 Based on
the NDFA, preferences over accepting conditions can be modeled.56

A DFA is a five-tuple
〈

S̃,6, δ, s̃0,φ
〉

,

where S̃ represents the set of automaton states, 6 is the set of pos-
sible automaton symbols/actions, δ is the transition function, s̃0 is
the initial automaton state, and φ represents the preference for-
mula(s). To incorporate preferences into an MDP, we define the
preference-induced MDP, which is a four-tuple,

〈

S̃ × S, A, d,1
〉

,

where S denotes the set of MDP states, A is the set of MDP actions,
and d is the probability of the initial state distribution. The transition
function1 is defined as

1
((

s̃′, s′
)

|
(

s̃, s
)

, a
)

= P
(

s′|s, a
)

∗ 1{s̃′}

{

δ(L(s′), s̃)
}

, (1)

which means that from MDP state s and automaton state s̃, under
action a, the probability of going to MDP state s′ and automaton
state s̃′ is equal to the sum of the probabilities of going into s′ from s
taking action a for all possible transitions. In our problem, S̃ = S and
A only includes one action: mandatory movement, because in each
step of RL, an agent must take an action. The distribution of initial
state d is uniform. Without any loss of generality, given that S̃ is
equivalent to S, we proceed to use “s” instead of “(s̃, s)” for simplicity.
In Eq. (1), L is the labeling function that maps MDP states to their
correspondent automaton actions, which is the identity map in our
case.
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FIG. 1. An example illustrating exploration–exploitation in RL and the emergence of an automaton. (a) Within a bounded 2 × 2 grid environment, a taxi is positioned and
tasked with achieving predefined objectives through a set of four distinct actions: moving upward, downward, leftward, and rightward. The goal is to successfully navigate
toward the star cell. Within the grid, the highlighted blue cell indicates the unexplored cell to be explored during the training phase. (b) The resulting automaton based on the
probabilities of different transitions using the ε-greedy approach.

To explain the definition (1), we consider an example: a taxi.
As illustrated in Fig. 1(a), a taxi is situated within a 2 × 2 grid envi-
ronment and is engaged in the pursuit of accomplishing specific
objectives using four actions: going up, down, left, and right. Assume
the taxi driver has a deterministic policy π derived from previous
training as going up in states {0}, {1}, and {3}, and going left in
state {2}. Furthermore, assume that the taxi employs the ε-greedy
method for exploration (with the probability 1 − ε) and exploitation
(with the probability ε). Table I lists the transition matrix for this
preference-induced MDP. Taking into account the training proce-
dure of the RL agent as well as the objective of exploring unexplored
territories while simultaneously reaching the goal, we establish the
following preferences:

• PA: getting to the star cell is the final goal;
• PB: exploring the unexplored area first is preferred to getting to

the star cell;

TABLE I. Transition matrix (1(s′|s, a)) based on the automaton in Fig. 1(b).

Current\next {0} {1} {2} {3}

{0}
1

2
(1 − ε)

1

4
(1 − ε)

1

4
(3ε + 1) 0

{1}
1

4
(1 − ε)

1

2
(1 − ε) 0

1

4
(3ε + 1)

{2}
1

4
(1 − ε) 0

1

2
(1 − ε)

1

4
(3ε + 1)

{3} 0
1

4
(1 − ε)

1

4
(1 − ε)

1

2
(1 + ε)

• PC: getting to the goal is preferred to getting to any other cell
except the unexplored cells;

• PD: getting to the unexplored cell is preferred to getting to the star
cell and getting to the star cell is preferred to getting to the other
cells; and

• PE: exploring the unexplored area first is preferred to getting to
the other cells.

The resulting automaton is illustrated in Fig. 1(b). The automa-
ton so constructed has four states, where the preferences can be
implemented as the following logic formulas:

• φPA : F{3}
• φPB : {1} � {3}
• φPC : {3} � {0, 2}
• φPD : {1} � {3} � {0, 2}
• φPE : {1} � {0, 2, 3}

Note that Fψ (“eventually” operator) denotes that ψ occurs at some
point in the future and A � B is read as “A is preferred to B.”
Transforming preferences into temporal-logic formulas in the form
{P} � {P ′} enables us to formulate an MIP problem to find an
optimal policy to maximally satisfy the exploration–exploitation
balance, where exploration is incorporated into the problem by
employing φPE as the preference, while the exploitation requirement
is fulfilled by establishing a criterion based on the frequency of the
agent reaching the star cell during training.

