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ABSTRACT

Reconstructing complex networks and predicting the dynamics are particularly challenging in real-world applications because the available
information and data are incomplete. We develop a unified collaborative deep-learning framework consisting of three modules: network
inference, state estimation, and dynamical learning. The complete network structure is first inferred and the states of the unobserved nodes
are estimated, based on which the dynamical learning module is activated to determine the dynamical evolution rules. An alternating param-
eter updating strategy is deployed to improve the inference and prediction accuracy. Our framework outperforms baseline methods for
synthetic and empirical networks hosting a variety of dynamical processes. A reciprocity emerges between network inference and dynamical
prediction: better inference of network structure improves the accuracy of dynamical prediction, and vice versa. We demonstrate the superior
performance of our framework on an influenza dataset consisting of 37 US States and a PM2.5 dataset covering 184 cities in China.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0201557

Three important topics in the network science, i.e., link pre-
diction, network reconstruction, and dynamics prediction, have
been separately considered in the past, inspired by the fact that,
in many real situations, only some incomplete data regarding
the time series of partial nodes or the partial structure of net-
works are observed. One natural question is: how to use the
incomplete data to infer the network structure as well as pre-
dict the dynamics simultaneously. Evidently, the raised problem
is more meaningful and more challenging because it means that
the three seemingly independent problems should be solved at
the same time. To this end, we develop a collaborative deep-
learning framework for network inference and dynamical predic-
tion. Experiments demonstrate that our method outperforms the
baseline method for both tasks for different networks (artificial
and empirical) and different dynamics (discrete and continuous).
Our proposed framework is able to build a bridge between net-
work inference and dynamical prediction, i.e., the good network
structure can improve the accuracy of dynamical prediction, and
the good dynamical rule can improve the accuracy of network
inference.

I. INTRODUCTION

A variety of real-world systems, such as biological, chemi-
cal, social, and the climate systems, are complex networks com-
posed of nonlinear dynamical units,1,2 and the emergent collective
dynamics and their reliance on the network structure have been
an area of active research.3,4 However, from a structural point of
view, the detailed connecting topology of the network is often
unknown, hindering our ability to predict the dynamical behav-
iors that can take place on the network.5,6 A viable approach to
deciphering the topological structure is through time-series data.7

From the point of view of network dynamics, learning the rules
and predicting the dynamical evolution of the networked system
from data are important for applications.8,9 A tacit assumption
in most existing works is that time-series data from all nodes
in the network are available, which typically does not hold in
practical situations. To reconstruct the network structure and
predict the dynamical processes from partial, and often severely
incomplete data and information is, thus, realistically relevant and
significant, but the problem is challenging and remains largely
outstanding.
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Previously, a number of data-driven approaches have been
developed to infer network structure,7,10 which include correlation-
based methods,11 causal analysis,12 compressed sensing,13 and statis-
tical inference methods.14–17 A related problem is link prediction,
where the partial network structure is observed and the aim is
to predict the potential or future links that may emerge.18,19 A
variety of methods have been proposed, including similarity-based
methods,20,21 maximum likelihood methods,22,23 and machine learn-
ing methods.24,25 In terms of dynamical prediction, a variety of
methods have been developed. For example, early methods relied
on fitting the parameters for specific dynamical models26,27 or find-
ing the nonlinear equations.28,29 Predicting the network dynamics
is harder because the interactions among the nodes generating the
observed dynamical behaviors are typically highly correlated and
nonlinear. More recently, machine learning, particularly graph neu-
ral networks (GNNs), has been exploited for predicting network
dynamics5,30 with significant applications, such as predicting the
influenza-like illness (ILI),31 traffic flow,32 stability of power grids,33

and the dynamical rules underlying climate change.34 Despite the
success of machine learning-based predictions in network dynamics,
most existing works made the assumption that the network structure
and the full historical time-series data are known.

For network inference and dynamical prediction, data collec-
tion generally falls into two categories: structural and time-series
data, where the former represents prior knowledge about the net-
work topology while the latter are dynamical data collected from
a known set of nodes in the network. Both categories of data can
be incomplete or partial. For example, consider a toy network as
characterized by the adjacency matrix in Fig. 1(a) and suppose that
there is an unknown or “hidden” node (labeled as the bottom-right
corner) from which no measurement can be taken, so all the links
from other five nodes in the network as represented by the gray
boxes along the right and bottom edges in the adjacency matrix
are unknown, as illustrated in Fig. 1(b). In this case, the extent of
“incompleteness” of the available information is not severe as only
the links connected to the hidden node are unknown while the con-
nectivity among all other nodes in the network is known. For this
type of “weak” incompleteness in the available structural data, recent
works have demonstrated that deep learning can be effective for
simultaneously inferring the network structure and predicting the
dynamics.35–37

In contrast to the above problem scenarios, a more challenging
structural data scenario is illustrated in Fig. 1(c), where the connec-
tion relationships in the network are almost completely unknown in
the sense that only a small group of observed edges is known and
the existence or non-existence of any link is uncertain. To define
and contrast the two incomplete data scenarios quantitatively, we
use the numbers of unknown parameters that need to be estimated,
which are O(N) and O(N2) for a network of size N in Figs. 1(b)
and 1(c), respectively. In all likelihood, to solve the problem of net-
work inference and dynamical prediction in situations where the
number of unknown parameters scales quadratically with the net-
work size is significantly more challenging than in cases where the
relation is linear. Furthermore, the existing method36 assumed that
only the time-series data of hidden nodes are missing, while the
time-series data of other observed nodes are known. On the con-
trary, we assume that the missing time-series data of nodes can be

FIG. 1. Illustration of two types of data incompleteness associated with network
inference and dynamical prediction. (a) The adjacency matrix of a toy network of
six nodes, where the blue and blank boxes indicate an actual link and the non-
existence of a link, respectively. (b) A “benign” partial-data scenario where one
node (the bottom-right matrix element) is hidden, so the connections between
this node and all other nodes in the network are unknown (the gray boxes). In this
case, the number of structural parameters to be estimated scales linearly with
the network size. (c) A severely incomplete data scenario in which all nodes are
hidden and only a handful number of links are known. In this case, the number of
structural parameters to be determined scales quadratically with the network size.

independent of the data of network structure, and such an assump-
tion is more general. Therefore, in order to address this challenge,
we need to develop more effective methods.

In this paper, we develop a collaborative deep-learning frame-
work for network inference and dynamical prediction, and design an
alternating updating strategy for the parameters. Our contributions
are as follows:

(1) In order to address the incomplete data scenarios (observing
partial structure of networks and time-series data of partial
nodes), we develop a data-driven collaborative deep-learning
framework (CoND) for network inference and dynamical pre-
diction, which consists of three modules: state estimation,
network inference, and dynamical prediction. The first two
modules aim to recover incomplete time-series data and struc-
tural data, respectively, while the third module aims to learn
dynamical rules.

(2) In order to improve the accuracy of inference and prediction,
we design a unique loss function for each module to facili-
tate parameter learning. Furthermore, we adopt an alternating
updating strategy to update the parameters of each module.
Specifically, during the parameter updating process, the param-
eters of the network inference and state estimation modules are
fixed, and then the parameters of the dynamical learning mod-
ule are updated, alternately updating the parameters in this way.

(3) The experimental results on various networks with discrete and
continuous dynamics show that our framework outperforms
previous methods in network inference and dynamical predic-
tion tasks. We explicitly validate a reciprocity: knowing the net-
work structure better improves dynamical prediction and better
learned dynamical rules in turn makes network inference more
accurate. Meanwhile, we also demonstrate the effectiveness of
CoND in the influenza dataset and the PM2.5 dataset.

The rest of the paper is organized as follows: Sec. II introduces
the definition of the problem. In Sec. III, we introduce the proposed
CoND framework. Then, we present the experimental setup and
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experimental results of two tasks in Sec. IV. Finally, we summarize
our conclusions in Sec. V.

II. PROBLEM DEFINITION

In this section, we introduce the definition of the problem
is about how to infer network structure and predictive dynamics
simultaneously from incomplete data.

Let G = {V, E} denote the network to be reconstructed, where
V = {v1, v2, . . . , vN} and E = {eij = (vi, vj)|vi, vj ∈ V} are the sets of
nodes and edges, respectively. The adjacency matrix of G is A, where
Aij = Aji = 1 if nodes i and j are connected, and Aij = Aji = 0 if
they are not connected. The network dynamics are described by
Xt+1 = ϕ(Xt, A), where Xt = (X1

t, X2
t, . . . , XN

t) denotes the state of
all N nodes at time t. The size N of the network (the total number of
nodes) is assumed to be known.

Given that the information about the network structure is
incomplete and only time series of partial nodes can be observed, we
divide G into two components: the observed structure Go and the
hidden structure Gm, with the corresponding adjacency matrices Ao

and Am, respectively, so the full adjacency matrix A can be written
as A = Ao + Am. Likewise, X recording the states of all nodes can be
divided into two parts: the states Xo of the observed nodes and the
states Xm of the unobserved nodes. Given Ao and Xo at time t, the
estimated dynamical state Xo at time t + 1 can be written as

X̂t+1
o = ϕγ (Xt

o ⊕ Xt
m(α), Ao + Am(β)), (1)

where α, β , and γ are three parameter sets to be determined,
which will be used to estimate the states of nodes, infer the network
structure and predict the dynamics, respectively.

Our goal is to infer the full network G as represented by A
and learn the network dynamical rules ϕ based on the incom-
plete structure described by Ao and the incomplete time-series data
Xo. Therefore, we develop deep-learning framework to address this
optimization problem.

III. DESCRIPTIONS OF COND FRAMEWORK

In this section, we introduce the details of the three modules
and the objective functions in our proposed CoND framework.

The CoND framework consists of three modules: state estima-
tion, network inference, and dynamical learning, as illustrated in
Fig. 2. The first two modules aim to recover incomplete data, i.e.,
time-series data of nodes and the network structure, while the third
module aims to learn the dynamical rules. The functionalities of the
three modules are described here.

A. The state estimation module

The state estimation module is designed to estimate the states of
the unobserved nodes and optimize the parameter set α. The input
to this module is the N-dimensional network state vector Xt at time
t, where each entry of Xt is a learnable parameter, denoted as αt

i , on
which the state Xt

i of node i depends,

Xt
i(α) = f

(

αt
i

)

, (2)

where αt
i represents the state learning parameters of node i at time t

and f is a function that maps the parameter values to a range of state

values. For example, for a binary state model, the mapping function
can be chosen to be a Sigmoid function. The estimated complete
time series can be obtained by combining the estimated missing

node states with the observed node states: X̂t(α) = Xt
o ⊕ Xt

m(α). As
shown in Fig. 2, the input is the states of the observed nodes Xt

o,

and the estimated complete node state vector X̂t(α) can be obtained
through this module.

B. The network inference module

The network inference module requires a functional formula
of Am(β) to learn the parameter set β . As the connectivity between a
pair of nodes is a logical variable (either connected or not), it is dif-
ficult to update the parameters characterizing the network structure
through backpropagation. To overcome this difficulty, we use the
Gumbel-Softmax method38 to infer the candidate adjacency matrix.
By this approach, the sampling process of a discrete distribution is
simulated through a continuous function so that the distributions
produced by the real and the simulated sampling process are the
same. Specifically, the candidate adjacency matrix Am(β) inferred
by the Gumbel-Softmax approach is defined as

(Am(β))ij = σ((log(βij) + ξij)/τ), (3)

where ξij is a random number generated by the Gumbel distribution,
σ is the Softmax function, τ is a temperature parameter for adjust-
ing the sharpness of the sampling process. Inspired by the idea of
residual connection,39 we use the candidate adjacency matrix Am(β)

as the residual term, the complete network structure can be esti-
mated by combining the learned adjacency matrix and the observed

structure: Â(β) = Ao + Am(β). As shown in Fig. 2, the input is
the observation structure Ao, and the complete network structure

Â(β) can be obtained through this module. This not only preserves
the information of the original graph but also avoids excessively
modifying the topological structure of the graph.

C. The dynamical learning module

In the dynamical learning module, the nonlinear function ϕγ

characterizing the dynamical rules needs to be defined. Taking
advantage of the strong representation and learning capabilities of
GNNs for network dynamics, we use it to represent ϕγ . As shown

in Fig. 2, the estimated complete node state vector X̂t(α) and the

complete network structure Â(β) are the inputs, and the state of the
observed node at time t + 1 can be predicted through Eq. (1), which
can be written as

X̂t+1
o = GNN(X̂t(α), Â(β), γ ), (4)

where γ is the parameter set of the GNN model. In fact, our goal is to
understand the dynamical rules by learning this parameter set of the
GNN model. We test a number of GNN models, including Graph
Convolutional Network (GCN),40 Graph SAmple and aggreGatE
(SAGE),41 and Graph Isomorphism Network (GIN)42 (a detailed
description of different GNN models is provided in Appendix A).
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FIG. 2. Proposed collaborative deep-learning framework for network inference and dynamical prediction. The framework consists of threemainmodules: (1) a state estimation
module is used to evaluate the states of the missing nodes (box with symbol “?”) at the observed time step T , (2) a network inference module is used to infer missing edges
(red edges) by the Gumbel-Softmax approach based on the observed adjacency matrix, and (3) a dynamical learning module is used to predict the state of the node at
the next time step (T + 1) through the graph neural network based on inputs from the other two modules (i.e., the state of the node at T and the inferred adjacency
matrix). The three modules work “collaboratively” through the strategy of alternating parameter updates to accomplish the network inference and dynamical prediction
tasks.

D. Objective function

We design a unique objective function for each module to
update its parameters. Specifically, the parameter sets α and β in
the state estimation and network inference modules are optimized
by minimizing the following loss function:

L(α) =

K
∑

k=1

T−1
∑

t=0

(L1

(

Xt+1
o , X̂t+1

o

)

+L2(X
t
o, X

t
o(α))), (5)

L(β) =

K
∑

k=1

T−1
∑

t=0

L1

(

Xt+1
o , X̂t+1

o

)

+ λ||Âm(β)||1, (6)

where L1 is the Cross Entropy (CE) for discrete dynamics or the
Mean Square Error (MSE) for continuous dynamics, L2 is the MSE
loss, and K is the number of batches of samples. Equation (5) incor-
porates the loss between the observed node states and the predicted
values with the goal of better learning the states of the missing nodes.
Equation (6) adds λ to the loss function to sparsify the learned net-
work to avoid overfitting and we set λ = 1/N2. By fixing the input

of X̂t(α) and the learned Â(β), the parameter set γ in ϕγ is learned
by minimizing the following loss function:

L(γ ) =

K
∑

k=1

T−1
∑

t=0

L1

(

Xt+1
o , X̂t+1

o

)

. (7)

Equations (5)–(7) stipulate that the difference between the esti-
mated and real values of the observed states should be minimized. By
designing different loss functions for each module, it is to enable suf-
ficient learning for each module to improve its performance, thereby
achieving the accuracy of network inference and dynamical predic-
tion. Once the objective functions in the three learning modules
have been specified, training can start. The optimization process
consists of alternatively updating the three modules until the three
loss functions converge. We express the training process in the form
of pseudocode as in Algorithm 1.

First, the parameters α, β , and γ are initialized (line 1). Then,
in each epoch, the dynamical learning module is optimized when
the parameters of network inference module and state estimation
module are fixed, and the parameter γ is updated by Eq. (7) (lines
4–10). Then, the parameter set α of the state estimation module
is updated by Eq. (5) (lines 11–18), and finally, the parameter set
β of the network inference module is updated by Eq. (6) (lines
19–26). In each epoch, the three modules are trained alternately,
and three modules are constantly optimized in each stage. In order
to speed up the running efficiency of the model, we use batch
processing to train the model. The batch size is set as P, and the
gradient descent algorithm is used to update the parameters α, β

and γ step by step with different learning rates lrα , lrβ , and lrγ

until the end of training. In this paper, we set P = 9, and the length
of time series is 100 per batch, D1 = 30, D2 = 20, D3 = 20, and
epoch = 10. In addition, we set lrα = 0.1, lrβ = 0.1, and lrγ = 0.001,
respectively.
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ALGORITHM 1.CoND framework.

Input: Ao: the observed adjacency matrix, D1: dynamical learning
module training rounds, D2: state estimation module training
rounds, D3: network inference module training rounds, P: the
number of batch, lrα : state estimation module learning rate, lrβ :
network inference module learning rate, lrγ : dynamical
learning module learning rate.

Output: α, β , γ .
1: Initialize parameter α, β , γ .
2: for each i in epochs do

3: X̂(α) = Xo ⊕ Xm(α), Â(β) = Ao + Am(β)

4: for m = 1, . . . , D1 do #Dynamical learning module.
5: for batch = 1, . . . , P do

6: Ybatch
o = ϕγ (Â(β), X̂batch(α)).

7: end for
8: Calculate Loss ({X1

o, . . . , XP
o}, {Y

1
o, . . . , YP

o}).
9: γ = γ − lrγ · 1γ .
10: end for
11: for n = 1, . . . , D2 do #State estimation module.

12: X̂(α) = Xo ⊕ Xm(α)

13: for batch = 1, . . . , P do

14: Ybatch
o = ϕγ (Â(β), X̂batch(α)).

15: end for

16: Calculate Loss ({X1
o, . . . , XP

o}, {Y
1
o, . . . , YP

o}, X̂m(α)).
17: α = α − lrα · 1α.
18: end for
19: for n = 1, . . . , D3 do#Network inference module.

20: Â(β) = Ao + Am(β)

21: for batch = 1, . . . , Pdo

22: Ybatch
o = ϕβ(Â(β), X̂batch(α)).

23: end for

24: Calculate Loss ({X1
o, . . . , XP

o}, {Y
1
o, . . . , YP

o}, Âm(β)).
25: β = β − lrβ · 1β .
26: end for
27: end for

IV. EXPERIMENTAL RESULTS

In this section, we introduce network and dynamical process
data, baseline methods, evaluation metrics, and experimental results
on different networks and dynamical processes.

TABLE I. Basic information of real networks.

Network Nodes Edges Average degree

Dolphins 62 159 5.1290
Word 112 425 7.5893
Ca-netsci 379 914 4.8232
Email 1133 5451 9.6222

A. Network data

In this section, we introduce the synthesis network and real
networks.

1. Synthesis network

The scale network is generated by the Barabási–Albert (BA)
networks.43 We add a new node to the network and connect it to
an existing node with m = 2. Erdós–Rényi (ER) networks44 are ran-
domly connected with a probability of 0.02. In Watts–Strogatz (WS)
networks,45 each node has four neighbors and reconnects randomly
with probability 0.2. Here, the network size is N = 200.

2. Real networks

We select four real-world networks, including Dolphins net-
work (the network of connections between dolphins46), Word net-
work (the network of commonly make up of adjectives and nouns
in the novel “David Copperfield”46), Ca-netsci network (the col-
laborative network of scientists engage in network theory and
experimentation47), Email network (the communication network
make up of Email48). The description of real networks is shown in
Table I.

B. Dynamical process

In this section, we introduce five discrete processes and three
continuous processes.

1. Threshold model

In this model,49 when the fraction of active neighbors of a node
is greater than the threshold, the node becomes active, where no
recovery is allowed. In our work, the threshold is set to 1/2. Since all
nodes can quickly converge to a steady state, we randomly initialize
the states of all nodes every five times steps.

2. Voter model

In the Voter model,50 each node adopts the states of a randomly
selected neighbor at each time step. Since all nodes can converge to
a stable state, we randomly initialize the states of all nodes every ten
times steps.

3. Ising model

The Ising model51 is a classical paradigm for studying fer-
romagnetic spin from the microscopic point of view in statistical
physics. Here, we set β = 2 to represent the combined effect of
temperature and ferromagnetic interaction.

4. Susceptible-infected-susceptible (SIS) model

In the SIS process,49 there are two types of nodes: susceptible (S)
and infected (I). At each time step, an infected node can infect its
susceptible neighbors at the infection rate λ and it recovers to the
susceptible state with the recovery rate µ. In our simulations, the
values of λ and µ are set to be 0.5 and the number of data resampling
steps is 2.
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TABLE II. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_acc metric for five discrete dynamical models (the second column) on

synthetic and real networks (the first column). The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Threshold 0.831 ± 0.003 0.967 ± 0.003 0.966 ± 0.003 0.911 ± 0.003 0.910 ± 0.003
Voter 0.602 ± 0.005 0.741 ± 0.004 0.740 ± 0.004 0.685 ± 0.005 0.684 ± 0.005

BA Ising 0.583 ± 0.006 0.689 ± 0.002 0.689 ± 0.002 0.645 ± 0.005 0.646 ± 0.003
SIS 0.792 ± 0.007 0.845 ± 0.003 0.848 ± 0.005 0.839 ± 0.001 0.840 ± 0.001
SIR 0.824 ± 0.008 0.836 ± 0.003 0.834 ± 0.001 0.834 ± 0.007 0.835 ± 0.003

Threshold 0.817 ± 0.005 0.967 ± 0.005 0.962 ± 0.004 0.897 ± 0.004 0.897 ± 0.004
Voter 0.595 ± 0.007 0.697 ± 0.003 0.696 ± 0.003 0.660 ± 0.004 0.660 ± 0.004

ER Ising 0.579 ± 0.006 0.666 ± 0.002 0.670 ± 0.002 0.643 ± 0.002 0.643 ± 0.002
SIS 0.804 ± 0.001 0.840 ± 0.003 0.833 ± 0.003 0.831 ± 0.001 0.830 ± 0.001
SIR 0.810 ± 0.009 0.827 ± 0.008 0.830 ± 0.003 0.825 ± 0.006 0.819 ± 0.006

Threshold 0.813 ± 0.006 0.973 ± 0.003 0.969 ± 0.002 0.908 ± 0.002 0.908 ± 0.002
Voter 0.620 ± 0.008 0.741 ± 0.002 0.740 ± 0.001 0.719 ± 0.004 0.718 ± 0.004

WS Ising 0.562 ± 0.002 0.675 ± 0.002 0.680 ± 0.001 0.653 ± 0.003 0.652 ± 0.003
SIS 0.880 ± 0.006 0.895 ± 0.001 0.893 ± 0.002 0.892 ± 0.001 0.892 ± 0.001
SIR 0.850 ± 0.004 0.873 ± 0.002 0.871 ± 0.001 0.872 ± 0.005 0.869 ± 0.003

Threshold 0.897 ± 0.007 0.960 ± 0.003 0.956 ± 0.004 0.870 ± 0.004 0.870 ± 0.003
Voter 0.702 ± 0.007 0.743 ± 0.005 0.749 ± 0.005 0.687 ± 0.004 0.686 ± 0.004

Dolphins Ising 0.645 ± 0.007 0.694 ± 0.004 0.692 ± 0.005 0.645 ± 0.003 0.645 ± 0.004
SIS 0.686 ± 0.006 0.736 ± 0.003 0.738 ± 0.003 0.736 ± 0.002 0.733 ± 0.002
SIR 0.669 ± 0.004 0.706 ± 0.003 0.702 ± 0.003 0.711 ± 0.004 0.706 ± 0.004

Threshold 0.869 ± 0.007 0.952 ± 0.004 0.959 ± 0.003 0.875 ± 0.003 0.874 ± 0.003
Voter 0.621 ± 0.006 0.674 ± 0.004 0.674 ± 0.003 0.629 ± 0.003 0.628 ± 0.003

Word Ising 0.596 ± 0.006 0.647 ± 0.003 0.647 ± 0.003 0.610 ± 0.003 0.610 ± 0.004
SIS 0.664 ± 0.008 0.733 ± 0.004 0.731 ± 0.004 0.739 ± 0.003 0.736 ± 0.004
SIR 0.631 ± 0.007 0.715 ± 0.004 0.713 ± 0.004 0.714 ± 0.003 0.714 ± 0.003

Threshold 0.755 ± 0.008 0.959 ± 0.003 0.958 ± 0.004 0.912 ± 0.003 0.912 ± 0.003
Voter 0.618 ± 0.005 0.764 ± 0.003 0.769 ± 0.004 0.729 ± 0.002 0.729 ± 0.002

Ca-netsci Ising 0.551 ± 0.006 0.710 ± 0.003 0.703 ± 0.002 0.666 ± 0.002 0.666 ± 0.003
SIS 0.836 ± 0.008 0.923 ± 0.003 0.928 ± 0.002 0.924 ± 0.004 0.920 ± 0.003
SIR 0.795 ± 0.007 0.901 ± 0.002 0.904 ± 0.003 0.907 ± 0.002 0.906 ± 0.003

Threshold 0.680 ± 0.008 0.937 ± 0.002 0.933 ± 0.001 0.858 ± 0.001 0.856 ± 0.001
Voter 0.543 ± 0.003 0.667 ± 0.002 0.671 ± 0.001 0.611 ± 0.001 0.611 ± 0.001

Email Ising 0.536 ± 0.004 0.641 ± 0.002 0.640 ± 0.001 0.592 ± 0.002 0.591 ± 0.002
SIS 0.871 ± 0.008 0.882 ± 0.002 0.880 ± 0.002 0.883 ± 0.004 0.882 ± 0.003
SIR 0.878 ± 0.009 0.879 ± 0.002 0.878 ± 0.003 0.878 ± 0.002 0.876 ± 0.002

5. Susceptible-infected-recovered (SIR) model

In SIR dynamics,52 any node belongs to one of the three types:
susceptible (S), infected (I), and recovery (R). A node in the infected
state can infect its susceptible neighbors with the infection proba-
bility λ. An infected node can return to the recovery state at the
recovery rate µ, and a node in the recovery state will not be infected
again. In our study, we set both λ and µ to 0.5, and the number of
data resampling steps is 2.

6. Kuramoto model

The Kuramoto model53 describes a system of phase-coupled
oscillators, with the following equation governing the phase variable

θi of the ith oscillator:

dθi

dt
= ωi + k

N
∑

j=1

Aij sin(θj − θi), (8)

where k is the coupling strength, θi is the phase angle of oscillator i,
and ωi is the intrinsic frequency of node i when uncoupled, which
is chosen from the uniform random distribution [−π/2, π/2]. The
coupling strength k is set to 0.2 and the number of data resampling
steps is 10.

7. Branch model

The Branch model54 initiates an avalanche by activating one
unit. The unit activates each of its connected k neighbors with the
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TABLE III. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_mse metric for three continuous dynamical models (the second column)

on synthetic and real networks (the first column). The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Kuramoto 0.155 ± 0.015 0.108 ± 0.009 0.110 ± 0.008 0.109 ± 0.006 0.109 ± 0.006
BA Branch 0.075 ± 0.006 0.075 ± 0.004 0.060 ± 0.003 0.051 ± 0.003 0.051 ± 0.004

CML 0.084 ± 0.020 0.059 ± 0.010 0.059 ± 0.009 0.054 ± 0.006 0.054 ± 0.007
Kuramoto 0.171 ± 0.050 0.122 ± 0.006 0.128 ± 0.009 0.129 ± 0.005 0.129 ± 0.005

ER Branch 0.024 ± 0.009 0.024 ± 0.006 0.024 ± 0.006 0.023 ± 0.002 0.021 ± 0.002
CML 0.076 ± 0.014 0.058 ± 0.010 0.054 ± 0.008 0.056 ± 0.004 0.056 ± 0.004

Kuramoto 0.153 ± 0.059 0.117 ± 0.008 0.119 ± 0.009 0.119 ± 0.006 0.118 ± 0.005
WS Branch 0.030 ± 0.005 0.017 ± 0.004 0.018 ± 0.004 0.015 ± 0.001 0.015 ± 0.001

CML 0.087 ± 0.017 0.060 ± 0.008 0.050 ± 0.009 0.056 ± 0.002 0.056 ± 0.002
Kuramoto 0.127 ± 0.013 0.103 ± 0.002 0.104 ± 0.003 0.106 ± 0.003 0.106 ± 0.003

Dolphins Branch 0.039 ± 0.001 0.038 ± 0.003 0.033 ± 0.001 0.032 ± 0.001 0.032 ± 0.001
CML 0.062 ± 0.002 0.053 ± 0.003 0.056 ± 0.006 0.056 ± 0.003 0.056 ± 0.002

Kuramoto 0.131 ± 0.007 0.113 ± 0.006 0.125 ± 0.007 0.117 ± 0.003 0.118 ± 0.004
Word Branch 0.082 ± 0.004 0.067 ± 0.005 0.061 ± 0.003 0.059 ± 0.002 0.059 ± 0.004

CML 0.037 ± 0.002 0.022 ± 0.002 0.030 ± 0.002 0.026 ± 0.001 0.027 ± 0.001
Kuramoto 0.105 ± 0.008 0.096 ± 0.006 0.100 ± 0.006 0.082 ± 0.003 0.083 ± 0.004

Ca-netsci Branch 0.075 ± 0.006 0.047 ± 0.004 0.056 ± 0.004 0.035 ± 0.003 0.036 ± 0.003
CML 0.070 ± 0.005 0.064 ± 0.007 0.065 ± 0.007 0.065 ± 0.004 0.065 ± 0.004

Kuramoto 0.108 ± 0.004 0.071 ± 0.005 0.071 ± 0.003 0.060 ± 0.004 0.061 ± 0.004
Email Branch 0.023 ± 0.003 0.021 ± 0.001 0.019 ± 0.001 0.019 ± 0.001 0.019 ± 0.002

CML 0.029 ± 0.003 0.022 ± 0.002 0.021 ± 0.005 0.022 ± 0.004 0.022 ± 0.002

probability p at the next time step. The activated units can in turn
activate their neighbors and so on. The sequence of activation forms
an avalanche that ends when the previously activated set of units
no longer activates any unit. The control parameter of the model is
σ = p · k. In our simulations, σ is set to 0.9 and the number of data
resampling steps is 10.

8. Coupled map lattices (CML) model

Coupled map lattices55 represent a class of spatially discrete,
discrete-time spatiotemporal dynamical systems. The map equation
for the dynamical variable at the ith site is given by

xi(t + 1) = (1 − s)f(xi(t)) +
s

ki

N
∑

j=1

Aijf(xj(t)), (9)

where s is the coupling parameter and ki is the degree of node i.
In our study, we use the mapping function f(x) = λx(1 − x) with
the parameter values λ = 3.5 and s = 0.2. The number of data
resampling steps is 10.

C. Baseline methods

In this section, we employ a number of baseline methods for
network inference and dynamical prediction.

We first design one ablation experiment named CoND0 to
study the impact of the state estimation module on the two tasks,
in which this module is removed and random values are assigned
to the states of the unobserved nodes. We also exploit the state-
of-the-art Gumbel Graph Network (GGN) algorithms,36 which is

a data-driven deep-learning model, which can be used to solve the
network completion and dynamical prediction problems.

For the network inference task, we also conduct six types of
experiments: four link prediction algorithms and two correlation
reconstruction algorithms. In particular, link prediction is imple-
mented on the observed network structure using the following
four types of algorithms: common neighbors (CNs),20 Adamic–Adar
(AA),21 resource allocation (RA),56 and local path (LP),57 and the two
correlation algorithms are the correlation coefficient11 and granger
causality inference58 methods based solely on the time-series data.

For the dynamical prediction task, we further design two com-
parative algorithms, named as CoD1 and CoD2, where the network
inference module is removed. Specifically, CoD1 uses the observed
structure Ao and generates a complete set of time-series data of the
nodes from the state estimation module to predict the dynamics,
CoD2 exploits the observed structure Ao and then performs ran-
dom assignment of unobserved node states to predict the dynamics
(details of different baseline methods are given in Appendix B).