A concrete example of an automaton is presented in Sec. III.

B. Automaton as an adaptive network

Adaptive networks represent a frontier in the study of complex
systems, offering a dynamic framework that can capture the com-
plicated interplay between structure and function.1–16 In network
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science, adaptivity is referred to as the dynamic evolution of net-
work topology, where nodes and edges adjust their connections and
strengths based on the system’s dynamics or external stimuli.57 Con-
ventionally, a general class of N-dimensional adaptive dynamical
networks can be defined by the following set of coupled differential
equations:

ẋxxi(t) = FFF(xxxi(t))+ σ
∑

j

kij(t)HHH[xxxi(t),xxxj(t − τ)], (2)

k̇ij(t) = G[kij(t),xxxi(t),xxxj(t), η], (3)

where the dynamical function F governs the dynamics of each indi-
vidual node described by an m-dimensional state vector xi, H is the
coupling function, σ is the overall coupling strength, and kij are
the elements of the dynamical adjacency matrix K that describes
the time dependence of the topological connectivity of the network.
The entries of this weighted matrix evolve over time according to a
general adaptation evolution function G, and η in G is the adaptation
parameter.

The dynamic topology inherent in adaptive networks engen-
ders a spectrum of collective behaviors, such as complete or clus-
ter synchronization,58,59 where complete synchronization denotes a
state wherein all nodes within the network achieve identical dynam-
ical states, irrespective of their initial conditions or interaction
complexity. This global coherence facilitates efficient information
propagation and system-wide coordination. The master stability
function approach60–65 can be used to study the stability of the com-
plete synchronous solution in adaptive networks66,67 when the math-
ematical functions governing the network dynamics are available.
However, in real-world applications, the exact equations govern-
ing the system dynamics are unknown. In fact, real-world systems
often can be viewed as a black box—a situation similar to nondeter-
ministic automata, where various actions evoke different responses,
rendering inapplicable the master stability function approach.

In formulating an adaptive automaton as an adaptive network
with a time-varying transition matrix, even though the exact equa-
tions of the system are not available, they are implicitly defined as
the interactions of the agent with the environment through actions.
The states and transitions of the automaton can, thus, be interpreted
within the framework of a dynamic network describing the RL
exploration–exploitation generative procedure, where the states in
the automaton are treated as nodes in a network and the transitions
between the states are viewed as edges that effectively connect nodes
in the network. The adaptive nature of the problem is encapsulated
by the dynamical transition matrix with time-varying transition
probabilities. These probabilities evolve over time depending on
factors, such as the current state and the action taken.

C. Formulating the satisfaction of the preferences as

an MIP problem

In an MIP problem,68 some variables of the system to be opti-
mized are integers with a linear objective function, subject to linear
constraints. In our work, the objective function is the value of the
preference satisfaction. The definition of the value of the preference
satisfaction (vps) is closely related to the probability of occurrence
of the corresponding preference, where vps for a preference formula

TABLE II. Probabilities of an automaton ending in specific states for two random

policies.

Automaton state\policy Pπ1 Pπ1

{1} 0.1 0.7
{3} 0.8 0.2
{0,2} 0.1 0.1

X0 � X1 � · · · � Xn is defined as56 P(Xi) if there exists some i such
that P(Xi) ≥ P(Xi−1), while for all k ≥ i, P(Xk) < P(Xk−1) holds and
is zero otherwise. The definition of vps can be illustrated using the
example in Fig. 1. Assume that for the preference formula φPD,
the two derived policy samples induce the probabilities as listed in
Table II. From the definition of vps, policy π1 satisfies the preference
φPD by 80%, whereas policy π2 satisfies the preference φPD by 70%.
Note that vps is not necessarily equal to the probability of the most
preferred state.