D. Evaluation metrics

In this section, the metrics used to evaluate the accuracy of the
network inference and the dynamical prediction are introduced.

As for the dynamical prediction task, when considering the dis-
crete dynamical models, the state with the highest probability in the
probability vector is viewed as the state of node i, denoted as ŷi.
Therefore, we use the accuracy of state prediction (Dyn_acc) as the
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TABLE IV. Network inference performance of CoND and several baseline methods in terms of Net_acc metric for five discrete dynamical models (the second column) on synthetic and real networks (the first

column). The best accuracy in each row is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Threshold 0.487 ± 0.048 0.915 ± 0.029 0.815 ± 0.020 0.024 ± 0.008 0.769 ± 0.042
Voter 0.475 ± 0.069 0.800 ± 0.034 0.675 ± 0.037 0.017 ± 0.013 0.613 ± 0.025

BA Ising 0.413 ± 0.051 0.785 ± 0.031 0.721 ± 0.045 0.010 ± 0.010 0.667 ± 0.013 0.018 ± 0.011 0.017 ± 0.012 0.017 ± 0.012 0.010 ± 0.013
SIS 0.431 ± 0.074 0.800 ± 0.032 0.792 ± 0.042 0.012 ± 0.010 0.641 ± 0.034
SIR 0.344 ± 0.091 0.677 ± 0.043 0.605 ± 0.052 0.023 ± 0.014 0.590 ± 0.014

Threshold 0.812 ± 0.056 0.944 ± 0.026 0.815 ± 0.058 0.007 ± 0.008 0.804 ± 0.058
Voter 0.696 ± 0.042 0.827 ± 0.030 0.769 ± 0.053 0.003 ± 0.004 0.692 ± 0.039

ER Ising 0.675 ± 0.056 0.785 ± 0.028 0.781 ± 0.037 0.001 ± 0.004 0.806 ± 0.031 0.001 ± 0.002 0.004 ± 0.008 0.003 ± 0.008 0.002 ± 0.006
SIS 0.767 ± 0.085 0.843 ± 0.059 0.837 ± 0.046 0.003 ± 0.004 0.709 ± 0.020
SIR 0.710 ± 0.097 0.798 ± 0.069 0.798 ± 0.066 0.005 ± 0.006 0.661 ± 0.032

Threshold 0.765 ± 0.064 0.948 ± 0.025 0.85 ± 0.035 0.002 ± 0.004 0.813 ± 0.057
Voter 0.725 ± 0.061 0.850 ± 0.031 0.773 ± 0.048 0.001 ± 0.005 0.793 ± 0.043

WS Ising 0.830 ± 0.070 0.850 ± 0.056 0.833 ± 0.058 0.002 ± 0.007 0.805 ± 0.032 0.014 ± 0.002 0.018 ± 0.003 0.018 ± 0.003 0.001 ± 0.001
SIS 0.745 ± 0.039 0.855 ± 0.044 0.783 ± 0.046 0.001 ± 0.004 0.798 ± 0.047
SIR 0.595 ± 0.093 0.780 ± 0.038 0.765 ± 0.050 0.001 ± 0.008 0.590 ± 0.042

Threshold 0.833 ± 0.052 0.900 ± 0.047 0.820 ± 0.057 0.017 ± 0.027 0.700 ± 0.063
Voter 0.473 ± 0.056 0.693 ± 0.040 0.673 ± 0.041 0.013 ± 0.027 0.580 ± 0.055

Dolphins Ising 0.513 ± 0.066 0.667 ± 0.032 0.613 ± 0.041 0.016 ± 0.027 0.747 ± 0.050 0.123 ± 0.025 0.127 ± 0.030 0.113 ± 0.024 0.033 ± 0.013
SIS 0.767 ± 0.057 0.803 ± 0.041 0.853 ± 0.055 0.010 ± 0.027 0.667 ± 0.042
SIR 0.547 ± 0.065 0.867 ± 0.040 0.800 ± 0.040 0.023 ± 0.016 0.533 ± 0.058

Threshold 0.821 ± 0.051 0.762 ± 0.056 0.786 ± 0.048 0.006 ± 0.005 0.733 ± 0.050
Voter 0.302 ± 0.079 0.657 ± 0.061 0.610 ± 0.061 0.004 ± 0.005 0.624 ± 0.042

Word Ising 0.302 ± 0.069 0.617 ± 0.055 0.610 ± 0.062 0.002 ± 0.006 0.578 ± 0.0551 0.073 ± 0.031 0.073 ± 0.029 0.064 ± 0.027 0.105 ± 0.037
SIS 0.500 ± 0.057 0.571 ± 0.046 0.500 ± 0.042 0.001 ± 0.006 0.509 ± 0.044
SIR 0.331 ± 0.058 0.714 ± 0.055 0.621 ± 0.056 0.008 ± 0.005 0.476 ± 0.054

Threshold 0.395 ± 0.058 0.847 ± 0.028 0.807 ± 0.036 0.006 ± 0.006 0.700 ± 0.049
Voter 0.497 ± 0.049 0.670 ± 0.050 0.750 ± 0.058 0.011 ± 0.004 0.580 ± 0.031

Ca-netsci Ising 0.545 ± 0.055 0.774 ± 0.033 0.721 ± 0.036 0.006 ± 0.004 0.747 ± 0.016 0.363 ± 0.042 0.569 ± 0.042 0.543 ± 0.043 0.112 ± 0.034
SIS 0.407 ± 0.051 0.739 ± 0.057 0.691 ± 0.054 0.001 ± 0.006 0.667 ± 0.044
SIR 0.482 ± 0.065 0.793 ± 0.051 0.708 ± 0.050 0.006 ± 0.004 0.533 ± 0.018

Threshold 0.530 ± 0.048 0.872 ± 0.039 0.853 ± 0.029 0.004 ± 0.002 0.695 ± 0.024
Voter 0.301 ± 0.053 0.566 ± 0.067 0.535 ± 0.062 0.003 ± 0.001 0.501 ± 0.024

Email Ising 0.261 ± 0.039 0.472 ± 0.036 0.453 ± 0.029 0.008 ± 0.002 0.523 ± 0.015 0.140 ± 0.009 0.143 ± 0.005 0.153 ± 0.008 0.060 ± 0.009
SIS 0.258 ± 0.052 0.572 ± 0.047 0.555 ± 0.058 0.006 ± 0.002 0.567 ± 0.011
SIR 0.147 ± 0.053 0.553 ± 0.049 0.534 ± 0.046 0.007 ± 0.003 0.494 ± 0.019
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TABLE V. Network inference performance of CoND and other baseline methods in terms of Net_acc metric for three continuous dynamical models (the second column) on synthetic and real networks (the

first column). The best accuracy in each row is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Kuramoto 0.292 ± 0.050 0.651 ± 0.029 0.523 ± 0.046 0.026 ± 0.014 0.390 ± 0.054
BA Branch 0.418 ± 0.063 0.444 ± 0.070 0.467 ± 0.079 0.017 ± 0.012 0.339 ± 0.044 0.018 ± 0.011 0.017 ± 0.012 0.017 ± 0.012 0.010 ± 0.013

CML 0.251 ± 0.038 0.410 ± 0.040 0.359 ± 0.050 0.002 ± 0.010 0.280 ± 0.039
Kuramoto 0.421 ± 0.051 0.723 ± 0.037 0.567 ± 0.046 0.003 ± 0.004 0.377 ± 0.036

ER Branch 0.235 ± 0.092 0.539 ± 0.064 0.308 ± 0.051 0.010 ± 0.006 0.244 ± 0.045 0.001 ± 0.002 0.004 ± 0.008 0.003 ± 0.008 0.002 ± 0.006
CML 0.2623 ± 0.036 0.515 ± 0.057 0.442 ± 0.052 0.004 ± 0.005 0.231 ± 0.019

Kuramoto 0.598 ± 0.054 0.775 ± 0.074 0.233 ± 0.067 0.005 ± 0.003 0.350 ± 0.028
WS Branch 0.450 ± 0.049 0.550 ± 0.073 0.425 ± 0.074 0.004 ± 0.005 0.405 ± 0.037 0.014 ± 0.001 0.018 ± 0.003 0.018 ± 0.003 0.001 ± 0.001

CML 0.303 ± 0.079 0.543 ± 0.070 0.473 ± 0.087 0.002 ± 0.006 0.275 ± 0.027
Kuramoto 0.320 ± 0.076 0.400 ± 0.064 0.335 ± 0.041 0.067 ± 0.013 0.333 ± 0.027

Dolphins Branch 0.267 ± 0.089 0.427 ± 0.053 0.360 ± 0.053 0.017 ± 0.016 0.507 ± 0.016 0.123 ± 0.025 0.127 ± 0.030 0.113 ± 0.024 0.033 ± 0.013
CML 0.107 ± 0.034 0.227 ± 0.021 0.347 ± 0.023 0.020 ± 0.025 0.253 ± 0.027

Kuramoto 0.304 ± 0.074 0.405 ± 0.051 0.333 ± 0.036 0.012 ± 0.006 0.238 ± 0.012
Word Branch 0.113 ± 0.086 0.357 ± 0.063 0.286 ± 0.065 0.012 ± 0.010 0.262 ± 0.046 0.073 ± 0.031 0.073 ± 0.029 0.064 ± 0.027 0.105 ± 0.037

CML 0.333 ± 0.075 0.476 ± 0.067 0.455 ± 0.027 0.024 ± 0.009 0.202 ± 0.060
Kuramoto 0.330 ± 0.064 0.411 ± 0.037 0.425 ± 0.043 0.006 ± 0.005 0.352 ± 0.025

Ca-netsci Branch 0.256 ± 0.080 0.539 ± 0.052 0.459 ± 0.076 0.007 ± 0.005 0.306 ± 0.022 0.363 ± 0.042 0.569 ± 0.042 0.543 ± 0.043 0.112 ± 0.034
CML 0.211 ± 0.027 0.266 ± 0.018 0.322 ± 0.060 0.004 ± 0.005 0.311 ± 0.058

Kuramoto 0.241 ± 0.019 0.328 ± 0.013 0.264 ± 0.020 0.001 ± 0.002 0.267 ± 0.040
Email Branch 0.212 ± 0.052 0.332 ± 0.009 0.346 ± 0.010 0.003 ± 0.003 0.169 ± 0.044 0.140 ± 0.009 0.143 ± 0.005 0.153 ± 0.008 0.060 ± 0.009

CML 0.233 ± 0.024 0.290 ± 0.001 0.347 ± 0.022 0.003 ± 0.006 0.114 ± 0.065
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FIG. 3. Impact analysis of parameters regarding the CoND framework to data amount, average degree, and network size. Threshold dynamics on BA, WS, and ER networks
are used. (a) and (d) Effects of time-series length on network inference and dynamical prediction, where the length varies from 200 to 2000 at the interval 200. The network
size is N = 200 and the average degree 〈k〉 = 4. (b) and (e) Effects of 〈k〉 varying from 2 to 10 (at the interval 2) on performance. The network size is N = 200 and the
length of time series is T = 1000. (c) and (f) Impacts of the network size varying from 100 to 500 (at the interval 100) on prediction/inference performance, for 〈k〉 = 4 and
T = 1000. Here, the shaded translucent area represents the standard deviation of the results.

evaluation metric,

Dyn_acc =
∑

i∈VT

I(yi = ŷi)

|VT|
, (10)

where I( · ) is an indicator function [where I(yi = ŷi) = 1 if (yi = ŷi)

is true and I(yi = ŷi) = 0 otherwise], and |VT| is the number of
nodes in the test set. When considering the continuous dynami-
cal models, we use the mean square error loss (Dyn_mse) as the
evaluation metric,

Dyn_mse =
1

|VT|

∑

i∈VT

(yi − ŷi)
2
. (11)

As for the network inference task, the metric Net_acc is defined
to measure how many top-L predicted edges are the real existing
edges, that is,

Net_acc =
c

L
, (12)

where c represents the number of real existing edges.

E. Experimental setup

To deal with incomplete structural information and incomplete
dynamics, we consider these scenarios: some information about the
network structure is lost during data collection and some time-series
data of some nodes are lost as well. The experiments are conducted
by removing a fixed fraction of the edges and the time-series data
of a fraction of nodes. In our simulations, all time series have 1000
steps. Each time series is divided into a training set and a test set
with the ratio 9:1. To reduce the statistical uncertainties, the values
of these measures are averaged over ten independent realizations.

We test two settings: (a) 90% structure and 90% dynamics (i.e.,
data from a random 10% of the nodes are removed and (b) 80%
structure and 80% dynamics (corresponding to the removal of the
data from a random 20% of the nodes). To present our results con-
cisely and clearly, we include only the results with the GCN model
for the case of 90% structure and 90% dynamics in the main text.

F. Simulation results

Tables II and III show the comparison among different meth-
ods for discrete and continuous network dynamics, respectively, for
the task of dynamical prediction. The first observation is that the
accuracy of our CoND framework is typically higher than that of

Chaos 34, 043115 (2024); doi: 10.1063/5.0201557 34, 043115-10

Published under an exclusive license by AIP Publishing

 05 April 2024 00:35:44

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 4. Further support for the mutually beneficial roles of the two prediction
tasks. Threshold dynamics on BA, WS, and ER networks are studied. (a) and (c)
Effects of the fraction fT of removed time-series data, ranging from 10% to 50% at
the interval of 10%, on network inference and dynamical prediction. The fraction fE
of missing edges is fixed at 10%. (b) and (d) Effects of fE , ranging from 10% to 50%
the an interval of 10%, on the performance of the two prediction tasks, for fixed
fT = 10%. In all cases, the simulation parameters are 〈k〉 = 4, N = 200, and
T = 1000. Here, the shaded translucent area represents the standard deviation
of the results.

CoND0. The reason is that CoND0 does not include a state eval-
uation module, so it is unable to recover the states of the missing
nodes, while the CoND framework not only can recover the states
of unobserved nodes but also better learn the network structure.
Note that CoND0 outperforms GGN. The second observation is that
CoD1 generally outperforms CoD2 for both discrete and continu-
ous dynamics, again because of the inclusion of the state evaluation
module in CoD1. Overall, if exact state information is known, the
network dynamics can be better predicted.

Another observation is that the accuracies of CoND0 and
CoND are generally higher than those of CoD1 and CoD2, espe-
cially for discrete dynamics, suggesting that iteratively updating the
network structure in the network inference module is beneficial to
improving the accuracy of dynamical prediction. However, CoD1

and CoD2 can slightly outperform CoND and CoND0 in some cases,
e.g., continuous dynamics that are somewhat more difficult to be
learned than discrete dynamics. In fact, because CoD1 and CoD2

focus on the task of dynamical prediction without performing net-
work inference, they are more adaptable to this prediction task.
On the contrary, CoND and CoND0 need to balance the two tasks
simultaneously, causing a reduction in the prediction accuracy.

We now compare the accuracies of different methods for the
network inference task. As listed in Tables IV and V, CoND and
CoND0 outperform the GGN method for both continuous and
discrete dynamics. A further comparison of CoND and CoND0 indi-
cates that, in most cases, the former generally outperforms the latter
in inferring the network structure. Considering that CoND0 also has

lower performance in predicting the dynamics, it is inferior to the
CoND framework, suggesting the necessity to incorporate a state
estimation module into the machine-learning framework for gen-
eral tasks requiring predicting both the network structure and the
network dynamics.

Tables IV and V also summarize the results of comparing
our CoND framework with two classical network structure infer-
ence methods: the correlation and Granger causality methods (note
that the classical methods cannot be used to predict the dynamics).
Because the available information (data) is assumed to be sparse,
the correlation method is inferior, as caused by the low similarity
between the time-series data of the nodal dynamics. The Granger
method performs relatively well because it uses certain functions to
reconstruct the network but the associated computational complex-
ity is high, especially for large networks. In most cases, our CoND
framework greatly outperforms both classical methods. Tables IV
and V also present the performance of four existing link pre-
diction algorithms, which is generally low because they only use
the observed network structure without considering the observed
dynamics data.

Taken together, the results in Tables II–V demonstrate that
our CoND framework is capable of not only accurately predict-
ing the dynamics but also inferring the precise network structures
and is, thus, far superior to any existing method. A key feature of
our method is that the tasks of dynamical prediction and network
inference are mutually reinforcing each other: network inference
improves dynamical prediction and vice versa.

Figure 3 demonstrates the robustness of our CoND frame-
work by illustrating the impacts of the network size N, the average
degree 〈k〉, and the length T of time-series data for the prediction
performance of the two tasks on BA, WS, and ER networks. For con-
creteness, we consider the threshold dynamics model on three syn-
thetic networks. Figures 3(a) and 3(d) reveal that increasing T can
improve the accuracy of network inference as well as the dynamical
prediction. Figures 3(b) and 3(e) display the impacts of 〈k〉 on the
prediction performance, and the effects of N are shown in Figs. 3(c)
and 3(f), revealing that the prediction performance decreases with
〈k〉 and N. The reason is that predicting more densely connected
and larger networks requires more data. If the data amount is fixed,
the prediction accuracy will be sacrificed (the details of the other
dynamical processes are provided in Appendix C).

To strengthen the correlation between network inference and
dynamical prediction, we conduct an impact analysis of parame-
ters with respect to incomplete time-series data and missing edges
on BA, WS, and ER networks. We first assume that 10% of the
edges are not observed and study the effects of incomplete data.
Figures 4(a) and 4(c) show that incomplete dynamical data have
a dramatic influence on network inference. As the available time
series become shorter, the accuracy of both tasks decreases signif-
icantly. We then assume that 10% of the nodal time series cannot be
observed. Figures 4(b) and 4(d) show that the performance of our
CoND framework decreases but slowly as the fraction of removed
edges increases. Since only a small fraction of the time-series data
are removed, most information about the network structure and
dynamics is still contained in the available time-series data. As a
result, the network structure can be recovered to a great extent
even if more edges are deleted, meaning that the dynamics can
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TABLE VI. Performance comparison of CoND and other baseline methods for network inference and dynamical prediction as applied to the influenza data in US States and the

PM2.5 data in Chinese cities.

Dynamical prediction

Dataset GGN CoND CoND0 CoD1 CoD2 \ \ \ \
Influenza 0.009 ± 0.001 0.007 ± 0.000 0.008 ± 0.000 0.008 ± 0.000 0.008 ± 0.000 \ \ \ \
PM2.5 0.005 ± 0.000 0.003 ± 0.001 0.002 ± 0.001 0.003 ± 0.000 0.003 ± 0.000 \ \ \ \

Network inference

Dataset GGN CoND CoND0 Correlation Granger CN RA AA LP
Influenza 0.241 ± 0.035 0.355 ± 0.038 0.296 ± 0.054 0.130 ± 0.045 0.259 ± 0.057 0.291 ± 0.038 0.292 ± 0.044 0.273 ± 0.044 0.301 ± 0.042
PM2.5 0.035 ± 0.028 0.257 ± 0.039 0.324 ± 0.043 0.007 ± 0.002 0.128 ± 0.047 0.130 ± 0.036 0.142 ± 0.031 0.151 ± 0.045 0.082 ± 0.031

be predicted even if many edges are missing. The results from
these two experiments provide further support for the mutually
beneficial roles of the two prediction tasks: a better-estimated net-
work structure improves the accuracy of dynamical prediction and
better-estimated dynamical rules improve the accuracy of network
inference.

Finally, we validate the effectiveness of our CoND framework
using two real-world datasets: an influenza59 and a PM2.5

60 dataset.
The influenza dataset is the weekly influenza data reported by US
public health and clinical laboratories for the period from week 40
of 2011 to week 39 of 2016. We use influenza-like illness (ILI) to
measure the influenza outbreaks and normalize weekly ILI-related
visits in 37 US States to calculate the ILI ratio. (The average weekly
ILI ratio of the other 14 States is less than 1%, so they are removed
from the analysis to ensure a sufficient sample size in the data) by
recording the weekly ILI ratio so that we can obtain time-series data
for each state. Since small values of the ILI ratio can lead to large
biases in the prediction process, we multiply the ILI ratio by a factor
of 100 and use the resulting values as dynamic data. The commuting
network between the US States is generated using the commuting
traffic data from different States in 2015. The PM2.5 dataset is a com-
plete 4-year (January 1, 2015 to December 31, 2018) PM2.5 dataset,
which selects a wide range of areas (longitude 103◦E-122◦E and lat-
itude 28◦E-42◦E), covering a total of 184 cities (nodes) in China.
We construct the city network using the latitude, longitude, and alti-
tude information, and the PM2.5 data are the dynamical time-series
data (a detailed description of the two real datasets is provided in
Appendix D).

Table VI compares the accuracy of prediction/inference tasks
for 90% of the network structure and 90% of the dynamics data.
There are several findings. First, for both real-world datasets, the
performance of CoND and CoND0 for the two tasks is better than
that of the GGN and the traditional approaches. CoND outperforms
CoND0 for the influenza dataset, but the opposite is observed for the
PM2.5 dataset, with insignificant differences. For network inference,
the value of Net_acc is low for CoND and CoND0: about 0.25–0.35.
The main reason is that the true structures of the influenza trans-
mission and city networks are not known: they are reconstructed
based on limited empirical knowledge (e.g., commuting data or geo-
graphic location information). Nonetheless, the networks inferred
by the CoND or CoND0 method may help us discover some
potential relationships among the nodes in the respective appli-
cations (more results from the setting of 80%structure and 80%

dynamics based on the GCN model, as well as the results from the
GIN and SAGE models are given in Appendix E).

V. CONCLUSION AND DISCUSSIONS

In spite of the large literature, the problem of data-driven pre-
diction of complex networks subject to severely missing data and
edges has been longstanding. This work develops a data-driven
adaptive collaborative learning framework (CoND) to address this
challenge. Our CoND assumption only allows for the observation
of a small group of observed edges (existing edges) and the missing
time-series data of nodes can be independent of the data of network
structure, thus representing a more general framework for solving
the structural and dynamic inverse problems of networks with lim-
ited available information/data. Our machine-learning framework
is capable of accurately capturing the complex interplay between the
network structure and dynamics, providing a bridge between net-
work inference and dynamical prediction. The CoND framework
has been validated for various discrete and continuous dynamics on
three synthetic and four empirical networks and has been shown
to be superior to the currently available baseline methods. The
CoND framework has also been tested on two real-world datasets:
an influenza59 and a PM2.5

60 dataset.
To further assess the advantages and limitations of the collab-

orative learning task and understand its boundary of applicability,
we have conducted experiments with varying data length, average
degree, and network size. The results show that, while these factors
can affect the performance of CoND to some extent, the frame-
work is effective. Simulations have also been carried out on how the
degrees of missing data and edges affect the performance, revealing
that information about the network dynamics is more important to
the success of the prediction/inference tasks than that about the net-
work structure. The CoND framework is compatible with different
GNNs and is applicable to a wide range of scenarios. In fact, good
knowledge of the network structure can enhance the performance
of dynamical prediction and vice versa.

Although our model has achieved good performance in net-
work inference and dynamical prediction, there is much room for
improvement. First, as the complexity of real systems continues to
increase, network structures also become more complex and diverse,
including multilayer networks,61 temporal networks,62 and higher-
order networks.63 Then, the network size N may be an unknown
variable, making the inference and prediction tasks for the size of
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the unknown network a challenging problem. Finally, our deep-
learning-based framework general performs well in many scenarios,
but its interpretability is not well solved. All these mentioned issues
are worthy of in-depth research.
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APPENDIX A: DESCRIPTION OF THREE TYPES OF GNN

MODELS IN THIS WORK

In this section, we briefly introduce the three types of GNN
models used in this paper.

1. GCN model

Given the graph signal (i.e., feature) X and the graph adja-
cency matrix A, Kipf and Welling40 proposed the classical graph
convolutional network (GCN) as follows:

H(k+1) = σ(D̃−1/2ÃD̃−1/2H(k)θ (k)), (A1)

where Ã = A + IN is the adjacency matrix of the undirect graph G
with self-loop, IN is the identity matrix, D̃ is the degree matrix of Ã,
and D̃ii =

∑

j Ãij. θ (k) is the learnable parameter, and σ(·) denotes

an activation function. H(k) is the kth layer activation matrix, and
H(0) = X.

2. SAGE model

In Graph SAmple and aggreGatE (SAGE) model,41

AGGREGATE(·) function and CONCAT(·) function are defined,

TABLE VII. The architectures of GCN, SAGE, and GIN models. S represents the

number of states for a considered discrete dynamical model.

Model Discrete dynamics Continuous dynamics

Input Linear(1,32) Linear(1,32)
ReLU ReLU

Aggregation GCN(32,32)/ GCN(32,32)/
SAGE (32,32) SAGE (32,32)

/ GIN(MLP(32,64,32)) / GIN(MLP(32,64,32))
ReLU ReLU

Output Linear(32,S) Linear(32,1)
Softmax ReLU

Loss function Cross-entropy loss Mean square loss

and their roles are to aggregate neighbor’s information and to con-
catenate the feature of the node itself and the aggregation features
from its neighbors, respectively. For a given node v, its feature at kth
iteration is defined as

h(k)
N(v) = AGGREGATE(k)

({

h(k−1)
u

}

, ∀u ∈ N(v)
)

, (A2)

h(k)
v = σ

(

θ (k) · CONCAT(k)
(

h(k−1)
v , h(k)

N(v)

))

, (A3)

where N(v) denotes the sampled neighbors of node v, h(k)
v represents

the feature of node v at kth iteration (note that h(0)
v = xv), and h(k)

N(v)

represents the aggregation feature from neighbors at kth iteration.
Specifically, AGGREGATE(·) function is the mean aggregation and
CONCAT(·) function is the vector concatenation.

3. GIN model

In the Graph Isomorphism Network (GIN) model,42 the sum
aggregation is defined as Eq. (A2), and the MultiLayer Perceptron
(MLP) is used to simulate the CONCAT(·) function. Then, the GIN
layer for learning node representation is mathematically defined as

h(k)
v = σ

(

MLP(k)
(

1 + θ (k)
)

h(k−1)
v +

∑

N(v)

h(k−1)
u

))

. (A4)

In this work, the detailed architectures of GCN, SAGE, and
GIN models are summarized in Table VII. The input layer is the
linear layer, the aggregation layer is the GCN, SAGE, or GIN, respec-
tively, and the output layer is given by the linear layer too. For
discrete dynamical models, the activation function employed is the
Softmax function, and the loss function is the cross-entropy loss.64

In contrast, for continuous dynamical models, the activation func-
tion used is the ReLU function, and the loss function is the mean
squared error.65

APPENDIX B: INTRODUCTION OF SOME BASELINE

METHODS IN THIS WORK

In this section, we introduce baseline methods for network
inference and dynamical prediction, which are used to compare with
our proposed method.
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1. GGN method

Gumbel Graph Network (GGN) is a data-driven deep-learning
model, which can be used to solve the network completion and
dynamical prediction problems.36

2. CoND0 method

The algorithm consists of a network inference module and a
dynamical prediction module but without a state estimation module.
The states of the unobserved nodes are initialized randomly.

3. CoD1 method

The method uses the dynamical learning module and the
state estimation module to predict the dynamics, where the input
graph has a partial network structure characterized by the adjacency
matrix Ao.

4. CoD2 method

This method contains a dynamical learning module for dynam-
ical prediction, where the input graph has a partial network struc-
ture characterized by the adjacency matrix Ao. The states of the
unobserved nodes are randomly initialized.

5. Correlation coefficient method

The correlation coefficient method11 measures the connection
possibility of node pairs by calculating the time-series correlation of
them. For the time series xi and xj of two nodes, the element âij of
correlation matrix is expressed as

âij =

∣

∣

∣

∣

∣

(xi − 1µi)
T(xj − 1µj)

σiσj

∣

∣

∣

∣

∣

, (B1)

where µi and σi are the mean value and the standard deviation of xi,
respectively.

6. Granger causality method

In the Granger causality method,58 the element âij of the adja-
cency matrix is estimated as the ratio of the standard deviation of
the prediction error of linear models F(·) trained solely with xi, to
the standard deviation of the prediction error of the linear models
G(·) trained with xi and xj,

âij =
std[xi − F(xi)]

std[xi − G(xi, xj)]
. (B2)

7. Common neighbor (CN) index

CN index20 is one of the simplest similarity indexes based on
the local structure of networks. This index denotes that the connec-
tion probability of a pair of nodes (i, j) is higher if they share more
common neighbors, thus

âij = |0(i) ∩ 0(j)|, (B3)

where 0(i) is the neighborhood set of node i.

8. Adamic–Adar (AA) index

The AA index21 suggests that the fewer connected neighbors
should contribute more weights to the similarity, which is expressed
as

âij =
∑

z∈|0(i)∩0(j)|

1

log kz

, (B4)

where kz is the degree of z.

9. Resource allocation (RA) index

This index is proposed by Zhou et al.,56 which assumes that
each common neighbor z has one unit resource and evenly allocates
the resource to its neighbors, and it is defined as

âij =
∑

z∈|0(i)∩0(j)|

1

kz

. (B5)

10. Local path (LP) index

LP index57 provides a good trade-off of accuracy and computa-
tional complexity by taking account of the different contributions of
nodes in local paths. For a node pair (i, j), the LP index is defined as

âij = (A2)ij + α(A3)ij, (B6)

where the parameter α is used to adjust the contribution of neigh-
bors with three-length. (Al)ij (l = 2 or 3) gives the number of paths
with l-length between nodes i and j. Here, α is set as 1.

Since the values of âij calculated by Eqs. (B1)–(B6) may be

greater than 1, as a result, each element âij in Â is normalized by

dividing by the maximum value in Â.

APPENDIX C: MORE IMPACT ANALYSIS OF

PARAMETERS FOR DIFFERENT SCENARIOS

In this section, the impact analysis of parameters for different
scenarios on three synthetic networks, i.e., BA, WS, and ER net-
works, is discussed, including the length T of time-series data, the
average degree 〈k〉 and the network size N, the fraction fT of removed
time-series data, and the fraction fE of missing edges.

1. The length of time-series data

The effects of the length of the time-series data on the dynam-
ical prediction as well as network inference are demonstrated in
Fig. 5. One can find that, with an increase in length T of time-series
data, the accuracies of dynamical prediction and network inference
are both improved significantly, and the accuracy of the model tends
to be stable when the amount of data is sufficient.

2. The average degree

The effects of the average degree on the dynamical prediction as
well as network inference are shown in Fig. 6. On the one hand, since
the network structure becomes complicate when the average degree
of networks is increased, giving rise to that the accuracy of dynam-
ical prediction decreases with the average degree 〈k〉. On the other
hand, the accuracy of network inference is decreased if the network
is too sparse or too dense.
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FIG. 5. Effects of the length of time-series data on dynamical prediction and network inference on BA, WS, and ER networks. (a) and (e) Voter model. (b) and (f) Ising model.
(c) and (g) SIS model. (d) and (h) SIR model. Here, N = 200, 〈k〉 = 4, fT = 10%, and fE = 10%.

3. The network size

The effects of the network size on the dynamical prediction as
well as network inference are illustrated in Fig. 7. Evidently, when
the length of time-series data is fixed, the performance of the model
decreases with the network size.

4. The fraction of removed time-series data

The effects of the fraction of removed time-series data on the
dynamical prediction as well as network inference are given in Fig. 8.
In general, the performance of the two tasks decreases with the
fraction of removed time-series data.