To obtain the constraints for the MIP problem, we employ a
supporting variable y(t, s, a), defined as the probability of visiting the
state s at time t and taking action a, so y(T, P) is the probability of
the automaton being at state P at time t = T (regarded as the ending
point). Using the supporting variable and from the definition of vps

for the preference formula {P} � {P ′}, we have the first set of MIP
constraints as

0 ≤ vps ≤ B, (4)

B − 1 ≤ vps − y(T, P ′) ≤ 0, (5)

B(1 + ξ)+ 1 ≤ y(T, P ′)− y(T, P) ≤ B(1 + ξ)− ξ , (6)

B is a binary, (7)

all y are non-negative, (8)

where ξ is a small positive number and B is a binary variable: it
is one if there exists a policy that satisfies the preference and zero
otherwise. From Eqs. (4) and (5), it can be seen that if there exists
no such policy satisfying the preference, then vps = 0; otherwise, its
value will be between 0 and 1 and is equal to y(T, P ′). We enforce the
events’ probabilities and their difference to be between 0 and 1 using
Eqs. (6) and (8). The second set of the MIP constraints is responsi-
ble for maintaining the consistency between the supporting variable
y(t, s, a) and MDP elements d and 1. For all possible states and for
all time steps, we have

∑

a∈A

y(0, s, a) = d(s), (9)

∑

a∈A

y(t, s′, a) =
∑

a∈A

∑

s∈S

1(s′|s, a)y(t − 1, s, a). (10)

Equation (9) ensures that the probabilities denoted by the support-
ing variable y at time t = 0 are consistent with the distribution of
initial state d. Equation (10) asserts that the probability of getting to
a state at time t is equal to the sum of probabilities that other possible
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states take the specific action to reach the target state at time t − 1.
Taking into consideration these constraints, we formulate the max-
imum preference satisfaction problem for the preference formula
{P} � {P ′} as

max
B,y,vps

vps subject to Eqs.(4)–(10), (11)

where B, y, and vps are the optimization variables and vps is the objec-
tive function. Equation (11) represents an MIP problem because it
includes an integer constraint [Eq. (7)]; otherwise, it is a standard
linear programming problem. By resolving the optimization prob-
lem outlined in Eq. (11), we obtain the variable vps, which serves as a
decisive criterion for effectively exploring the uncharted cells within
the grid environment. It is worth noting that the feasibility of the
optimization problem introduced in our study is contingent upon
various factors that encompass the inherent dynamics of the Markov
decision process, the level of stringency inherent within the prefer-
ence formula, and even the choice of a solver employed to tackle
the optimization problem. As a result, the attainability of a feasible
solution can be influenced by these considerations. In the following,
we present a concrete example of formulating a preference-induced
MDP into MIP and obtain the solution.

III. A CONCRETE EXAMPLE OF AN AUTOMATON

We study a concrete example to illustrate the preference-
induced MDP implementation and formulation of the MIP. The
specific finite automaton is illustrated in Fig. 2. The setting is

• Preference: p := (P ′ =){1} � (P =){2}
• Episode length: T = 3
• MDP states:

S = {[1, 1] := 0, [1, 0] := 1, [0, 1] := 2, [0, 0] := 3}

• Automaton states: S̃ = {0, 1, 2, 3}
• Actions: AS = {A, B}

FIG. 2. A concrete example of an automaton. There are four states with #0 being
the starting state and #3 being the final state. The preference p := {1} � {2}
stipulates that ending in state #1 is preferred to ending in state #2. As indicated
in Table IV, using the derived policy, 76.89% of the time the system will end in
state #1 compared with ending in state #2, which takes place 0.48% of the time,
indicating that the preference is optimally satisfied.

• Initial state-pair probability distribution:

d(s̃, s) =



















0.9 if (s̃, s) = (0, 0),

0.05 if (s̃, s) = (1, 1),

0.05 if (s̃, s) = (2, 2),

0 else.

• State-pair transition probability distribution:

1((1, 1)|(0, 0), A) = 0.8,

1((2, 2)|(0, 0), A) = 0.1,

1((3, 3)|(0, 0), A) = 0.05,

1((0, 0)|(0, 0), A) = 0.05,

1((1, 1)|(0, 0), B) = 0.1,

1((2, 2)|(0, 0), B) = 0.8,

1((3, 3)|(0, 0), B) = 0.05,

1((0, 0)|(0, 0), B) = 0.05,

1((0, 0)|(1, 1), A) = 0.05,

1((1, 1)|(1, 1), A) = 0.95,

1((3, 3)|(1, 1), B) = 1,

1((3, 3)|(2, 2), A) = 1,

1((0, 0)|(2, 2), B) = 0.05,

1((2, 2)|(2, 2), B) = 0.95,

1((3, 3)|(3, 3), A) = 1,

1((3, 3)|(3, 3), B) = 1.