FIG. 6. Effects of the average degree on dynamical prediction and network inference on BA, WS, and ER networks. (a) and (e) Voter model. (b) and (f) Ising model. (c) and
(g) SIS model. (d) and (h) SIR model. Here, N = 200, T = 1000, fT = 10%, and fE = 10%.
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FIG. 7. Effects of the network size on dynamical prediction and network inference on BA, WS, and ER networks. (a) and (e) Voter model. (b) and (f) Ising model. (c) and (g)
SIS model. (d) and (h) SIR model. Here, 〈k〉 = 4, T = 1000, fT = 10%, and fE = 10%.

FIG. 8. Effects of the fraction of removed time-series data on dynamical prediction and network inference on BA, WS, and ER networks. (a) and (e) Voter model. (b) and (f)
Ising model. (c) and (g) SIS model. (d) and (h) SIR model. Here, N = 200, 〈k〉 = 4, T = 1000, and fE = 10%.
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FIG. 9. Effects of the fraction of missing edges on dynamical prediction and network inference on BA, WS, and ER networks. (a) and (e) Voter model. (b) and (f) Ising model.
(c) and (g) SIS model. (d) and (h) SIR model. Here, N = 200, 〈k〉 = 4, T = 1000, and fT = 10%.

5. The fraction of missing edges in networks

The effects of the fraction of missing edges on the dynamical
prediction as well as network inference are given in Fig. 9. Also, the
performance of the two tasks decreases with the fraction of missing
edges in networks.

APPENDIX D: DATA DESCRIPTION OF THE INFLUENZA

DATA AND PM2.5 DATA

In this section, we introduce the influenza data and PM2.5 data.

1. Influenza data

The influenza-like illness (ILI) data are obtained from the US
public health and clinical laboratory66 for the period from week from
week 40 of 2011 to week 39 of 2016. We standardized the ILI data
using the number of patients seen in each US State to calculate ILI
rates.59 To ensure that there is an adequate sample size in the data,
we assume that States with an average ILI ratio of less than 1% are
not representative (14 States were removed) and then only remain-
ing 37 States as nodes. Since small values of the ILI ratio (about 2%)
may lead to errors, we multiply the ILI ratio by the factor of 100
and use the resulting value for the dynamical data.30 In addition,
we use commuting data between US cities (2015 Census Report67)
to construct the commuting network. The network is undirected,
where nodes represent the US States and edges are determined by
the data for commuting between the States. To prevent the network
from being too dense, we use the criterion that if the number of com-
muters between two States is less than 100, the corresponding edges
are removed, and, finally, the commuting network is obtained.

2. PM2.5 data

We use a complete 4-year (January 1, 2015 to December 31,
2018) data for the fine particulate matter smaller than 2.5 µm in
diameter (PM2.5) as dynamical data, which are selected from a wide
range of regions (the longitude 103◦E-122◦E and the latitude 28◦E-
42◦E) covering a total of 184 cities in China.68 To construct the city
network for the diffusion of PM2.5 pollutants, we need to calculate
the correlation of nodes (i.e., cities). To do so, we define the geo-
graphic distance between each node determined by the latitude and
the longitude. Meanwhile, we consider the mountain ranges in two
cities that can impede the diffusion of the PM2.5 pollutants. Based
on these metrics, we construct the adjacency matrix according to
the following method:60

aij = I(dθ − dij) · I(lθ − lij), (D1)

dij = ||ρi − ρj||, (D2)

lij = sup
λ∈(0,1)

{h(λρi + (1 − λ)ρj) − max{h(ρi), h(ρj)}}, (D3)

where ρi denotes the position determined by the longitude and lati-
tude of node i, and h(ρi) is the altitude of node i. I(t) is a Heaviside
step function, I(t) = 1 when t > 0, otherwise its value is 0. dθ and lθ
are the distance and altitude thresholds, respectively. In this paper,
we set dθ = 170 km as the distance threshold and lθ = 1200 m as the
altitude threshold. In particular, PM2.5 pollutants can be transmitted
from one city to the other cities only when the distance between two
cities is less than 170 km and the altitude between them is less than
1200 m.
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APPENDIX E: MORE RESULTS UNDER DIFFERENT

SETTINGS AND GNN MODELS

In this section, more results under different settings are given
to validate the universality of our CoND framework. These results
aim to emphasize the focus on the good scalability of our model.

First, more results for the case of 80% dynamics (i.e., 20%
time-series data are randomly removed) and 80% structure (i.e.,
20% edges are randomly removed) are systematically studied, where
the GCN model is considered in the dynamical learning module.
Tables VIII and IX show the accuracy of dynamical prediction.
Tables X and XI show the accuracy of network inference. It can be
found that our method is still superior to the baseline methods for
this case.

Then, we perform network inference and dynamical predic-
tion tasks by considering the SAGE (GIN) model in the dynamical

learning module containing 90% dynamics and 90% structure.
Tables XII and XIII (Tables XVI and XVII) summarize the accu-
racy of dynamical prediction, and Tables XIV and XV (Tables XVIII
and XIX) show the accuracy of network inference. All results indi-
cate that the performances of the CoND framework in terms of
network inference and dynamical prediction are superior to the
baseline methods. These results imply that our CoND framework
is compatible with different GNN models.

Finally, we conduct additional experiments on the PM2.5 and
influenza datasets by replacing the GCN model with GIN and
SAGE models with 90% dynamics and 90% structure is considered.
Tables XX and XXI show the results for the GIN model and the
SAGE model, respectively. The results in both tables again high-
light the superior performance of our CoND framework in term of
dynamical prediction and network inference even for real cases.

TABLE VIII. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_acc metric for five discrete dynamical models, with the GCN model

containing 80% dynamics and 80% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Threshold 0.717 ± 0.004 0.934 ± 0.003 0.932 ± 0.004 0.885 ± 0.005 0.875 ± 0.005
Voter 0.563 ± 0.006 0.699 ± 0.005 0.682 ± 0.004 0.647 ± 0.007 0.647 ± 0.006

BA Ising 0.572 ± 0.005 0.651 ± 0.005 0.660 ± 0.002 0.634 ± 0.007 0.634 ± 0.007
SIS 0.800 ± 0.002 0.841 ± 0.002 0.831 ± 0.003 0.830 ± 0.002 0.829 ± 0.002
SIR 0.775 ± 0.010 0.792 ± 0.003 0.783 ± 0.002 0.785 ± 0.006 0.780 ± 0.005

Threshold 0.717 ± 0.004 0.944 ± 0.003 0.932 ± 0.002 0.877 ± 0.003 0.875 ± 0.002
Voter 0.563 ± 0.003 0.679 ± 0.004 0.682 ± 0.005 0.647 ± 0.002 0.647 ± 0.002

ER Ising 0.572 ± 0.005 0.671 ± 0.002 0.660 ± 0.002 0.634 ± 0.004 0.634 ± 0.004
SIS 0.800 ± 0.001 0.841 ± 0.007 0.831 ± 0.002 0.828 ± 0.002 0.829 ± 0.002
SIR 0.775 ± 0.003 0.792 ± 0.001 0.783 ± 0.002 0.775 ± 0.004 0.770 ± 0.003

Threshold 0.719 ± 0.005 0.945 ± 0.003 0.942 ± 0.003 0.886 ± 0.003 0.886 ± 0.004
Voter 0.600 ± 0.002 0.727 ± 0.002 0.732 ± 0.001 0.714 ± 0.005 0.704 ± 0.005

WS Ising 0.532 ± 0.002 0.655 ± 0.005 0.667 ± 0.003 0.639 ± 0.003 0.639 ± 0.002
SIS 0.797 ± 0.004 0.901 ± 0.003 0.893 ± 0.002 0.880 ± 0.001 0.873 ± 0.002
SIR 0.802 ± 0.001 0.879 ± 0.005 0.868 ± 0.001 0.836 ± 0.007 0.825 ± 0.004

Threshold 0.810 ± 0.002 0.935 ± 0.006 0.929 ± 0.005 0.864 ± 0.008 0.855 ± 0.008
Voter 0.615 ± 0.003 0.725 ± 0.002 0.732 ± 0.011 0.671 ± 0.006 0.670 ± 0.006

Dolphins Ising 0.573 ± 0.003 0.687 ± 0.001 0.684 ± 0.005 0.647 ± 0.007 0.637 ± 0.006
SIS 0.659 ± 0.004 0.724 ± 0.001 0.732 ± 0.002 0.721 ± 0.006 0.723 ± 0.006
SIR 0.633 ± 0.004 0.788 ± 0.006 0.776 ± 0.003 0.762 ± 0.004 0.759 ± 0.006

Threshold 0.8138 ± 0.004 0.938 ± 0.003 0.928 ± 0.004 0.859 ± 0.006 0.859 ± 0.006
Voter 0.576 ± 0.002 0.664 ± 0.002 0.660 ± 0.004 0.621 ± 0.004 0.621 ± 0.005

Word Ising 0.578 ± 0.006 0.633 ± 0.006 0.634 ± 0.003 0.601 ± 0.003 0.600 ± 0.003
SIS 0.614 ± 0.003 0.760 ± 0.002 0.755 ± 0.002 0.707 ± 0.009 0.722 ± 0.001
SIR 0.574 ± 0.003 0.699 ± 0.004 0.708 ± 0.002 0.697 ± 0.007 0.675 ± 0.007

Threshold 0.673 ± 0.004 0.931 ± 0.007 0.929 ± 0.003 0.902 ± 0.003 0.902 ± 0.003
Voter 0.587 ± 0.003 0.748 ± 0.003 0.736 ± 0.002 0.718 ± 0.002 0.718 ± 0.003

Ca-netsci Ising 0.540 ± 0.002 0.683 ± 0.004 0.691 ± 0.003 0.657 ± 0.001 0.657 ± 0.002
SIS 0.756 ± 0.010 0.901 ± 0.003 0.913 ± 0.002 0.921 ± 0.003 0.919 ± 0.003
SIR 0.795 ± 0.003 0.894 ± 0.002 0.884 ± 0.002 0.857 ± 0.002 0.846 ± 0.002

Threshold 0.668 ± 0.001 0.942 ± 0.006 0.930 ± 0.003 0.903 ± 0.003 0.903 ± 0.002
Voter 0.592 ± 0.003 0.748 ± 0.002 0.736 ± 0.002 0.718 ± 0.002 0.719 ± 0.002

Email Ising 0.537 ± 0.005 0.683 ± 0.004 0.691 ± 0.003 0.656 ± 0.002 0.656 ± 0.002
SIS 0.783 ± 0.001 0.881 ± 0.003 0.855 ± 0.002 0.831 ± 0.002 0.828 ± 0.003
SIR 0.764 ± 0.003 0.879 ± 0.002 0.874 ± 0.001 0.856 ± 0.002 0.856 ± 0.003
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TABLE IX. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_mse metric for three continuous dynamical models, with the GCN model containing 80% dynamics

and 80% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Kuramoto 0.051 ± 0.004 0.042 ± 0.001 0.044 ± 0.003 0.052 ± 0.002 0.053 ± 0.004
BA Branch 0.091 ± 0.004 0.040 ± 0.003 0.031 ± 0.002 0.044 ± 0.005 0.044 ± 0.003

CML 0.067 ± 0.005 0.044 ± 0.005 0.046 ± 0.004 0.041 ± 0.003 0.046 ± 0.004
Kuramoto 0.073 ± 0.003 0.055 ± 0.003 0.058 ± 0.003 0.065 ± 0.003 0.066 ± 0.002

ER Branch 0.051 ± 0.002 0.024 ± 0.004 0.025 ± 0.005 0.026 ± 0.006 0.027 ± 0.003
CML 0.091 ± 0.004 0.066 ± 0.003 0.075 ± 0.002 0.063 ± 0.003 0.069 ± 0.003

Kuramoto 0.060 ± 0.002 0.051 ± 0.0030 0.053 ± 0.002 0.053 ± 0.004 0.054 ± 0.002
WS Branch 0.0480 ± 0.004 0.033 ± 0.002 0.040 ± 0.005 0.034 ± 0.003 0.036 ± 0.004

CML 0.067 ± 0.005 0.061 ± 0.004 0.064 ± 0.002 0.065 ± 0.005 0.067 ± 0.004
Kuramoto 0.049 ± 0.002 0.029 ± 0.007 0.029 ± 0.007 0.030 ± 0.004 0.031 ± 0.002

Dolphins Branch 0.049 ± 0.002 0.045 ± 0.007 0.037 ± 0.007 0.044 ± 0.005 0.043 ± 0.002
CML 0.075 ± 0.005 0.044 ± 0.004 0.045 ± 0.003 0.056 ± 0.004 0.059 ± 0.002

Kuramoto 0.071 ± 0.004 0.064 ± 0.003 0.066 ± 0.004 0.070 ± 0.003 0.071 ± 0.003
Word Branch 0.096 ± 0.004 0.064 ± 0.008 0.068 ± 0.005 0.061 ± 0.005 0.061 ± 0.004

CML 0.081 ± 0.007 0.076 ± 0.003 0.068 ± 0.002 0.074 ± 0.002 0.079 ± 0.006
Kuramoto 0.074 ± 0.003 0.061 ± 0.004 0.063 ± 0.005 0.065 ± 0.006 0.067 ± 0.006

Ca-netsci Branch 0.059 ± 0.003 0.033 ± 0.004 0.037 ± 0.002 0.036 ± 0.003 0.036 ± 0.004
CML 0.060 ± 0.006 0.048 ± 0.003 0.049 ± 0.002 0.052 ± 0.004 0.054 ± 0.003

Kuramoto 0.069 ± 0.004 0.058 ± 0.009 0.041 ± 0.003 0.046 ± 0.002 0.046 ± 0.003
Email Branch 0.042 ± 0.004 0.036 ± 0.004 0.039 ± 0.005 0.042 ± 0.003 0.043 ± 0.002

CML 0.068 ± 0.002 0.032 ± 0.003 0.038 ± 0.006 0.032 ± 0.004 0.033 ± 0.004
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TABLE X. Network inference performance of CoND and other baseline methods in terms of the Net_acc metric for five discrete dynamical models, with the GCN model containing 80% dynamics and 80%

structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Threshold 0.635 ± 0.036 0.859 ± 0.026 0.631 ± 0.034 0.022 ± 0.002 0.655 ± 0.041
Voter 0.548 ± 0.027 0.653 ± 0.051 0.629 ± 0.024 0.021 ± 0.004 0.599 ± 0.016

BA Ising 0.576 ± 0.011 0.626 ± 0.017 0.633 ± 0.040 0.018 ± 0.004 0.524 ± 0.020 0.012 ± 0.009 0.037 ± 0.010 0.050 ± 0.018 0.024 ± 0.014
SIS 0.589 ± 0.067 0.652 ± 0.055 0.643 ± 0.056 0.023 ± 0.004 0.617 ± 0.009
SIR 0.356 ± 0.021 0.500 ± 0.054 0.640 ± 0.032 0.033 ± 0.001 0.492 ± 0.018

Threshold 0.635 ± 0.014 0.859 ± 0.015 0.631 ± 0.022 0.005 ± 0.004 0.646 ± 0.032
Voter 0.548 ± 0.028 0.653 ± 0.025 0.629 ± 0.01 0.0019 ± 0.0015 0.592 ± 0.021

ER Ising 0.576 ± 0.011 0.596 ± 0.016 0.633 ± 0.024 0.002 ± 0.001 0.629 ± 0.013 0.002 ± 0.002 0.003 ± 0.004 0.003 ± 0.003 0.002 ± 0.002
SIS 0.589 ± 0.026 0.672 ± 0.013 0.643 ± 0.022 0.005 ± 0.001 0.615 ± 0.002
SIR 0.356 ± 0.047 0.710 ± 0.056 0.640 ± 0.051 0.006 ± 0.003 0.502 ± 0.013

Threshold 0.638 ± 0.021 0.840 ± 0.027 0.638 ± 0.024 0.001 ± 0.001 0.673 ± 0.009
Voter 0.629 ± 0.021 0.726 ± 0.023 0.645 ± 0.022 0.001 ± 0.001 0.650 ± 0.022