The supporting variable y(t, (s̃, s), a) is defined as the probabil-
ity of visiting the state pair (s̃, s) at time t and taking action a. We use
the variables listed in Table III with the purpose of keeping the equa-
tions concise. For example, y11 is the probability of being in the state
pair (1, 1) at time t = 1 under action A. With these definitions and
the initial state-pair probability distribution (d(s̃, s)), we construct
the following constraints from Eq. (9):

y1 + y2 = 0.9, (12)

y3 + y4 = 0.05, (13)

y5 + y6 = 0.05, (14)

y7 + y8 = 0. (15)

Moreover, using the state-pair transition probability distribution
defined above [1((s̃′, s′)|(s̃, s), a)], we obtain the following con-
straints from Eq. (10):

y9 + y10 = 0.05y1 + 0.05y2 + 0.05y6 + 0.05y3, (16)

y11 + y12 = 0.8y1 + 0.1y2 + 0.95y3, (17)

y13 + y14 = 0.1y1 + 0.8y2 + 0.95y6, (18)
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TABLE III. Definition of supporting variables y(t, (s̃, s), a).

t (s̃, s) A B

t = 0 (0,0) y1 y2

t = 0 (1,1) y3 y4

t = 0 (2,2) y5 y6

t = 0 (3,3) y7 y8

t = 1 (0,0) y9 y10

t = 1 (1,1) y11 y12

t = 1 (2,2) y13 y14

t = 1 (3,3) y15 y16

t = 2 (0,0) y17 y18

t = 2 (1,1) y19 y20

t = 2 (2,2) y21 y22

t = 2 (3,3) y23 y24

t = 3 (0,0) y25 y26

t = 3 (1,1) y27 y28

t = 3 (2,2) y29 y30

t = 3 (3,3) y31 y32

TABLE IV. Solution for the MIP problem of Example 1 vPS = 0.7689 and B= 1.

t (s̃, s) A B

t = 0 (0,0) y1 = 0.9 y2 = 0
t = 0 (1,1) y3 = 0.05 y4 = 0
t = 0 (2,2) y5 = 0 y6 = 0.05
t = 0 (3,3) y7 = 0 y8 = 0

t = 1 (0,0) y9 = 0.05 y10 = 0
t = 1 (1,1) y11 = 0.7675 y12 = 0
t = 1 (2,2) y13 = 0 y14 = 0.1375
t = 1 (3,3) y15 = 0 y16 = 0.0450

t = 2 (0,0) y17 = 0.0478 y18 = 0
t = 2 (1,1) y19 = 0.7691 y20 = 0
t = 2 (2,2) y21 = 0.1356 y22 = 0
t = 2 (3,3) y23 = 0 y24 = 0.0475

t = 3 (0,0) y25 = 0 y26 = 0.0408
t = 3 (1,1) y27 = 0 y28 = 0.7689
t = 3 (2,2) y29 = 0 y30 = 0.0048
t = 3 (3,3) y31 = 0 y32 = 0.1855

FIG. 3. Experimental RL environments. Shown are (a) 3 × 3, (b) 5 × 5, and (c) 10 × 10 grids. Random walls are positioned at various locations. The RL goal for the taxi
agent is to get to the star cell. The unexplored cells are highlighted with blue. Three elements are subject to random generation: the placement of walls within the grid, the
initial policy of the RL agent, and the probability distribution of the initial position of the taxi. The random values are generated using a designated random seed (7, 8, and 0
for the 3 × 3, 5 × 5, and 10 × 10 grids, respectively).
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y15 + y16 = 0.05y1 + 0.05y2 + y4 + y5 + y7 + y8, (19)

y17 + y18 = 0.05y9 + 0.05y10 + 0.05y14 + 0.05y11, (20)

y19 + y20 = 0.8y9 + 0.1y10 + 0.95y11, (21)

y21 + y22 = 0.1y9 + 0.8y10 + 0.95y14, (22)

y23 + y24 = 0.05y9 + 0.05y10 + y12 + y13 + y15 + y16, (23)

y25 + y26 = 0.05y17 + 0.0518 + 0.0522 + 0.05y19, (24)

y27 + y28 = 0.8y17 + 0.1y18 + 0.95y19, (25)

y29 + y30 = 0.1y17 + 0.8y18 + 0.95y22, (26)

y31 + y32 = 0.05y17 + 0.05y18 + y20 + y21 + y23 + y24. (27)

The following relations are useful:

y(T, P) = y29 + y30,

y(T, P ′) = y27 + y28.