WS Ising 0.631 ± 0.021 0.635 ± 0.019 0.634 ± 0.021 0.003 ± 0.001 0.700 ± 0.025 0.026 ± 0.003 0.016 ± 0.002 0.021 ± 0.003 0.033 ± 0.003
SIS 0.609 ± 0.027 0.670 ± 0.041 0.636 ± 0.021 0.002 ± 0.001 0.600 ± 0.034
SIR 0.474 ± 0.071 0.613 ± 0.052 0.654 ± 0.032 0.004 ± 0.001 0.463 ± 0.026

Threshold 0.636 ± 0.076 0.729 ± 0.072 0.619 ± 0.050 0.022 ± 0.004 0.550 ± 0.015
Voter 0.200 ± 0.058 0.684 ± 0.029 0.568 ± 0.044 0.046 ± 0.004 0.503 ± 0.034

Dolphins Ising 0.197 ± 0.069 0.548 ± 0.059 0.507 ± 0.044 0.013 ± 0.005 0.617 ± 0.038 0.111 ± 0.015 0.089 ± 0.008 0.093 ± 0.007 0.030 ± 0.016
SIS 0.442 ± 0.022 0.484 ± 0.035 0.613 ± 0.047 0.017 ± 0.003 0.505 ± 0.026
SIR 0.442 ± 0.067 0.532 ± 0.027 0.645 ± 0.041 0.023 ± 0.001 0.383 ± 0.050

Threshold 0.604 ± 0.040 0.678 ± 0.025 0.604 ± 0.049 0.018 ± 0.001 0.660 ± 0.035
Voter 0.120 ± 0.025 0.468 ± 0.021 0.429 ± 0.027 0.012 ± 0.001 0.445 ± 0.026

Word Ising 0.144 ± 0.066 0.406 ± 0.023 0.369 ± 0.027 0.024 ± 0.003 0.541 ± 0.030 0.066 ± 0.039 0.061 ± 0.022 0.070 ± 0.021 0.103 ± 0.030
SIS 0.329 ± 0.024 0.598 ± 0.014 0.424 ± 0.050 0.012 ± 0.003 0.421 ± 0.027
SIR 0.252 ± 0.060 0.472 ± 0.055 0.545 ± 0.025 0.035 ± 0.004 0.421 ± 0.023

Threshold 0.604 ± 0.014 0.678 ± 0.022 0.604 ± 0.025 0.001 ± 0.002 0.542 ± 0.030
Voter 0.120 ± 0.019 0.538 ± 0.020 0.429 ± 0.029 0.003 ± 0.001 0.487 ± 0.024

Ca-netsci Ising 0.144 ± 0.014 0.406 ± 0.026 0.369 ± 0.018 0.002 ± 0.002 0.597 ± 0.002 0.310 ± 0.027 0.464 ± 0.010 0.442 ± 0.018 0.128 ± 0.005
SIS 0.329 ± 0.022 0.608 ± 0.057 0.424 ± 0.038 0.002 ± 0.001 0.542 ± 0.020
SIR 0.252 ± 0.009 0.472 ± 0.049 0.545 ± 0.056 0.001 ± 0.001 0.356 ± 0.041

Threshold 0.604 ± 0.064 0.678 ± 0.018 0.604 ± 0.023 0.003 ± 0.004 0.502 ± 0.021
Voter 0.120 ± 0.015 0.468 ± 0.012 0.429 ± 0.017 0.006 ± 0.001 0.354 ± 0.037

Email Ising 0.144 ± 0.016 0.406 ± 0.031 0.369 ± 0.019 0.003 ± 0.002 0.366 ± 0.022 0.138 ± 0.012 0.138 ± 0.008 0.153 ± 0.011 0.058 ± 0.011
SIS 0.329 ± 0.051 0.488 ± 0.047 0.424 ± 0.064 0.005 ± 0.002 0.433 ± 0.019
SIR 0.252 ± 0.068 0.472 ± 0.059 0.545 ± 0.040 0.007 ± 0.001 0.337 ± 0.041
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TABLE XI. Network inference performance of CoND and other baseline methods in terms of the Net_acc metric for three continuous dynamical models, with the GCN model containing 80% dynamics and

80% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Kuramoto 0.214 ± 0.019 0.414 ± 0.028 0.299 ± 0.053 0.021 ± 0.003 0.283 ± 0.039
BA Branch 0.210 ± 0.021 0.409 ± 0.038 0.352 ± 0.050 0.020 ± 0.013 0.232 ± 0.019 0.012 ± 0.009 0.037 ± 0.010 0.050 ± 0.018 0.024 ± 0.014

CML 0.151 ± 0.027 0.306 ± 0.014 0.344 ± 0.024 0.001 ± 0.014 0.173 ± 0.014
Kuramoto 0.284 ± 0.022 0.558 ± 0.031 0.462 ± 0.020 0.002 ± 0.001 0.261 ± 0.022

ER Branch 0.230 ± 0.041 0.250 ± 0.023 0.280 ± 0.033 0.002 ± 0.001 0.129 ± 0.030 0.002 ± 0.002 0.003 ± 0.004 0.003 ± 0.003 0.002 ± 0.001
CML 0.177 ± 0.059 0.282 ± 0.023 0.256 ± 0.028 0.003 ± 0.002 0.109 ± 0.015

Kuramoto 0.305 ± 0.028 0.6399 ± 0.041 0.608 ± 0.057 0.003 ± 0.003 0.233 ± 0.013
WS Branch 0.206 ± 0.075 0.431 ± 0.025 0.440 ± 0.052 0.002 ± 0.001 0.289 ± 0.021 0.026 ± 0.003 0.016 ± 0.002 0.021 ± 0.003 0.033 ± 0.003

CML 0.111 ± 0.014 0.279 ± 0.019 0.225 ± 0.031 0.001 ± 0.001 0.268 ± 0.013
Kuramoto 0.219 ± 0.031 0.294 ± 0.032 0.292 ± 0.035 0.012 ± 0.032 0.215 ± 0.012

Dolphins Branch 0.190 ± 0.093 0.304 ± 0.039 0.355 ± 0.042 0.024 ± 0.012 0.290 ± 0.022 0.111 ± 0.015 0.089 ± 0.008 0.093 ± 0.007 0.030 ± 0.016
CML 0.197 ± 0.065 0.342 ± 0.030 0.261 ± 0.030 0.031 ± 0.020 0.235 ± 0.012

Kuramoto 0.295 ± 0.055 0.345 ± 0.023 0.275 ± 0.031 0.011 ± 0.001 0.221 ± 0.017
Word Branch 0.133 ± 0.039 0.331 ± 0.036 0.233 ± 0.022 0.020 ± 0.001 0.243 ± 0.032 0.066 ± 0.039 0.061 ± 0.022 0.070 ± 0.021 0.103 ± 0.030

CML 0.138 ± 0.015 0.294 ± 0.031 0.233 ± 0.027 0.014 ± 0.002 0.286 ± 0.025
Kuramoto 0.254 ± 0.066 0.297 ± 0.038 0.378 ± 0.034 0.004 ± 0.001 0.195 ± 0.021

Ca-netsci Branch 0.138 ± 0.060 0.260 ± 0.020 0.215 ± 0.041 0.005 ± 0.002 0.189 ± 0.017 0.310 ± 0.027 0.464 ± 0.010 0.442 ± 0.018 0.128 ± 0.005
CML 0.123 ± 0.006 0.233 ± 0.026 0.292 ± 0.023 0.003 ± 0.002 0.194 ± 0.044

Kuramoto 0.179 ± 0.039 0.221 ± 0.012 0.277 ± 0.022 0.001 ± 0.001 0.160 ± 0.022
Email Branch 0.135 ± 0.027 0.240 ± 0.028 0.164 ± 0.026 0.002 ± 0.001 0.182 ± 0.030 0.138 ± 0.012 0.138 ± 0.008 0.153 ± 0.011 0.058 ± 0.011

CML 0.202 ± 0.024 0.348 ± 0.021 0.266 ± 0.022 0.001 ± 0.001 0.201 ± 0.020
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TABLE XII. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_acc metric for five discrete dynamical models, with the SAGE model containing 90% dynamics and

90% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Threshold 0.812 ± 0.004 0.982 ± 0.004 0.978 ± 0.003 0.954 ± 0.005 0.947 ± 0.006
Voter 0.624 ± 0.006 0.758 ± 0.001 0.757 ± 0.002 0.753 ± 0.003 0.752 ± 0.003

BA Ising 0.585 ± 0.002 0.705 ± 0.002 0.707 ± 0.001 0.702 ± 0.002 0.702 ± 0.002
SIS 0.783 ± 0.009 0.835 ± 0.004 0.834 ± 0.002 0.833 ± 0.002 0.830 ± 0.001
SIR 0.774 ± 0.003 0.835 ± 0.001 0.836 ± 0.002 0.834 ± 0.004 0.831 ± 0.004

Threshold 0.833 ± 0.003 0.985 ± 0.002 0.980 ± 0.003 0.950 ± 0.002 0.950 ± 0.003
Voter 0.594 ± 0.005 0.711 ± 0.001 0.710 ± 0.001 0.702 ± 0.003 0.702 ± 0.002

ER Ising 0.577 ± 0.003 0.680 ± 0.001 0.684 ± 0.002 0.680 ± 0.002 0.680 ± 0.002
SIS 0.804 ± 0.001 0.835 ± 0.004 0.833 ± 0.002 0.833 ± 0.001 0.832 ± 0.001
SIR 0.809 ± 0.001 0.829 ± 0.002 0.827 ± 0.003 0.813 ± 0.001 0.810 ± 0.008

Threshold 0.823 ± 0.002 0.987 ± 0.002 0.983 ± 0.001 0.952 ± 0.003 0.952 ± 0.002
Voter 0.627 ± 0.006 0.746 ± 0.001 0.750 ± 0.001 0.743 ± 0.002 0.743 ± 0.002

WS Ising 0.561 ± 0.006 0.697 ± 0.002 0.694 ± 0.002 0.684 ± 0.002 0.686 ± 0.002
SIS 0.879 ± 0.004 0.895 ± 0.001 0.893 ± 0.001 0.895 ± 0.003 0.894 ± 0.003
SIR 0.860 ± 0.002 0.898 ± 0.001 0.896 ± 0.001 0.889 ± 0.002 0.885 ± 0.002

Threshold 0.900 ± 0.009 0.995 ± 0.001 0.992 ± 0.002 0.958 ± 0.003 0.957 ± 0.002
Voter 0.691 ± 0.005 0.776 ± 0.006 0.774 ± 0.003 0.762 ± 0.007 0.762 ± 0.007

Dolphins Ising 0.640 ± 0.006 0.725 ± 0.002 0.725 ± 0.001 0.714 ± 0.008 0.712 ± 0.008
SIS 0.689 ± 0.009 0.738 ± 0.006 0.739 ± 0.003 0.735 ± 0.004 0.729 ± 0.003
SIR 0.676 ± 0.008 0.713 ± 0.002 0.712 ± 0.005 0.704 ± 0.003 0.700 ± 0.008

Threshold 0.876 ± 0.007 0.992 ± 0.002 0.986 ± 0.002 0.957 ± 0.008 0.954 ± 0.001
Voter 0.628 ± 0.005 0.717 ± 0.002 0.713 ± 0.003 0.700 ± 0.004 0.703 ± 0.006

Word Ising 0.595 ± 0.002 0.673 ± 0.004 0.676 ± 0.004 0.671 ± 0.002 0.671 ± 0.002
SIS 0.660 ± 0.007 0.739 ± 0.004 0.739 ± 0.007 0.723 ± 0.006 0.726 ± 0.001
SIR 0.614 ± 0.007 0.713 ± 0.006 0.718 ± 0.006 0.713 ± 0.005 0.705 ± 0.003

Threshold 0.751 ± 0.006 0.989 ± 0.001 0.984 ± 0.002 0.965 ± 0.002 0.961 ± 0.003
Voter 0.608 ± 0.002 0.786 ± 0.001 0.785 ± 0.001 0.781 ± 0.001 0.780 ± 0.002

Ca-netsci Ising 0.553 ± 0.006 0.728 ± 0.001 0.718 ± 0.001 0.716 ± 0.001 0.714 ± 0.002
SIS 0.845 ± 0.009 0.822 ± 0.002 0.829 ± 0.001 0.823 ± 0.004 0.820 ± 0.004
SIR 0.876 ± 0.003 0.821 ± 0.001 0.829 ± 0.002 0.811 ± 0.001 0.806 ± 0.001

Threshold 0.731 ± 0.006 0.973 ± 0.001 0.969 ± 0.002 0.923 ± 0.002 0.919 ± 0.003
Voter 0.554 ± 0.008 0.711 ± 0.001 0.707 ± 0.001 0.705 ± 0.001 0.704 ± 0.002

Email Ising 0.546 ± 0.009 0.670 ± 0.002 0.670 ± 0.001 0.669 ± 0.002 0.669 ± 0.002
SIS 0.861 ± 0.008 0.878 ± 0.002 0.880 ± 0.001 0.889 ± 0.003 0.883 ± 0.0010
SIR 0.862 ± 0.009 0.871 ± 0.002 0.883 ± 0.002 0.876 ± 0.002 0.862 ± 0.005
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TABLE XIII. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_mse metric for three continuous dynamical models, with the SAGE model containing 90% dynamics

and 90% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Kuramoto 0.084 ± 0.005 0.019 ± 0.003 0.029 ± 0.009 0.031 ± 0.004 0.032 ± 0.007
BA Branch 0.075 ± 0.003 0.060 ± 0.005 0.064 ± 0.002 0.061 ± 0.006 0.061 ± 0.003

CML 0.084 ± 0.009 0.058 ± 0.002 0.059 ± 0.004 0.054 ± 0.004 0.054 ± 0.005
Kuramoto 0.071 ± 0.008 0.042 ± 0.001 0.038 ± 0.004 0.039 ± 0.003 0.039 ± 0.002

ER Branch 0.024 ± 0.004 0.020 ± 0.002 0.024 ± 0.005 0.022 ± 0.005 0.021 ± 0.007
CML 0.076 ± 0.003 0.068 ± 0.002 0.064 ± 0.003 0.056 ± 0.002 0.056 ± 0.006

Kuramoto 0.153 ± 0.007 0.117 ± 0.004 0.119 ± 0.005 0.119 ± 0.003 0.118 ± 0.004
WS Branch 0.030 ± 0.005 0.018 ± 0.003 0.018 ± 0.005 0.015 ± 0.005 0.015 ± 0.006

CML 0.087 ± 0.006 0.050 ± 0.003 0.050 ± 0.004 0.056 ± 0.010 0.056 ± 0.001
Kuramoto 0.157 ± 0.003 0.124 ± 0.004 0.133 ± 0.001 0.136 ± 0.004 0.136 ± 0.002

Dolphins Branch 0.039 ± 0.006 0.038 ± 0.005 0.033 ± 0.001 0.036 ± 0.005 0.036 ± 0.005
CML 0.062 ± 0.002 0.053 ± 0.004 0.056 ± 0.008 0.056 ± 0.005 0.056 ± 0.003

Kuramoto 0.082 ± 0.003 0.067 ± 0.002 0.061 ± 0.005 0.058 ± 0.002 0.059 ± 0.002
Word Branch 0.091 ± 0.007 0.083 ± 0.003 0.085 ± 0.006 0.089 ± 0.005 0.088 ± 0.007

CML 0.037 ± 0.004 0.022 ± 0.002 0.030 ± 0.004 0.027 ± 0.004 0.027 ± 0.006
Kuramoto 0.105 ± 0.007 0.092 ± 0.002 0.093 ± 0.002 0.093 ± 0.003 0.093 ± 0.003

Ca-netsci Branch 0.075 ± 0.004 0.047 ± 0.006 0.056 ± 0.001 0.035 ± 0.003 0.035 ± 0.003
CML 0.070 ± 0.010 0.058 ± 0.006 0.057 ± 0.001 0.059 ± 0.001 0.059 ± 0.003

Kuramoto 0.083 ± 0.005 0.071 ± 0.004 0.076 ± 0.002 0.077 ± 0.004 0.079 ± 0.008
Email Branch 0.029 ± 0.003 0.024 ± 0.005 0.023 ± 0.002 0.025 ± 0.004 0.024 ± 0.002

CML 0.108 ± 0.009 0.074 ± 0.005 0.070 ± 0.002 0.061 ± 0.002 0.061 ± 0.005
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TABLE XIV. Network inference performance of CoND and other baseline methods in terms of the Net_acc metric for five discrete dynamical models, with the SAGE model containing 90% dynamics and 90%

structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Threshold 0.490 ± 0.056 0.923 ± 0.053 0.803 ± 0.038 0.044 ± 0.005 0.693 ± 0.057
Voter 0.326 ± 0.039 0.805 ± 0.023 0.795 ± 0.065 0.038 ± 0.007 0.641 ± 0.031

BA Ising 0.477 ± 0.046 0.815 ± 0.077 0.782 ± 0.025 0.008 ± 0.009 0.667 ± 0.022 0.013 ± 0.010 0.039 ± 0.012 0.051 ± 0.019 0.026 ± 0.015
SIS 0.497 ± 0.041 0.787 ± 0.027 0.764 ± 0.076 0.038 ± 0.010 0.635 ± 0.024
SIR 0.300 ± 0.084 0.692 ± 0.059 0.567 ± 0.040 0.044 ± 0.014 0.567 ± 0.012

Threshold 0.819 ± 0.036 0.987 ± 0.011 0.819 ± 0.036 0.002 ± 0.007 0.759 ± 0.048
Voter 0.744 ± 0.060 0.819 ± 0.044 0.808 ± 0.036 0.001 ± 0.004 0.697 ± 0.037

ER Ising 0.677 ± 0.044 0.777 ± 0.035 0.821 ± 0.039 0.001 ± 0.005 0.630 ± 0.028 0.002 ± 0.002 0.003 ± 0.003 0.002 ± 0.003 0.001 ± 0.001
SIS 0.750 ± 0.048 0.835 ± 0.051 0.808 ± 0.025 0.004 ± 0.004 0.702 ± 0.016
SIR 0.696 ± 0.083 0.765 ± 0.051 0.762 ± 0.022 0.004 ± 0.006 0.599 ± 0.018

Threshold 0.763 ± 0.067 0.985 ± 0.014 0.825 ± 0.025 0.006 ± 0.004 0.778 ± 0.024
Voter 0.818 ± 0.063 0.893 ± 0.057 0.838 ± 0.074 0.001 ± 0.005 0.751 ± 0.013

WS Ising 0.813 ± 0.068 0.830 ± 0.060 0.815 ± 0.065 0.004 ± 0.003 0.676 ± 0.020 0.025 ± 0.001 0.015 ± 0.001 0.020 ± 0.001 0.032 ± 0.001
SIS 0.750 ± 0.078 0.803 ± 0.048 0.783 ± 0.047 0.003 ± 0.004 0.689 ± 0.059
SIR 0.608 ± 0.053 0.768 ± 0.027 0.730 ± 0.064 0.004 ± 0.007 0.529 ± 0.041

Threshold 0.887 ± 0.056 0.967 ± 0.037 0.873 ± 0.087 0.033 ± 0.017 0.613 ± 0.030
Voter 0.367 ± 0.046 0.747 ± 0.049 0.747 ± 0.028 0.023 ± 0.016 0.473 ± 0.070

Dolphins Ising 0.513 ± 0.056 0.727 ± 0.030 0.680 ± 0.089 0.027 ± 0.019 0.686 ± 0.073 0.117 ± 0.021 0.095 ± 0.014 0.098 ± 0.012 0.035 ± 0.021
SIS 0.753 ± 0.054 0.773 ± 0.045 0.647 ± 0.037 0.033 ± 0.025 0.569 ± 0.022
SIR 0.673 ± 0.054 0.647 ± 0.052 0.647 ± 0.029 0.040 ± 0.023 0.449 ± 0.065

Threshold 0.817 ± 0.066 0.943 ± 0.024 0.836 ± 0.055 0.007 ± 0.004 0.643 ± 0.050
Voter 0.310 ± 0.052 0.643 ± 0.048 0.595 ± 0.053 0.006 ± 0.004 0.519 ± 0.021

Word Ising 0.307 ± 0.055 0.538 ± 0.085 0.555 ± 0.055 0.007 ± 0.006 0.545 ± 0.045 0.068 ± 0.041 0.063 ± 0.023 0.071 ± 0.022 0.104 ± 0.032
SIS 0.367 ± 0.052 0.676 ± 0.038 0.745 ± 0.073 0.008 ± 0.006 0.440 ± 0.032
SIR 0.248 ± 0.078 0.571 ± 0.061 0.639 ± 0.052 0.012 ± 0.007 0.419 ± 0.038

Threshold 0.463 ± 0.080 0.937 ± 0.010 0.819 ± 0.037 0.002 ± 0.004 0.623 ± 0.045
Voter 0.501 ± 0.016 0.782 ± 0.034 0.785 ± 0.010 0.002 ± 0.005 0.548 ± 0.039

Ca-netsci Ising 0.542 ± 0.052 0.784 ± 0.033 0.757 ± 0.062 0.003 ± 0.002 0.678 ± 0.015 0.354 ± 0.032 0.568 ± 0.014 0.547 ± 0.023 0.132 ± 0.009
SIS 0.468 ± 0.014 0.688 ± 0.040 0.592 ± 0.041 0.002 ± 0.005 0.601 ± 0.036
SIR 0.284 ± 0.074 0.678 ± 0.031 0.607 ± 0.094 0.002 ± 0.004 0.469 ± 0.014

Threshold 0.573 ± 0.028 0.985 ± 0.012 0.982 ± 0.041 0.002 ± 0.002 0.617 ± 0.036
Voter 0.306 ± 0.035 0.589 ± 0.039 0.563 ± 0.041 0.003 ± 0.001 0.474 ± 0.052

Email Ising 0.255 ± 0.044 0.486 ± 0.042 0.459 ± 0.063 0.004 ± 0.001 0.455 ± 0.025 0.136 ± 0.009 0.135 ± 0.005 0.151 ± 0.008 0.056 ± 0.009
SIS 0.108 ± 0.015 0.512 ± 0.041 0.644 ± 0.020 0.002 ± 0.002 0.509 ± 0.025
SIR 0.046 ± 0.060 0.545 ± 0.036 0.579 ± 0.054 0.002 ± 0.002 0.429 ± 0.056
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TABLE XV. Network inference performance of CoND and other baseline methods in terms of the Net_acc metric for three continuous dynamical models, with the SAGE model containing 90% dynamics and

90% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Kuramoto 0.292 ± 0.018 0.651 ± 0.034 0.523 ± 0.041 0.022 ± 0.004 0.336 ± 0.042
BA Branch 0.418 ± 0.066 0.444 ± 0.037 0.467 ± 0.049 0.021 ± 0.015 0.285 ± 0.022 0.013 ± 0.010 0.039 ± 0.012 0.051 ± 0.019 0.026 ± 0.015

CML 0.251 ± 0.029 0.410 ± 0.100 0.359 ± 0.070 0.002 ± 0.016 0.226 ± 0.016
Kuramoto 0.421 ± 0.024 0.723 ± 0.057 0.567 ± 0.058 0.003 ± 0.002 0.315 ± 0.024

ER Branch 0.235 ± 0.040 0.539 ± 0.065 0.308 ± 0.059 0.003 ± 0.002 0.182 ± 0.032 0.002 ± 0.002 0.003 ± 0.003 0.002 ± 0.003 0.001 ± 0.001
CML 0.262 ± 0.028 0.515 ± 0.040 0.442 ± 0.091 0.004 ± 0.001 0.162 ± 0.017

Kuramoto 0.598 ± 0.011 0.775 ± 0.022 0.233 ± 0.030 0.004 ± 0.005 0.287 ± 0.015
WS Branch 0.450 ± 0.048 0.550 ± 0.052 0.425 ± 0.045 0.003 ± 0.002 0.343 ± 0.023 0.025 ± 0.001 0.015 ± 0.001 0.020 ± 0.001 0.032 ± 0.001

CML 0.3025 ± 0.031 0.543 ± 0.046 0.473 ± 0.035 0.002 ± 0.001 0.321 ± 0.015
Kuramoto 0.320 ± 0.021 0.410 ± 0.039 0.405 ± 0.035 0.013 ± 0.033 0.268 ± 0.014

Dolphins Branch 0.267 ± 0.052 0.427 ± 0.073 0.356 ± 0.056 0.026 ± 0.013 0.343 ± 0.024 0.117 ± 0.021 0.095 ± 0.014 0.098 ± 0.012 0.035 ± 0.021
CML 0.107 ± 0.031 0.227 ± 0.063 0.345 ± 0.015 0.032 ± 0.021 0.288 ± 0.014

Kuramoto 0.333 ± 0.017 0.476 ± 0.048 0.226 ± 0.011 0.012 ± 0.002 0.275 ± 0.019
Word Branch 0.355 ± 0.056 0.405 ± 0.042 0.333 ± 0.073 0.021 ± 0.002 0.297 ± 0.034 0.068 ± 0.041 0.063 ± 0.023 0.071 ± 0.022 0.104 ± 0.032

CML 0.113 ± 0.045 0.357 ± 0.044 0.286 ± 0.044 0.015 ± 0.001 0.339 ± 0.027
Kuramoto 0.211 ± 0.014 0.266 ± 0.052 0.322 ± 0.043 0.005 ± 0.002 0.248 ± 0.023

Ca-netsci Branch 0.330 ± 0.038 0.451 ± 0.052 0.425 ± 0.053 0.006 ± 0.003 0.242 ± 0.020 0.354 ± 0.032 0.568 ± 0.014 0.547 ± 0.023 0.132 ± 0.009
CML 0.256 ± 0.069 0.359 ± 0.040 0.539 ± 0.039 0.004 ± 0.003 0.248 ± 0.047

Kuramoto 0.233 ± 0.015 0.347 ± 0.073 0.210 ± 0.051 0.002 ± 0.002 0.214 ± 0.024
Email Branch 0.241 ± 0.033 0.328 ± 0.048 0.264 ± 0.066 0.003 ± 0.003 0.135 ± 0.033 0.136 ± 0.009 0.135 ± 0.005 0.151 ± 0.008 0.056 ± 0.009

CML 0.212 ± 0.036 0.192 ± 0.026 0.346 ± 0.046 0.001 ± 0.001 0.050 ± 0.023
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TABLE XVI. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_acc metric for five discrete dynamical models, with the GIN model containing 90% dynamics and

90% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Threshold 0.835 ± 0.004 0.934 ± 0.002 0.913 ± 0.002 0.909 ± 0.002 0.910 ± 0.002
Voter 0.622 ± 0.003 0.722 ± 0.004 0.731 ± 0.003 0.729 ± 0.003 0.727 ± 0.003

BA Ising 0.585 ± 0.004 0.636 ± 0.002 0.686 ± 0.002 0.673 ± 0.002 0.674 ± 0.001
SIS 0.801 ± 0.003 0.842 ± 0.002 0.843 ± 0.002 0.842 ± 0.002 0.841 ± 0.002
SIR 0.827 ± 0.005 0.849 ± 0.004 0.841 ± 0.004 0.839 ± 0.005 0.840 ± 0.005

Threshold 0.829 ± 0.003 0.964 ± 0.002 0.963 ± 0.002 0.901 ± 0.002 0.881 ± 0.003
Voter 0.625 ± 0.003 0.731 ± 0.003 0.735 ± 0.004 0.722 ± 0.002 0.724 ± 0.004

ER Ising 0.562 ± 0.004 0.688 ± 0.004 0.682 ± 0.003 0.669 ± 0.005 0.673 ± 0.006
SIS 0.880 ± 0.003 0.896 ± 0.001 0.895 ± 0.001 0.895 ± 0.001 0.893 ± 0.001
SIR 0.829 ± 0.004 0.899 ± 0.002 0.897 ± 0.002 0.897 ± 0.005 0.895 ± 0.007

Threshold 0.832 ± 0.005 0.954 ± 0.004 0.939 ± 0.003 0.877 ± 0.002 0.881 ± 0.002
Voter 0.591 ± 0.004 0.691 ± 0.003 0.684 ± 0.004 0.675 ± 0.002 0.675 ± 0.002

WS Ising 0.581 ± 0.004 0.677 ± 0.004 0.670 ± 0.003 0.649 ± 0.005 0.653 ± 0.004
SIS 0.803 ± 0.005 0.835 ± 0.002 0.835 ± 0.001 0.833 ± 0.001 0.832 ± 0.001
SIR 0.810 ± 0.004 0.834 ± 0.002 0.831 ± 0.002 0.832 ± 0.002 0.828 ± 0.003

Threshold 0.889 ± 0.004 0.934 ± 0.002 0.929 ± 0.002 0.870 ± 0.002 0.880 ± 0.003
Voter 0.698 ± 0.004 0.719 ± 0.003 0.720 ± 0.003 0.704 ± 0.002 0.713 ± 0.003

Dolphins Ising 0.642 ± 0.006 0.681 ± 0.002 0.676 ± 0.002 0.642 ± 0.002 0.635 ± 0.002
SIS 0.684 ± 0.003 0.737 ± 0.001 0.737 ± 0.001 0.730 ± 0.006 0.724 ± 0.004
SIR 0.668 ± 0.002 0.729 ± 0.003 0.728 ± 0.003 0.722 ± 0.002 0.721 ± 0.003

Threshold 0.872 ± 0.006 0.947 ± 0.003 0.945 ± 0.003 0.898 ± 0.003 0.903 ± 0.003
Voter 0.623 ± 0.005 0.679 ± 0.003 0.675 ± 0.003 0.677 ± 0.001 0.675 ± 0.009

Word Ising 0.593 ± 0.006 0.636 ± 0.006 0.636 ± 0.007 0.633 ± 0.002 0.637 ± 0.003
SIS 0.665 ± 0.005 0.740 ± 0.004 0.742 ± 0.004 0.736 ± 0.005 0.737 ± 0.003
SIR 0.616 ± 0.003 0.733 ± 0.003 0.735 ± 0.003 0.731 ± 0.005 0.725 ± 0.005

Threshold 0.756 ± 0.007 0.946 ± 0.002 0.941 ± 0.003 0.927 ± 0.004 0.902 ± 0.003
Voter 0.613 ± 0.007 0.764 ± 0.004 0.768 ± 0.004 0.753 ± 0.005 0.752 ± 0.002

Ca-netsci Ising 0.552 ± 0.004 0.700 ± 0.004 0.697 ± 0.004 0.699 ± 0.003 0.693 ± 0.002
SIS 0.813 ± 0.003 0.823 ± 0.001 0.822 ± 0.002 0.822 ± 0.001 0.822 ± 0.003
SIR 0.760 ± 0.005 0.816 ± 0.003 0.820 ± 0.005 0.814 ± 0.002 0.816 ± 0.004

Threshold 0.783 ± 0.005 0.947 ± 0.003 0.937 ± 0.002 0.887 ± 0.004 0.887 ± 0.003
Voter 0.544 ± 0.002 0.673 ± 0.002 0.667 ± 0.002 0.658 ± 0.003 0.656 ± 0.003