Equations (4)–(8) then lead to the following constraints:

0 ≤ vPS ≤ B, (28)

B − 1 ≤ vPS − y27 − y28 ≤ 0, (29)

B(1 + ε)+ 1 ≤ y27 + y28 − y29 − y30 ≤ B(1 + ε)− ε, (30)

B is a binary, (31)

all y are non-negative. (32)

FIG. 4. Determining the trade-off point. (a)–(d) The intersecting point of the trajectory of the value of preference satisfaction (vps) with the trajectory of goal achievement
(vgs) for different values of ε for the 3 × 3 grid with four different random seeds, respectively.

Chaos 34, 123120 (2024); doi: 10.1063/5.0221833 34, 123120-8

Published under an exclusive license by AIP Publishing

 03 D
ecem

ber 2024 16:21:01

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

The standard form of the MIP optimization problem for this exam-
ple is

max
B,y,vPS

vPS subject to Eqs. (12)–(31).

Using a standard equation solver, such as intlinprog in MATLAB,
we obtain the solution to this optimization problem as vPS = 0.7689,
B = 1, with the values of the y parameters listed in Table IV. This
solution describes the best possible way to satisfy the preference
p := {1} � {2}. Following this policy for each state pair at each time
step, it can be ensured that 76.89% of the time the preference will be
satisfied—the highest satisfaction possible for this problem.

For each value of the exploration parameter ε ranging from 0 to
1, we follow a systematic procedure to formulate and solve the MIP
problem based on the preference-induced MDP (inferred from the
RL environment) in three steps:

Step 1 At each ε value, we formulate the MIP problem by incorpo-
rating the preference-induced MDP. Once the MIP problem
is set up, the objective is to derive the value of preference sat-
isfaction, vPS, which quantifies how well the agent explores
the under-explored environment. This value serves as an
exploration indicator, reflecting how successfully the agent
balances exploration according to the defined preferences

within the MDP. The higher the vPS, the better the agent is
at exploring unknown states.

Step 2 In parallel, we define the criterion for measuring the agent’s
ability to achieve its primary goal (i.e., exploitation). The
exploitation indicator vGS quantifies the frequency with
which the agent reaches the desired goal states during the
training episode. This is mathematically defined by the sum
of the probabilities of visiting goal states at time t across all
actions a,

vGS =

T
∑

t=1

∑

s∈Sgoal

∑

a∈A

, y(t, s, a) (33)

where y(t, s, a) denotes the probability of being in state s and
taking action a at time t. This value serves as an exploita-
tion indicator, where a higher vGS reflects more frequent
achievement of the task or goal.

Step 3 To determine the optimal balance between exploration and
exploitation, we track the trajectories of both vPS (explo-
ration) and vGS (exploitation) as ε varies from 0 to 1. The goal
is to identify the trade-off point where the two trajectories
intersect, representing the optimal value of ε that balances
both exploration and exploitation. This intersection point

FIG. 5. Determining the trade-off point for the 5 × 5 grid. (a)–(d) The intersecting point of the trajectory of the value of preference satisfaction (vps) with the trajectory of goal
achievement (vgs) for different values of ε for the 5 × 5 grid with four different random seeds, respectively.
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provides critical insight into how much exploration is nec-
essary before the agent should start exploiting the learned
knowledge to maximize immediate rewards.

This step-by-step approach ensures that the exploration–
exploitation trade-off is systematically analyzed, with the MIP for-
mulation and solution serving as the foundation for deriving key
performance metrics for both exploration and exploitation.

IV. DEMONSTRATION OF OPTIMAL

EXPLORATION–EXPLOITATION BALANCE

To test and validate our automata theory-based framework to
achieve an optimal exploration–exploitation balance in RL, we con-
duct experiments in grid environments of three representative sizes:
3 × 3, 5 × 5, and 10 × 10, as shown in Fig. 3. Figures 4–6 show the
respective results for the three grid environments. The simulations

are performed on computers each with GPU GeForce RTX 4090 and
CPU 13th Gen Intel(R) Core(TM) i9-13900KS, using Python (Spy-
derIDE). We use the optimize.milp module of the SciPy package to
solve the MIP problems. For the 10 × 10 grid, on average, it takes
1.2 s to generate and solve the MIP.

The simulation setting described in Sec. II is applied to all
experiments. In particular, to introduce a higher level of complexity
to the environment, random walls are positioned at various loca-
tions. For example, when a wall is situated to the right of the taxi and
the taxi intends to move in that direction, it will remain in its cur-
rent cell due to the obstruction. In the simulations, three elements
are subject to random generation: the placement of walls within the
grid, the initial policy of the RL agent, and the probability distribu-
tion governing the initial position of the taxi. The random values are
generated using a designated random seed, each engendering dis-
tinct scenarios and facilitating analysis of the trade-off across diverse
situations. The random seeds are themselves randomly generated

FIG. 6. Determining the trade-off point for the 10 × 10 grid. (a)–(d) The intersecting point of the trajectory of the value of preference satisfaction (vps) with the trajectory of
goal achievement (vgs) for different values of ε for the 10 × 10 grid with four different random seeds, respectively.
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from a uniform distribution. The criterion for quantifying the fre-
quency of goal attainment by the agent during the training phase is
indicated by Eq. (33).

We focus on determining the exploration–exploitation trade-
off point by intersecting the trajectory of value of preference satis-
faction (vps) and the trajectory of goal achievement (vgs) for different
values of ε. To evaluate the exploration behavior of the RL agents, we
derive the trajectory value of preference satisfaction, which quanti-
fies the degree to which the exploration of unexplored cells prefer-
ence defined by the automaton is satisfied. Note that higher values
of ε indicate a stronger inclination toward exploitation. We com-
pare this trajectory with the trajectory of achieving the RL goal,
which represents the agent’s ability to accomplish the task at hand.
By examining the intersection point of these trajectories for dif-
ferent ε values, we identified the optimal trade-off point for the ε
value that balances exploration and exploitation. Figures 4–6 illus-
trate the results for the 3 × 3, 5 × 5, and 10 × 10 grids, respectively,
demonstrating the effectiveness of our framework in achieving the
exploration–exploitation balance.

Through simulations, we identify certain instances where an
increase in ε, signifying a greater emphasis on exploitation, corre-
lates with a simultaneous increase in the trajectory value of prefer-
ence satisfaction. This indicates a heightened level of exploration
within previously unexplored cells. The finding suggests that in
certain scenarios, the initial policy and positioning of walls pose
challenges for the agent to effectively explore uncharted areas. As
a result, even following a suboptimal policy can yield higher satis-
faction of preferences.

The ε trade-off point that strikes an optimal balance between
exploration and exploitation can be found by identifying the inter-
section point between the trajectories of preference satisfaction and
goal achievement. This point represents the ideal value of ε that
maximizes both the agent’s exploration and its ability to achieve
the desired goal. Our approach provides a systematic and principled
methodology for finding this trade-off point. We find that the opti-
mal trade-off point is influenced by the grid environment size. In a
smaller grid environment, such as the 3 × 3 grid, the trade-off point
tends to have a higher value of ε, indicating a greater emphasis on
exploration. As the grid size increases, the trade-off point often shifts
toward lower values of ε, indicating a stronger focus on exploita-
tion. This observation suggests an effect of the complexity and size
of the environment on the optimal balance between exploration and
exploitation.

The simulations demonstrate the efficacy of our automata
theory-based approach to achieving an optimal exploration–
exploitation balance in RL, where the optimal exploration strat-
egy can be found by the ε trade-off point through the intersection
of preference satisfaction and goal achievement trajectories. Our
framework offers a systematic methodology to control and balance
exploration and exploitation, enhancing the learning capabilities of
RL agents in a variety of grid environments.

V. DISCUSSION

We have presented an automata-theory approach to address-
ing the exploration–exploitation balance in RL. Modeling the RL
problem as an MDP and subsequently representing the MDP as

an NDFA enable the dynamic nature of the RL environment to
be effectively described. Our approach incorporates the preference
for exploring unexplored areas in the RL environment by desig-
nating specific states in the NDFA. The exploration–exploitation
balance problem can be formulated as an MIP optimization prob-
lem, allowing the optimal policies that satisfy the defined preferences
to be found. Leveraging the automata theory has led to a principled
framework for balancing exploration and exploitation in RL tasks.
Simulations have demonstrated the efficacy of the proposed frame-
work in achieving a favorable exploration–exploitation trade-off.
The results indicate that, in certain scenarios, even suboptimal poli-
cies can lead to a higher satisfaction of exploration preferences due
to the challenges posed by wall positioning and suboptimal initial
policies.