Email Ising 0.530 ± 0.004 0.667 ± 0.004 0.660 ± 0.003 0.659 ± 0.003 0.667 ± 0.003
SIS 0.767 ± 0.003 0.813 ± 0.002 0.802 ± 0.002 0.804 ± 0.003 0.800 ± 0.003
SIR 0.766 ± 0.004 0.812 ± 0.002 0.804 ± 0.002 0.804 ± 0.002 0.798 ± 0.003
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TABLE XVII. Dynamical prediction performance of CoND and other baseline methods in terms of the Dyn_mse metric for three continuous dynamical models, with the GIN model containing 90% dynamics

and 90% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 CoD1 CoD2

Kuramoto 0.081 ± 0.004 0.059 ± 0.003 0.080 ± 0.003 0.068 ± 0.002 0.068 ± 0.003
BA Branch 0.074 ± 0.003 0.063 ± 0.002 0.065 ± 0.001 0.069 ± 0.005 0.070 ± 0.003

CML 0.092 ± 0.002 0.057 ± 0.003 0.052 ± 0.003 0.053 ± 0.003 0.054 ± 0.002
Kuramoto 0.095 ± 0.003 0.062 ± 0.003 0.076 ± 0.002 0.065 ± 0.001 0.066 ± 0.001

ER Branch 0.036 ± 0.009 0.036 ± 0.002 0.030 ± 0.002 0.022 ± 0.004 0.021 ± 0.003
CML 0.079 ± 0.003 0.084 ± 0.003 0.071 ± 0.004 0.061 ± 0.002 0.062 ± 0.002

Kuramoto 0.157 ± 0.005 0.065 ± 0.002 0.087 ± 0.004 0.069 ± 0.005 0.071 ± 0.001
WS Branch 0.031 ± 0.004 0.019 ± 0.001 0.020 ± 0.003 0.015 ± 0.003 0.015 ± 0.002

CML 0.034 ± 0.002 0.022 ± 0.004 0.022 ± 0.005 0.023 ± 0.002 0.027 ± 0.003
Kuramoto 0.024 ± 0.003 0.018 ± 0.003 0.013 ± 0.005 0.016 ± 0.006 0.017 ± 0.001

Dolphins Branch 0.038 ± 0.002 0.036 ± 0.003 0.040 ± 0.002 0.033 ± 0.001 0.033 ± 0.003
CML 0.026 ± 0.002 0.020 ± 0.003 0.021 ± 0.004 0.023 ± 0.004 0.023 ± 0.003

Kuramoto 0.020 ± 0.003 0.014 ± 0.001 0.014 ± 0.001 0.015 ± 0.004 0.014 ± 0.003
Word Branch 0.035 ± 0.004 0.027 ± 0.006 0.028 ± 0.006 0.031 ± 0.003 0.031 ± 0.002

CML 0.052 ± 0.002 0.044 ± 0.003 0.045 ± 0.002 0.035 ± 0.003 0.037 ± 0.004
Kuramoto 0.037 ± 0.002 0.032 ± 0.002 0.034 ± 0.003 0.036 ± 0.003 0.037 ± 0.003

Ca-netsci Branch 0.057 ± 0.004 0.045 ± 0.002 0.047 ± 0.002 0.048 ± 0.003 0.048 ± 0.002
CML 0.098 ± 0.005 0.064 ± 0.002 0.069 ± 0.005 0.068 ± 0.003 0.069 ± 0.003

Kuramoto 0.046 ± 0.002 0.050 ± 0.004 0.040 ± 0.003 0.048 ± 0.003 0.049 ± 0.002
Email Branch 0.074 ± 0.001 0.043 ± 0.002 0.049 ± 0.001 0.041 ± 0.002 0.041 ± 0.001

CML 0.092 ± 0.003 0.063 ± 0.002 0.064 ± 0.004 0.067 ± 0.003 0.068 ± 0.004
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TABLE XVIII. Network inference performance of CoND and other baseline methods in terms of the Net_acc metric for five discrete dynamical models, with the GIN model containing 90% dynamics and 90%

structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Threshold 0.787 ± 0.036 0.933 ± 0.041 0.801 ± 0.036 0.022 ± 0.003 0.752 ± 0.044
Voter 0.328 ± 0.041 0.797 ± 0.021 0.736 ± 0.033 0.021 ± 0.005 0.696 ± 0.019

BA Ising 0.480 ± 0.044 0.615 ± 0.035 0.631 ± 0.029 0.018 ± 0.005 0.621 ± 0.012 0.026 ± 0.009 0.014 ± 0.011 0.015 ± 0.012 0.025 ± 0.012
SIS 0.480 ± 0.055 0.846 ± 0.045 0.862 ± 0.018 0.023 ± 0.005 0.714 ± 0.012
SIR 0.374 ± 0.062 0.795 ± 0.024 0.746 ± 0.048 0.033 ± 0.001 0.589 ± 0.021

Threshold 0.703 ± 0.042 0.915 ± 0.011 0.773 ± 0.025 0.005 ± 0.005 0.743 ± 0.035
Voter 0.790 ± 0.024 0.825 ± 0.024 0.800 ± 0.020 0.002 ± 0.001 0.689 ± 0.024

ER Ising 0.820 ± 0.038 0.780 ± 0.030 0.815 ± 0.017 0.002 ± 0.002 0.726 ± 0.015 0.002 ± 0.001 0.002 ± 0.002 0.003 ± 0.002 0.002 ± 0.001
SIS 0.778 ± 0.025 0.863 ± 0.017 0.818 ± 0.064 0.005 ± 0.002 0.712 ± 0.014
SIR 0.618 ± 0.029 0.885 ± 0.029 0.833 ± 0.034 0.006 ± 0.004 0.599 ± 0.016

Threshold 0.698 ± 0.054 0.879 ± 0.019 0.767 ± 0.035 0.001 ± 0.001 0.770 ± 0.012
Voter 0.685 ± 0.052 0.750 ± 0.031 0.702 ± 0.020 0.001 ± 0.001 0.647 ± 0.024

WS Ising 0.742 ± 0.024 0.639 ± 0.016 0.596 ± 0.040 0.003 ± 0.001 0.597 ± 0.028 0.015 ± 0.001 0.015 ± 0.001 0.013 ± 0.001 0.014 ± 0.001
SIS 0.764 ± 0.060 0.837 ± 0.014 0.827 ± 0.033 0.002 ± 0.001 0.717 ± 0.047
SIR 0.660 ± 0.038 0.764 ± 0.026 0.754 ± 0.028 0.004 ± 0.001 0.560 ± 0.029

Threshold 0.493 ± 0.052 0.873 ± 0.029 0.833 ± 0.052 0.022 ± 0.005 0.647 ± 0.018
Voter 0.560 ± 0.050 0.680 ± 0.020 0.687 ± 0.034 0.046 ± 0.004 0.600 ± 0.057

Dolphins Ising 0.453 ± 0.035 0.660 ± 0.039 0.560 ± 0.014 0.013 ± 0.006 0.554 ± 0.061 0.121 ± 0.014 0.095 ± 0.012 0.078 ± 0.012 0.092 ± 0.022
SIS 0.740 ± 0.029 0.653 ± 0.013 0.813 ± 0.042 0.017 ± 0.004 0.602 ± 0.009
SIR 0.513 ± 0.021 0.800 ± 0.036 0.600 ± 0.027 0.023 ± 0.002 0.480 ± 0.052

Threshold 0.600 ± 0.053 0.899 ± 0.028 0.858 ± 0.029 0.018 ± 0.002 0.757 ± 0.038
Voter 0.310 ± 0.019 0.671 ± 0.022 0.600 ± 0.032 0.012 ± 0.002 0.542 ± 0.009

Word Ising 0.302 ± 0.029 0.560 ± 0.019 0.504 ± 0.011 0.024 ± 0.003 0.438 ± 0.033 0.065 ± 0.020 0.056 ± 0.021 0.062 ± 0.031 0.104 ± 0.021
SIS 0.402 ± 0.033 0.787 ± 0.026 0.606 ± 0.030 0.012 ± 0.004 0.518 ± 0.020
SIR 0.329 ± 0.030 0.701 ± 0.021 0.741 ± 0.018 0.035 ± 0.004 0.518 ± 0.026

Threshold 0.586 ± 0.075 0.807 ± 0.032 0.719 ± 0.023 0.002 ± 0.001 0.639 ± 0.033
Voter 0.476 ± 0.027 0.691 ± 0.022 0.696 ± 0.027 0.003 ± 0.001 0.584 ± 0.027

Ca-netsci Ising 0.551 ± 0.027 0.647 ± 0.038 0.620 ± 0.017 0.002 ± 0.002 0.562 ± 0.013 0.335 ± 0.022 0.374 ± 0.012 0.440 ± 0.023 0.143 ± 0.011
SIS 0.408 ± 0.023 0.776 ± 0.025 0.729 ± 0.035 0.002 ± 0.001 0.639 ± 0.023
SIR 0.260 ± 0.026 0.706 ± 0.024 0.663 ± 0.014 0.001 ± 0.001 0.453 ± 0.032

Threshold 0.613 ± 0.038 0.804 ± 0.015 0.927 ± 0.029 0.003 ± 0.001 0.599 ± 0.024
Voter 0.341 ± 0.026 0.590 ± 0.050 0.556 ± 0.015 0.006 ± 0.002 0.451 ± 0.040

Email Ising 0.275 ± 0.038 0.491 ± 0.035 0.540 ± 0.022 0.003 ± 0.001 0.463 ± 0.013 0.144 ± 0.008 0.144 ± 0.004 0.158 ± 0.005 0.056 ± 0.007
SIS 0.404 ± 0.015 0.546 ± 0.055 0.609 ± 0.019 0.005 ± 0.003 0.530 ± 0.012
SIR 0.356 ± 0.051 0.551 ± 0.024 0.637 ± 0.025 0.007 ± 0.001 0.434 ± 0.044
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TABLE XIX. Network inference performance of CoND and other baseline methods in terms of the Net_acc metric for three continuous dynamical models, with the GIN model containing 90% dynamics and

90% structure. The best accuracy in each row of the results is highlighted in bold.

Network Dynamics GGN CoND CoND0 Correlation Granger CN AA RA LP

Kuramoto 0.274 ± 0.025 0.277 ± 0.069 0.339 ± 0.047 0.024 ± 0.008 0.310 ± 0.012
BA Branch 0.418 ± 0.073 0.454 ± 0.054 0.410 ± 0.033 0.022 ± 0.004 0.259 ± 0.011 0.026 ± 0.009 0.014 ± 0.011 0.015 ± 0.012 0.025 ± 0.012

CML 0.053 ± 0.049 0.282 ± 0.086 0.180 ± 0.070 0.003 ± 0.004 0.200 ± 0.004
Kuramoto 0.517 ± 0.020 0.635 ± 0.011 0.664 ± 0.049 0.003 ± 0.003 0.299 ± 0.012

ER Branch 0.227 ± 0.050 0.390 ± 0.036 0.375 ± 0.035 0.005 ± 0.005 0.157 ± 0.010 0.002 ± 0.001 0.002 ± 0.002 0.003 ± 0.002 0.002 ± 0.001
CML 0.075 ± 0.056 0.237 ± 0.083 0.369 ± 0.069 0.005 ± 0.003 0.151 ± 0.010

Kuramoto 0.590 ± 0.011 0.603 ± 0.056 0.723 ± 0.067 0.004 ± 0.003 0.276 ± 0.013
WS Branch 0.360 ± 0.035 0.475 ± 0.052 0.440 ± 0.054 0.005 ± 0.003 0.332 ± 0.011 0.015 ± 0.001 0.015 ± 0.001 0.013 ± 0.001 0.014 ± 0.001

CML 0.087 ± 0.061 0.400 ± 0.041 0.350 ± 0.058 0.003 ± 0.003 0.310 ± 0.026
Kuramoto 0.380 ± 0.089 0.487 ± 0.059 0.447 ± 0.021 0.025 ± 0.003 0.257 ± 0.025

Dolphins Branch 0.300 ± 0.056 0.380 ± 0.076 0.320 ± 0.038 0.027 ± 0.002 0.332 ± 0.035 0.121 ± 0.014 0.095 ± 0.012 0.078 ± 0.012 0.092 ± 0.022
CML 0.020 ± 0.087 0.247 ± 0.082 0.287 ± 0.067 0.023 ± 0.002 0.277 ± 0.026

Kuramoto 0.324 ± 0.011 0.293 ± 0.088 0.336 ± 0.039 0.013 ± 0.005 0.264 ± 0.030
Word Branch 0.2308 ± 0.085 0.442 ± 0.072 0.289 ± 0.062 0.023 ± 0.001 0.286 ± 0.025 0.065 ± 0.020 0.056 ± 0.021 0.062 ± 0.031 0.104 ± 0.021

CML 0.007 ± 0.078 0.133 ± 0.064 0.200 ± 0.061 0.014 ± 0.001 0.151 ± 0.038
Kuramoto 0.158 ± 0.053 0.242 ± 0.032 0.200 ± 0.043 0.003 ± 0.001 0.160 ± 0.028

Ca-netsci Branch 0.143 ± 0.021 0.231 ± 0.033 0.209 ± 0.059 0.003 ± 0.001 0.154 ± 0.025 0.335 ± 0.022 0.374 ± 0.012 0.440 ± 0.023 0.143 ± 0.011
CML 0.014 ± 0.075 0.328 ± 0.067 0.319 ± 0.066 0.005 ± 0.002 0.260 ± 0.022

Kuramoto 0.1991 ± 0.038 0.334 ± 0.050 0.229 ± 0.060 0.005 ± 0.001 0.226 ± 0.029
Email Branch 0.128 ± 0.050 0.268 ± 0.029 0.222 ± 0.046 0.004 ± 0.002 0.147 ± 0.038 0.144 ± 0.008 0.144 ± 0.004 0.158 ± 0.005 0.056 ± 0.007

CML 0.054 ± 0.063 0.140 ± 0.070 0.191 ± 0.049 0.003 ± 0.001 0.162 ± 0.028
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TABLE XX. Comparison of the performance of CoND and other baseline methods with 90% dynamics and 90% structure based on the SAGE model by using the influenza data and the PM2.5 data.

Dynamical prediction

Dataset GGN CoND CoND0 CoD1 CoD2 \ \ \ \
Influenza 0.008 ± 0.000 0.006 ± 0.000 0.007 ± 0.001 0.007 ± 0.000 0.008 ± 0.000 \ \ \ \
PM2.5 0.006 ± 0.001 0.003 ± 0.000 0.003 ± 0.000 0.003 ± 0.000 0.003 ± 0.000 \ \ \ \

Network inference

Dataset GGN CoND CoND0 Correlation Granger CN RA AA LP
Influenza 0.232 ± 0.047 0.315 ± 0.078 0.259 ± 0.055 0.117 ± 0.032 0.235 ± 0.043 0.283 ± 0.029 0.273 ± 0.035 0.273 ± 0.035 0.250 ± 0.031
PM2.5 0.121 ± 0.022 0.250 ± 0.033 0.311 ± 0.037 0.007 ± 0.001 0.094 ± 0.020 0.115 ± 0.032 0.162 ± 0.025 0.155 ± 0.022 0.074 ± 0.014

TABLE XXI. Comparison of the performance of CoND and other baseline methods with 90% dynamics and 90% structure based on the GIN model by using the influenza data and the PM2.5 data.

Dynamical prediction

Dataset GGN CoND CoND0 CoD1 CoD2 \ \ \ \
Influenza 0.004 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 \ \ \ \
PM2.5 0.004 ± 0.001 0.002 ± 0.000 0.003 ± 0.0002 0.003 ± 0.000 0.003 ± 0.001 \ \ \ \

Network inference

Dataset GGN CoND CoND0 Correlation Granger CN RA AA LP
Influenza 0.235 ± 0.063 0.319 ± 0.045 0.2981 ± 0.051 0.114 ± 0.035 0.229 ± 0.027 0.252 ± 0.018 0.284 ± 0.024 0.273 ± 0.034 0.271 ± 0.023
PM2.5 0.134 ± 0.039 0.284 ± 0.025 0.270 ± 0.020 0.003 ± 0.002 0.095 ± 0.015 0.118 ± 0.026 0.148 ± 0.025 0.137 ± 0.022 0.086 ± 0.019
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