It is worth stressing the connection between an adaptive
automaton and an adaptive network. Viewing an automaton as an
adaptive network with a time-varying transition matrix entails inter-
preting the states and transitions of the automaton in a dynamic net-
work framework. In an automaton, states represent different con-
ditions or configurations of the system. Each state can be regarded
as a node in the network. Transitions in the automaton denote the
movement from one state to another based on certain conditions or
inputs. These transitions can then be viewed as edges connecting
the nodes in the network. In a traditional automaton, the transi-
tion matrix is fixed, meaning that the probabilities of transitioning
from one state to another remain constant. However, in an adap-
tive network, the transition probabilities are time-varying, which
can change over time according to various factors, such as external
inputs, system dynamics, or the learning mechanism. The transi-
tion probabilities in the time-varying transition matrix can adapt
based on the current state of the system and its interactions with the
environment. The adaptation may be driven by learning algorithms,
feedback mechanisms, or any other dynamic processes. By treating
the automaton as an adaptive network, we can analyze its behavior
over time in terms of network dynamics. This includes studying how
the states evolve, how transitions occur, and how the system adapts
to changing conditions.

A limitation is the scalability associated with the MIP for-
mulation. As the size of the environment increases, the number
of constraints in the MIP problem grows exponentially, requir-
ing the development of techniques to reduce the computational
complexity of the MIP formulation. Potential solutions include
exploring approximation algorithms, constraint relaxation meth-
ods, and decomposition approaches to efficiently handle larger
RL environments. One solution is to leverage advanced optimiza-
tion techniques, such as parallel computing, heuristics, and meta-
heuristic algorithms, to enhance the efficiency of solving large-scale
MIP problems encountered in expansive environments. Exploring
problem-specific reformulation or decomposition approaches can
also be beneficial to reducing computational burdens.

Another limitation pertains to the criterion employed for
assessing goal achievement and determining the exploration–
exploitation trade-off. While our current criterion provides a rea-
sonable evaluation metric, there is room for improvement. Future
research could strive to develop more refined and adaptive criteria
that capture the balance between exploration and exploitation. This
could involve incorporating additional factors, such as uncertainty
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estimation, information gain, or dynamic adaptation of exploration
rates based on environmental characteristics, requiring the agent’s
adaptability, robustness to environmental changes, or convergence
speed to optimal solutions to be measured. Such metrics could
provide deeper insights into the effectiveness of our framework to
enable a more comprehensive comparison with existing methods.
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APPENDIX: FOUR APPLICATION EXAMPLES

The methods and frameworks presented in this paper provide a
versatile approach to addressing complex, real-world problems, par-
ticularly in the context of dynamic and adaptive environments. The
RL exploration–exploitation balance, tackled through MDP mod-
els and automata theory, has implications across a wide range of
domains. These applications span from autonomous systems and
robotics to network optimization and system control, where intel-
ligent agents must navigate complex, unpredictable environments
while making optimal decisions. Here, in the Appendix, we explore
several real-world applications, demonstrating how our framework
can be translated into practical settings. Ranging from robotic main-
tenance in power grids to sensor calibration and control system
optimization, these examples illustrate the broad applicability of our
approach and its potential to significantly enhance decision-making
processes in complex environments. More specifically, we describe
these applications and show how they can be translated into the
MDP and automata frameworks.

1. Robotic maintenance in a power grid

Consider a robotic device navigating a grid-like environment to
perform maintenance tasks on electrical components. This example
can be formulated as an MDP and represented using automata as
well. In the MDP formulation, the state space comprises the loca-
tions of the robotic device in the grid-like environment and the
status of nearby electrical components. Each state s includes the
robot’s current position and information about nearby components.
Actions a correspond to movement actions and repair actions. The
agent has the following movement actions: “Move Up” (a1), “Move
Down” (a2), “Move Left” (a3), and “Move Right” (a4). The agent
also has the “Repair” action (a5) to fix nearby malfunctioning com-
ponents. The transition dynamics capture the stochasticity of robot
movement and repair success. Movement actions lead to changes in
the robot’s position, and repair actions result in fixing components.
The transition functions are defined as follows:

• For movement actions:
(a) s′ = (x′, y′) with probability P(s′|s, ai)

• For the repair action:
(a) Component status changes with probability P(Fixed|

Malfunctioning, a5)

Immediate rewards R(s, a) are based on the robot’s actions; for
example, repairing a component yields a positive reward. The main
goal is to explore the grid efficiently to discover malfunctioning
components and optimize repair actions, while minimizing negative
rewards.

For automata representation, the automaton states represent
different behavior modes of the robot:

• State s̃1 (“Patrol”): Exploring the grid for components
• State s̃2 (“Repair”): Repairing malfunctioning components

2. Sensor calibration

We consider an exploration scenario involving the calibration
of sensors in an environment. Each MDP state s includes accuracy
(As) and precision (Ps) levels of the pressure sensor. Actions cor-
respond to adjusting the calibration settings of the sensors. These
actions influence the sensors’ measurements and their uncertainty.
Adjusting the calibration settings introduces uncertainties in the
sensor measurements. The agent can take actions a to adjust the cal-
ibration settings of the pressure sensor. The agent has two choices:
“Increase Accuracy” (a1) and “Increase Precision” (a2). The tran-
sition dynamics capture how the calibration process affects the
sensors’ accuracy and precision. The transition dynamics are prob-
abilistic and involve uncertainty in calibration adjustments. Imme-
diate rewards are based on the quality of the measurements after
performing a calibration action. Achieving highly accurate and pre-
cise measurements leads to positive rewards. The immediate reward
function R(s, a) is defined as the sum of accuracy and precision. The
goal is to explore the space of possible calibration settings to find the
optimal configuration that maximizes the accuracy and precision of
sensor measurements.

The automaton states represent the different stages of cali-
bration. States could include “Initial Calibration,” “Fine-Tuning,”
“High Precision,” etc. Transitions between states are based on the
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agent’s choices of calibration actions. For example, transitioning
from “Initial Calibration” to “Fine-Tuning” could occur when the
agent decides that the initial settings need to be refined. The automa-
ton states represent different calibration stages, for example:

• State s̃1 (“initial calibration”): As̃1 = 50, Ps̃1 = 40
• State s̃2 (“fine-tuning”): As̃2 = 50, Ps̃2 = 40
• State s̃3 (“optimized calibration”): As̃3 = 50, Ps̃3 = 40

An accepting state might signify the achievement of the best possible
calibration configuration with high accuracy and precision.

3. Circuit design optimization

In a circuit design problem, each MDP state represents the
current configuration of a circuit design, including the values of
various components (resistors, capacitors, etc.) and their connec-
tions. Actions correspond to modifying the values of circuit com-
ponents, reconfiguring connections, and making design choices.
Moreover, changing component values and connections affects the
behavior of the circuit. The transition dynamics capture how modifi-
cations influence the circuit’s performance and behavior. Immediate
rewards are based on the circuit’s performance metrics, such as sig-
nal quality, power consumption, or noise levels. Achieving desired
circuit behavior yields positive rewards. The primary goal is to
explore different circuit design configurations to optimize specific
performance criteria while meeting design specifications.

The automaton states represent different design stages, such as
“Initial Configuration,” “Parameter Tuning,” “Validation,” etc. Fur-
thermore, transitions between states occur as the agent makes design
modifications. For example, transitioning from “Initial Configura-
tion” to “Parameter Tuning” could happen when the agent decides
to fine-tune component values. An accepting state could signify the
successful optimization of the circuit design, where the design meets
the desired performance criteria. The agent’s decisions are driven by
immediate rewards tied to circuit performance and the long-term
exploration goal of achieving the best design configuration.

4. Control system optimization for a pendulum

In a control system problem, each MDP state represents the
current state of a pendulum system, including the pendulum’s angle,
angular velocity, and other relevant parameters. Actions correspond
to control inputs that affect the pendulum’s motion, such as apply-
ing torques or forces. The dynamics of the pendulum system are
affected by the control inputs. The transition dynamics capture how
the pendulum’s state changes based on the applied control actions.
Immediate rewards are based on the stability and performance of
the control system. Keeping the pendulum balanced and minimizing
oscillations yield positive rewards. The goal is to explore differ-
ent control strategies to stabilize the pendulum and optimize its
performance.

The automaton states represent different control modes, such
as “Stabilization,” “Trajectory Tracking,” “Control Tuning,” etc.
Transitions between states occur as the agent selects different con-
trol strategies. For example, transitioning from “Stabilization” to
“Trajectory Tracking” could happen when the agent wants to move

the pendulum to a specific position. An accepting state could sig-
nify the successful optimization of the control system, where the
pendulum is stabilized and follows desired trajectories accurately.
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